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Abstract
The method of maximum likelihood detection is proposed for the

search for short period gravitational-wave signals in the data of cur-
rently operating gravitational wave detectors as LIGO. The measure-
ment of these signals with realistic sampling frequencies gives a small
�nite number of data points, allowing to make analytic probabilis-
tic estimates on the e�ciency of the various burst-search algorithms.
Matched �ltering is analyzed for white noise and is shown to be op-
timal in certain regards. A modi�cation of this method is proposed
to decrease the false alarm rate by matching the time di�erences and
signal strengths between the di�erent gravitational-wave detectors.

1 Introduction
The objective of this study is to give a theoretical review of the optimal detec-
tion methods regarding the detection e�ciency for short period gravitational-
wave signals. Short period gravitational wave signals are expected by the
most interesting phenomena, such as supernova explosions [1], gamma-ray
bursts [2], and black hole collisions [3]. The understanding of the detection
results are vital to comprehend the limitations of the data analysis of the
currently operating gravitational wave detectors.

Other gravitational wave sources include the periodic sources primarily
from pulsars, the chirps from binary inspirals, and the stochastic background
from the big bang. These sources are longer in duration allowing a long
integration of the data stream, leading to the relative attenuation of noise.
The stochastic background [4] is measured with the analysis of the cross-
correlation between the separate gravitational wave detectors, whereas the
periodic sources [5] are investigated by matched �ltering . The evaluation is
e�ective in Fourier space.

Short-range gravitational wave burst signals are analyzed by various dif-
ferent means. The physics behind the generation of these signals is gener-
ally not well understood, and the size of the family of possible signals is
enormous. The second di�culty is that the length of the burst signals is
typically too short and long integrations are not possible. For this reason,
instead of matched �ltering other techniques are used in practice. The algo-
rithms use the correlation between the detectors and examine the statistics
of the data distribution. Examples of these algorithms are the SLOPE [6]
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and the TFCLUSTERS [7]. The SLOPE algorithm searches for instances
where the smoothed amplitude increases rapidly, and TFCLUSTERS locates
continuous enhanced regions in the time-frequency domain. The results are
compared with the random noise statistics. There is also an analogous time
domain method [8], where the integration length is varied in the calculation
of the correlation integral between the detectors and the relative time shift
is checked to reduce the false alarm rate. A fourth method [9] examines
the change in the variance of the data, and creates a trigger if there is a
signi�cant increase. A �fth technique is the search for outlier spikes in the
statistical distribution of the data samples. The results are used to make
upper limits for the statistical presence of burst signals.

This study attempts to derive probabilistic calculations to examine what
the optimally sensitive method is for the detection of distinct short period
gravitational wave burst signals. The theoretical evaluations are capable to
give an objective description of the detection e�ciency [10]. In comparison,
the evaluations of numerical simulations aiming to examine the e�ciency
requires much care. The generating of an unbiased sample regarding the
detection is an important nontrivial task. Nevertheless, the results should be
compared with Monte Carlo simulations for a check.

The remainder of this article is organized as follows. First the possible
inferences are derived for a single detector with white Gaussian noise. The
various optimal decision making criteria are described for a single data ob-
servation. The result is then generalized for longer data streams, and for
multiple alternate hypotheses. The material included in these introductory
sections are not original, but are included to aid the later calculations. We
then describe a geometrical picture to visualize the problem geometrically.
Next, we derive the optimal multiple detector method and extend to the case
of arbitrary non-white Gaussian noise statistics. The limitations of the de-
rived estimator are calculated in the following section. The resulting method
is optimal in sensitivity in the mathematical sense, but can be further im-
proved with the use of physical requirements. Our proposals for these are
described in the next section. Finally, a possible template family is de�ned
for burst searches. In the last section the conclusions are drawn and the
future plans are listed.
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2 Observations with a single detector
With the desire for completeness let us �st review the classic results of statis-
tics for making inferences about a single measurement with one detector.
This overview gives the opportunity to highlight what one can obtain from
a short sampled data set. We shall then build on these fundamentals, and
show in what context the proposed method is thought of as optimal.

This section is structured in four subsections. First we will discuss the
results for single data observations, and review useful decision making crite-
ria. Next we shall expand the results for multiple alternate hypothesis. Then
we shall treat measurements of data as a function of time. Finally we shall
explain what changes are necessary for a non-white noise background.

2.1 Single data observations
First we shall examine the detection of a binary signal in a noise background,
where the P (N) distribution of the noise is given. Let Y (t) denote the vari-
able measured, which assumes some value y at an instance t0. Similarly
for the signal and noise, S and N denote the variables, s and n their corre-
sponding values. For simplicity we shall not make the distinction between the
variables and their values when it doesn't lead to confusion. The measured
signal is the sum of the true signal value and the random value assumed by
noise.

y = s + n (1)
Since N is a random variable, Y is also a random variable for each �xed s
signal value denoted by the conditional probability distribution P (Y |S =
s). It is possible to explicitly calculate these distributions in practice. A
Gaussian noise with

P (n) =
1√
2π

exp(−n2/2) (2)

gives
P (y | s) =

1√
2π

exp

(
−(y − s)2

2

)
(3)

Let us assume we would like to decide between two possible outcomes of the
experiment. The null hypothesis (H0) is the event that no signal is present,
i.e. S = 0, and the alternative hypothesis (H1) is the event that S = 1. The

5



decision rule is to choose H1 if

P (H1 | y) ≥ P (H0 | y) (4)

These probabilities are called a posteriori probabilities, so this is called the
maximum a posteriori probability criterion. To make use of Eq. (3) we shall
use the Bayes theorem for conditional probabilities

P (Hi | y) =
P (y |Hi)P (Hi)

P (y)
(5)

Substituting in Eq. (4) and simplifying with the common denominators of
the two sides, the decision rule becomes

P (y|S = 1)P (S = 1) > P (y|S = 0)P (S = 0) (6)

or equivalently choose H1 if
P (y|S = 1)

P (y|S = 0)
≥ P (S = 0)

P (S = 1)
(7)

The probabilities on the RHS are referred to as a priori probabilities, and
are often not known exactly. The LHS is called the likelihood ratio.

Generally many other criteria for goodness involves equations for the
likelihood ratio as well, only the quantity on the RHS of Eq. (7) changes.
Eq. (7) was the decision rule for the maximum posteriori criterion (4) and
envolved the a priori probabilities. Common examples for criterions, that do
not depend on a priori probabilities are the Neyman-Pearson criterion and
the minimax criterion. We shall now brie�y discuss these two criteria.

For the Neyman-Person and minimax criteria one needs to introduce con-
ditional decision probabilities and cost functions. Let D1 denote the event
when the decision is made in favor of H1, and D0 the event for a decision
for H0. The sum P (D1 |H1)P (H1)+P (D0 |H0)P (H0) is the probability that
the correct decision was made. P (D1 |H0) is referred to as the probability
of false alarms. The quantities Cij are assigned cost functions associated to
the the Di, Hj pairs1. The average risk or cost for the decision procedure is
given by

C̄ =
∑
ij

CijP (Di |Hj)P (Hj) (8)

1The diagonal elements Cii correspond to the correct decisions and are usually assigned
a zero value.
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The objective of the Neyman-Pearson criterion is to maximize the prob-
ability of detection for a given probability of false alarm. In other words it
maximizes P (D1 |H1) subject to the constraint P (D1 |H0) = α. It can be
shown that this can accomplished by using a likelihood ratio test. Specif-
ically, there exists some nonnegative number λ0 such that hypothesis H1

should be chosen if and only if

λ(y) =
P (y|S = 1)

P (y|S = 0)
≥ λ0 (9)

The threshold λ0 is chosen to satisfy the false alarm probability constraint.
The last criterion we shall discuss is the minimax criterion. The purpose

of the minimax criterion is to minimize the maximum possible C̄ expected
cost when the a priori probability of each hypothesis is unknown. Therefore
the solution involves �nding the least favorable a priori probability for which
the average cost is the maximum. Substituting P (H1) = 1 − P (H0) in Eq.
(8) and di�erentiating with respect to P (H0) produces the condition for the
minimax solution:

C10P (D1 |H0) + C00P (D0 |H0) = C01P (D0 |H1) + C11P (D1 |H1) (10)
Let R0 be the range of y values where D0 decision is made and the comple-
mentary range, R1, is where the decision is D1. The decision probabilities
can be written in the form

P (Di |Hj) =

∫

Ri

P (y|Hj)dy (11)

Substituting this in (10) gives the equation for the R0, R1 intervals for the
minimax criterion. Using the fact that both H0, H1 and D0, D1 are comple-
mentary respectively, we obtain an equation for the likelihood ratio.

All three of the above examples for decision criteria gave constraints on
the likelihood ratio for a unique test of a stationary random process. The
goodness of the test was always a monotonic function for the λ likelihood
ratio, a higher λ value always satis�es the conditions for a lower λ. Therefore
there is a one-to-one correspondance between the likelihood ratio and the
con�dence level of a given decision.

2.2 Multiple alternate hypotheses
For multiple alternate hypotheses we are dealing with a family of possible
events: H0, H1, . . . , HI . The objective can be either to decide simply whether
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there was any signal present in the data, or to decide which of the given hy-
potheses is most likely to describe the results of the measurement. For a
simple trigger generation it is su�cient to do I di�erent independent single
alternate hypothesis tests for all pairs (H0, Hi) for i ∈ [1 . . . I]. The a pos-
teriori, Neyman-Pearson and minimax detection criteria is thus the same as
before. If any of the tests of these pairs result in a non-D0 decision, a trigger
is generated marking the possibility of the presence of a possible signal.

The same line of argument as in the case of a single alternate hypothesis
leads to the following maximum likelihood multiple hypotheses a posteriori
decision rule. Choose the event Hi for which

P (y |Hi)P (Hi) = maximum (12)

where P (Hi) is the a priori probability of the event Hi. If all di�erent events
are believed to have equal a priori probabilities, then P (Hi) is the same for
all i. The decision rule is then choose the event Hi for which P (y |Hi) =
maximum. For the case of white noise and Hi events corresponding to
S = si, we get

1√
2πσ

exp

[
−(y − si)

2

2σ2

]
= max (13)

or equivalently, si is most likely if among i ∈ [1 . . . I]

ysi − 1

2
s2

i = max (14)

This is usually referred to the as the maximum likelihood detection.
The value of an estimate is dependent on the observations. As new sets of

measurements are taken, the numerical value of the estimate changes. Hence
the estimator itself is a random variable. When constructing a detection
algorithm for obtaining an estimator, it is desirable for the estimator to
have the minimum variance. It can be shown that the minimum variance
unbiased2 estimator is unique [12]. Assume the likelihood function is written
as P (y | s) where s is the parameter for to be estimated. Let the estimate
be denoted by ŝ. There exists a theoretical lower bound, called Cramer-Rao
bound, that gives the minimum variance of an estimate [12]

σ2
ŝ ≥

1

E

[(
∂ ln P (y | s)

∂α

)2
] (15)

2If the mean of an estimate is equal to the true value it is said to be unbiased.
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This sets an e�ective limit on the precision of an estimator.

2.3 Multiple-point measurements
Let us now consider the measurement of K subsequent data samples with
one given detector. We shall �rst assume stationary white noise P (n) =

1√
2πσ

exp(−n2/2σ2) and treat the more general case of an arbitrary nearly-
stationary Gauss background later. Let the value of the separate data points
of measurement, signal and noise values be denoted by yk, sk and nk where
k ∈ [0, 1, . . . , K]. The null hypothesis, H0, is sk = 0 for all k, and the
alternate hypothesis, H1, is a given K element long sequence of values,
(sk | k ∈ [1 . . . K]). Given that H1 is true yk− sk has the distribution of noise
for every k. Since the probability of statistically independent events are the
product of the individual probabilities, the likelihood ratio corresponding to
(7) is given by

λ(y) =
P (y1, y2, . . . , yK |H1)

P (y1, y2, . . . , yK |H0)
=

p1(y)

p0(y)
(16)

where

p1(y) =
1√
2πσ

K∏

k=1

exp

[
−(yk − sk)

2

2σ2

]
(17)

and

p0(y) =
1√
2πσ

K∏

k=1

exp

[
− y2

k

2σ2

]
(18)

After simpli�cations the likelihood ratio becomes

λ(y) = exp

[
1

2σ2

(
K∑

k=1

2yksk −
K∑

k=1

s2
k

)]
(19)

and the decision rule is: choose H1 if λ(y) ≥ λ0, with λ0 set according to one
of the criteria treated above. With some manipulations this is equivalent to
choose H1 precisely when

ln λ(y) = s · y − 1

2
s2 ≥ λ′0 (20)

Note that the scalar products of these discretely sampled functions transform
to integrals in the continuous limit. In that approximation the evaluation of
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the cross correlation integral of the measured and expected signals is neces-
sary.

To get an insight on the essence of this decision rule one can visualize
the result for the case of K = 3. (The K = 2 case is plotted on Figure
1.) The given sampled signal function for H1 is s = (s1, s2, s3), one point in
the three dimensional space. For H0 the corresponding signal is the origin.
The probability distribution of the measurement can either be distributed
around the point s or the origin depending upon whether H1 is true or H0.
A likelihood decision rule as (20) corresponds to choosing H1 if the measured
y value is in a given half-space. The limiting plane between the half-spaces
has a normal vector parallel to the position vector s. The position of the
plane is given by the likelihood constraint λ′0. By increasing λ′0, it is shifted in
the direction of s. For an arbitrary K > 3, the equation de�nes a hyperplane
in the K dimensional space. The decision is made according to which side
the measured y value takes.

The multiple hypothesis detection for more data points is handled simi-
larly. The maximum likelihood estimate corresponding to a choice of equal
a priori probabilities gives the equation

ln λ(y) = max
i

[
si · y − 1

2
s2

i

]
≥ λ′0 (21)

where the si | i ∈ [1..I] is the family of signal templates. The event H∗ is
chosen for the index, where the argument on the RHS is the highest.

This can also be visualized in the vector space geometrically (see Figure
1). Mark the points si in the vector space. For each point color the half-
spaces of the single signal point case described above by (20). The region
where some alternate hypothesis will be chosen is the union of these colored
half-planes. The regions corresponding to a given sj template is bounded by
hyperplanes with normal vectors sj−si with i ∈ [0, . . . , I]. Therefore, it is to
be emphasized that a decision in favor of a given sj point is really the choice
for a given region of the space of functions. Any representative member of
that region, i.e. a point in the K dimensional vector space, which is a discrete
sampled function in time, is �tted with the same function sj, but could also
have been �tted with signals corresponding to the other points in the region.
Indeed to avoid a biased estimate, one has to use a random template set with
a Monte Carlo method rather than a �xed template family. Let us also point
out that the re�nement of the template family is only e�cient to the point
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Figure 1: The plots depict the likelihood decision rules in the K = 2 di-
mensional case. The probability distribution of the measurement is plotted
when the s1 signal is present in a Gaussian noise background. The bound-
aries separating the decisions D0, D1, and D2 are marked by black lines. For
the single alternate hypothesis (left), the decision regions are half-spaces.
The multiple alternate hypotheses acceptance domains (right) are bounded
by hyperplanes, that can be approximated by chopped cones in the higher
dimensional cases.

where the cell size reaches the scale which is comparable to the minimum
variance of the estimator given above by (15).

The primary objective is to decide whether a given waveform is present
in the data stream. For the marginal detection of the lowest strength signals,
it is su�cient to work with signal templates of identical power. Therefore
the signal templates si lie on a given spherical surface in the K-dimensional
vector space. The radius of the sphere is

r = ||si|| = (the marginally detectable signal strength) (22)

The variable parameters of the method is qK , the number of templates on
the spherical surface, and m, the limit under which always D0 null-decision
is chosen. The adjustment of these parameters changes P (D0 |Hi), the false
alarm, P (Di |Hj, i 6= j) the confusion, and P (Di |Hi), the correct detection
probabilities. This is examined in Section 3 in detail.

Therefore, we have carried out the probabilistic considerations which led
to the optimal detection method of signals. We have made strong use of
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the fact that the noise was Gaussian and statistically independent. The
relaxation of this condition will be discussed in the next chapter. Notice,
that a method can be more sensitive than matched �ltering only if there
were additional information available for the detected signals. These could
include multiple coincident detection of the gravitational waves, or a coop-
eration with other facilities, like the optical or neutrino detectors. In any
case, the information available is well de�ned. For a given set of conditions,
the optimal method and its limitations can be derived theoretically. After
carrying out the corresponding calculations, there will later be no need for
any improvements of the data analysis algorithms in terms of sensitivity.

2.4 Non-white Gaussian noise
Let us now take the more general case of non-white Gaussian noise3. In this
case the distinct data samples in the data stream of the detector will be
correlated, and the data points will not be statistically independent. This
means the previous derivation fails, and the equations (17) and (18) do not
hold.

For signals with Fourier transforms, eq. (20) will be valid with the rede�-
nition of the scalar product (see e.g. [11]). It is common to use the following
inner product in the literature

〈g, h〉 = 2

∫ ∞

−∞

g̃∗(f)h̃(f)

Sn(f)
df (23)

where tildes denote the Fourier transforms and Sn(f), the one-sided noise
power spectral density, is given by

ñ∗(f1)ñ(f2) =
1

2
δ(f1 − f2)Sn(f1) for f1 > 0 (24)

For our purposes we would like an algorithm fully in time domain. In this
case it can be shown [11] the inner product is

〈g, h〉 =

∫ T

0

dt

∫ T

0

dτg(t)R−1
n (t− τ)r(τ) (25)

3Note, that for our purposes, for the detection of short-period burst signals, it is suf-
�cient to assume the noise to be stationary, if the detection criteria is set to the actual
noise level.
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Where R−1
n is de�ned by the equation

∫ T

0

dτR−1
n (t− τ)Rn(τ − z) = δ(t− z) (26)

where Rn(τ) is the autocorrelation function of the noise. In particular, for
white noise we have Rn(τ) = (N0/2)δ(τ) and R−1

n (τ) = (2/N0)δ(τ), which
when substituted to (25) gives back the original scalar product (20) up to a
constant of proportionality.

The integrals used above are useful in the continuous case, however we are
dealing with a discretely sampled �nite data set. In this case one needs to use
the discrete Karhunen-Loeve expansion [11], analogous to the discrete Fourier
transforms. Let the length of observation be T. The procedure consists of 4
main steps.

• One �rst obtains the noise autocorrelation function Rn(τ) in the in-
terval with the given sampling frequency Fs. This will e�ectively be
K = TFs number of points.

• Second, the following eigenvalue problem of the Rn kernel needs to be
solved. That is, the following equation should be solved

µjfj(t) =

∫ T

0

dsfj(s)Rn(t− s) (27)

for the eigenfunctions4 fj and eigenvalues µj. The integral is to be
understood as a �nite sum corresponding to the Fs sampling frequency.
This is e�ectively a system of K linear equations. There are generally as
many eigenvectors as the dimension of the linear space, i.e. K vectors.

• Third, the measured data sample and matched signals are expanded in
terms of these eigenvectors.

rk =

∫ T

0

dtfk(t)r(t) (28)

The integrals are again practically �nite sums over the allowed points.
The data points in this basis are statistically independent. The previous
results are therefore valid in this representation.

4The eigenfunctions are to have unit norm.
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• The likelihood functions are then

p(y |Hi) =
K∏

k=1

1√
2πµk

exp

[
−(rk − sik)

2

2µk

]
(29)

and the maximum likelihood estimator for identical a priori templates
is the highest among these.

The main advantage of this algorithm is that it gives a statistically in-
dependent sample for a given noise statistics. Fourier space methods such
as equation (23) assume that the Fourier modes of various frequencies are
independent in the detector noise. This assumption holds only for ideally
linear detectors with only narrowband noise sources.

The Fourier representation of (23) also breaks down numerically for band
limited or notched data, where the domain of integration need to be cho-
sen. Depending on how this was chosen the Fourier representation leads to
correlated data sets, introducing further errors.

In conclusion, the algorithm derived in the previous sections de�ne the
optimal time domain one-detector algorithm. It uses all of the information
available for the noise and data. With no prior preference for any signal
template, it assigns the relative probability for each template. This is the
relative probability distribution one believes the measured signal belongs to
that choice of template, which is the most one can hope for using a single
detector.

3 Limitations on the estimate
As we have pointed out previously, �nite number of measurements of time
samples cannot yield a de�nite waveform, but leads to a given result only
with an associated probability distribution. Let us now examine the measure
of this uncertainty.

3.1 Single alternate hypothesis
We shall work with a Gaussian distributed statistically independent noise.
The measured time-sampled signal y is a K dimensional vector. Let the
possible signal input be either s1 or s0 = 0. As shown earlier, it is su�cient
to set the decision rule upon the value of the likelihood ratio λ(y). We
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shall choose the s1-present hypothesis if and only if λ(y) > λ0. Let e1 be
the normal vector parallel to s1. The normal case letters shall denote the
component in this direction. Let m be the measurement for which

λ(m) = λ0 (30)

and m = me1. Visually, m is the magnitude of the signal from which we be-
lieve the signal to be present. For smaller e1 component of the measurement
y, the null-decision is made, and for a higher y component, an s1 signal is
believed to be present.

The false alarm probability is given by

P (D1 |s0) =

∫

λ(y)>λ0

dy

(
√

2π)K
exp

−y2

2
=

∞∫

m

dy√
2π

exp
−y2

2
= F (−m) (31)

where in the second equality we have changed to the variable y for which
y = ye1 and evaluated all other integrals5. The value of m is de�ned by
de�ning the desired false alarm rate in this equation.

Let us derive the probability of an error of the �rst kind to be made.
Assume that s1 is indeed present, but the decision misses the detection.
Subtracting s1 from y leaves the noise with the given Gaussian distribution,

P (D0 |s1) =

∫

λ(y)<λ0

dy
1

(
√

2π)K
exp

[
−(y − s1)

2

2

]
(32)

Again, the integrals on the orthogonal compliment of e1 are trivial. What
remains is

P (D0 |s1) =

m∫

−∞

dy
1√
2π

exp

[
−(y − s1)

2

2

]
= F (−s1 + m) (33)

The detection con�dence for s1 is

P (D1 |s1) = 1− P (D0 |s1) = F (s1 −m) (34)

Therefore a measurement of y gives false alarms with a probability F (−m)
and a correct detection with F (s1−m). The results (34) and (31) are plotted

5Note that y is not the norm of y, just a projection in the K dimensional vector space.
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Figure 2: The single alternate hypothesis detection con�dence is plotted as
a function of the template signal strength ||s1|| (x axis) and the false alarm
rate (y axis). The noise variance is 1 for each data point, and the result is
independent of K, the length of the time sample. Note however, that the
total noise variance is

√
K, so the detection of a signal of unit order is a great

achievement for large K values.

on Figure 2. Note the peculiarity, that since F is the unit variance Gaussian
cumulative probability function, this gives a sensitivity scale of order 1, inde-
pendent of the length of the analyzed data stream. There are two solutions
for this peculiarity.

Firstly, for longer data streams the same signal has a greater norm, but
the noise is equally enhanced, as shown on Figure 3. The increase of both the
signal and noise strength is by a factor of

√
K. However the single component

in the e1 direction does not change for noise. The detection of a unit strength
signal in a larger vector space means the detection of the original signal of
strength 1/

√
K. Also note, that the unit strength signals of longer lengths

contain more information, i.e. more details. Therefore, their detection is an
improvement compared to the corresponding lower dimensional unit strength
signal case.

The second notice is that a shorter sample �ts more times in a data
stream of length T . For a signal sσ

1 with a Gaussian envelope of variance
σ, the detection of the corresponding signal with a relative time di�erence
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Figure 3: The visualization of the peculiarity for K = 2. The signal is s1 =
(1, 1) or s0 = (0, 0), the measurement is distributed around either of these
points with unit variance. The decision is made according to which half-plane
the measurement takes. Compare this to the K = 1 dimensional problem,
where s1 = (1) and s0 = (0). Intuitively, the two-point measurement shall be
more e�ective than the one point measurement. It is indeed more e�ective,
but only due to the fact, that it corresponds to a one-dimensional signal of
length

√
2. However, the normalized signals' detections are identical.

of 3σ will be uncorrelated. The support of these functions are disjunct, and
are therefore statistically independent. Thus, for a total detection time T ,
there are nσ = T/(3σ) independent time shifts of the same function. The
false alarm rate for sσ

1 is enlarged by this factor. Therefore a longer signal
can be detected with a better sensitivity for the same false alarm rate in a
given data stream.

There is a third aspect to consider regarding the apparent insensitivity
of the e�ciency of the decision to the sample size. It is to realize, that in
the above case we were only considering between the two possibilities s0 and
s1, and one of these events was always chosen, even if the measured y was
far away from both hypotheses. In the later case, we shall be aware that a
very low probability data stream has been detected for the given signal. The
inference, that some non-s0 signal was present, is valid, but the decision in
the favor of s1 is questionable.
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To avoid this problem, one could expand the size of the signal template
set, and make inferences according to a multiple alternate hypotheses detec-
tion scheme such as the maximum likelihood detection. The nonzero signal
templates have equal strength, and are evenly distributed on a spherical
surface in the vector space. The amplitude of the detected signal can be
determined later, separately.

3.2 Multiple alternate hypotheses
The maximum likelihood detection presumes the belief that each signal is
equally probable. The decision for a given measurement y is made according
to (21), the nearest signal s∗ ∈ {si | i ∈ [1 . . . I]}. The signal templates si

are chosen with identical strengths. Geometrically, they lie on the surface of
a K-dimensional sphere of radius r = ||si||. They need not cover the whole
of the sphere, just the subspace spanned by the burst waveforms.

Compared to the single hypothesis case treated previously, this method
reduces the false alarm rates P (Di |H0) for each signal si by a signi�cant
amount. However the detection probabilities P (Di |Hi) are also decreased,
due to the possible confusion between the alternate hypotheses. The con-
fusion probability is de�ned as P (Di |Hj, i 6= j). In the remaining of this
section we give the theoretical values for these uncertainties.

The separation between the signal templates is determined by the magni-
tude of the noise. Since the noise is assumed to have a unit normal distribu-
tion for each data point, it has a variance

√
K around the true signal. This

separates as a unit variance in the direction of s1 and
√

K − 1 in the orthog-
onal complement. One has to choose templates with mutual separations of
this order of magnitude. A �ner resolution does not carry more information
for the observation of only one event. For such an e�ective template family,
the maximum number of templates of lowest strength, qK , will be the number
of points available on the

√
K radius K-dimensional sphere having a

√
K − 1

separation. In Appendix A. it is proved that a su�cient approximation is
qK = 2K.

We can now return to the question of detecting a given signal s1 of the
signal family in

√
K variance Gaussian noise. Presuming that this signal

is present, the measured y sample will have a probability distribution with
variance

√
K around s1. The maximum likelihood decision criteria is to

have y in the vicinity of this point in the K-dimensional vector space. The
amplitude matching can be done separately, �rst we shall only determine the
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most likely direction of the signal from the origin. Compared to the simple
single-hypothesis decision rule discussed in the beginning of the section, this
narrows the acceptance domain of D1 from the half-space, to a chopped cone
with axis along s1, peak at the origin s0, radius

√
K − 1, and the top cuto�

at me1. A measurement, y, at a larger angle from the origin, corresponds to
a di�erent template of the unit sphere, and the tip of the cone corresponds
to the no signal case s0 (see Figure 1).

The variable parameters of the method are θ and m. θ is given by the
density of the templates on the spherical surface and m is the limit under
which the null hypothesis D0 is chosen. The adjustment of these parameters
changes the false alarm rate, the confusion between the alternate hypothe-
ses, and the correct detection probability for a given signal. The following
observations can be drawn from inspection:

(Increasing m) ⇒



decreases false alarms
decreases detection probability
leaves confusion rate unchanged




(Increasing θ) ⇒




leaves the total false alarm rate unchanged
leaves the total detection probability unchanged

increases the individual false alarm rates
increases the individual detection probabilities

decreases the confusion rate




Notice that the increase of θ increases the sensitivity by every means. The
extreme value θ = π corresponds to the case where only one signal direction
s1 is distinguished, with a similar decision rule as discussed previously in 3.1.

Therefore, the main di�erences in the single and multiple alternate hy-
pothesis tests can be summarized in the following points6.

1. Detection probability of single alternate hypothesis is higher.

2. False alarm rate of single alternate hypothesis is higher.

3. Have to know the one signal prior to the measurement

4. Cannot distinguish more than one burst

5. Cannot be sure whether the measured signal is a true burst
6The signal strengths are assumed to equal in the two cases.
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Appendix B derives the false alarm probability for the maximum likeli-
hood method. The result is

P FA =
I

qK

Γ(K/2,m2/2)

Γ(K/2)
≈ I

2K
F [
√

2K −
√

2m)] (35)

where Γ(a, b) is incomplete Gamma function, Γ(a) is the complete Gamma
function, and F (a) is the cumulative Gaussian probability distribution. I
denotes the number of templates associated to burst signals, qK = 2K for
K sample size. The parameter m can be adjusted to reach the necessary
maximum false alarm probability.

We also derived the detection probability for multiple alternate hypothe-
ses in Appendix C. The nearly exact formula is

P =
1

2
erf(

√
K)F (s1 −m) +

∫ ∞

m−s1

dy

2
√

2π
exp(−y2/2)erf(y + s1 −

√
K) (36)

and Appendix C also gives the simple analytic approximation for this func-
tion. The �nal result is plotted on Figure 4. Equation (36) shows that
the detection probability depends strongly on s1, the signal amplitude. The
detection limit is ∝ √

K.
The limitations on the estimate are summarized by the equations (35)

and (36). The adjustable free variables are the minimum signal strength s1

and the detection margin m. Observe in (35) the dependance on the F Gaus-
sian cumulative probability density function, which is negligible for negative
arguments. This leads to the constraint that both s1 and m have to scale
as
√

K. The minimum detectable signal to noise ratio cannot be less than
approximately 1, for as low false alarm rates with one detector. This is not
surprising, since the detection rule was essentially to have the si component
of the signal larger than all other components. The RMS uncertainty of a
measurement is

√
K, which is therefore the minimum expected value for the

detectable signal.
What one could alter in the method is the density of the template family.

This practically means to group arrays of dimensions together and treat the
resulting smaller set of data points. These data have higher strength (i.e.
compared to noise). One can carry out the maximum likelihood method for
the resulting set similarly. If the size of the data bins was N , this results
in a noise attenuation of 1/

√
N and an e�ective sample size K ′ = K/N .

The substitution in (35) and (36) is straightforward, which describe how the
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Figure 4: The multiple alternate hypothesis maximum likelihood detection
con�dence is plotted as a function of the template signal strength ||s1|| (x
axis) and the false alarm rate (y axis). The length of the data stream is
K = 20 (left), and K = 200 (right). Observe that the detection is unlikely
for s <

√
K, i.e. under 4.5 (left) or 14 (right).

resulting false alarm rate and true detection rate increase. The best detection
rate can be obtained by setting the parameter N to the preferred value. Note,
that the method for simple single alternate hypothesis case discussed in 3.1 is
the case where there is only one bin of size N = K. The detection probability
was of order 1/

√
K, but the distinction between the alternate hypotheses was

impossible.
So far in this section, we were considering the statistical error due to the

superposition of random noise n, but there is also a possibility for systematic
errors. Observe, that we were dealing with the detection of a signal family
{si}, where the signals are chosen prior to the measurement. The detec-
tion probability given by (36) corresponds to an incoming signal among this
family. What happens if a signal x, not in this family arrives? The algo-
rithm creates a burst trigger if the measurement is in the vicinity of one of
the templates. By choosing an appropriately large number of templates, the
burst space can be spanned by the templates. The burst signal x within the
interior of this space will be attributed to one of the burst templates. The
detection probability, that the measured incoming signal in noise, x + n,
belongs to its appropriate cell in the vector space is generally less than the
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detection probability (36). Nevertheless, the probability that any neighbor-
ing burst trigger is generated for x + n is well approximated with the result
(36). The quantity that is highly in�uenced by exactly which element of the
burst space x assumes, is the confusion probability P (Dj |Hi, i 6= j 6= 0).
This question is revisited in Appendix B.

4 Truncation of the data stream
For gravitational-wave burst search, one is generally dealing with wave-forms,
that are localized in the time domain, i.e. have a �nite support in time. A
gravitational wave burst signal, s1, with T data sample length, lies in a T
dimensional subspace. Therefore, an optimal burst search method is also in-
variant for the projection on that subspace, and the vector components of a
measurement along the orthogonal directions can be neglected. The trunca-
tion of the vector space is necessary to improve the algorithm performance.

4.1 Single alternate hypothesis
The truncation of the data stream is straightforward for the case of a single
alternate hypothesis. The likelihood ratio, given by (20) can be evaluated
within the signi�cant subspace, where the signal is nonzero. However, since
there is typically a smooth cuto� near the edges of burst signals, this trun-
cation leads to errors. We shall now calculate the bias of the approximation,
when the data points near those edges are neglected.

We shall calculate the error due to the truncation as compared to the
original signal e�ciency (34). Each single hypothesis case treated above,
(i.e. the posteriori, the Neyman-Pearson, and the minimax criterion) have
led to a rule (20), that depended only on the likelihood ratio. The event
H1 is chosen exactly if e1 · y > m, for a given m. This divided the vector
space of the measurements in two half-spaces, with a dividing plane given by
m. This plane was perpendicular to s1, and included the point me1, where
e1 was the normal basis vector parallel to s1. The detection con�dence was
given by

P (D1 |s1) =

∫

e1·y>m

dy√
2π

K
exp

[
−(y − s1)

2

2

]
(37)

We shall calculate the deviation from this level. Let s′
1 = e′

1 · s1 denote
the truncated signal. The decision rule will be altered by substituting s′

1 for
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the original s1 signal: choose the event S = s1 exactly when e′
1 · y > m.

This e�ectively rotates the dividing plane that is between the decision half-
planes, around the origin. The detection con�dence is described by the same
integral formula (37), only the integration domain changes. Let us switch to
an integration variable x = y − s1.

P (D1 |s1) =

∫

e′
1·x>m−s′1

dx√
2π

K
exp

[
−x2

2

]
(38)

The integrals over the subspace orthogonal to e′
1 are separable and equal 1.

Only the e′
1 component remains. This will be denoted by x.

P (D1 |s1) =

∫ ∞

m−s′1

dx√
2π

exp

[
−x2

2

]
= F (s′1 −m) (39)

The false alarm rate only depends on the magnitude y2, and is indepen-
dent of s1. This is therefore invariant under a rotation of the limiting plane,
leading to an unchanged false alarm rate

P (D1 |s0) = F (−m) (40)
Comparing with (34) shows that the truncation of the data stream re-

duces the detection probability from F (s1 −m) to F (s′1 −m), for the same
false alarm rate F (−m). This is not at all a surprise, since it is just the
simple consequence of the essence of the method: the measurement is pro-
jected along the signal, and the components in the orthogonal subspace are
neglected.

4.2 Multiple alternate hypotheses
We shall now examine the consequences of the truncation for the multiple
alternate hypotheses detection, the maximum likelihood method. Section
2.3. has used the assumption that the signal templates were of identical
length. If the signal length varies from template to template, the result for
the likelihood ratio (21) needs revision. The changes in the derivation are
straightforward, the relative probability of an event corresponding to the
given signal should be calculated for di�erent signal strengths. Let us recall
the de�nition of the likelihood ratio from (16):

λ(y) = max
i

P (y |Hi)

P (y |H0)
= max

i
exp

[
− 1

2σ
(y − si)

2 +
1

2σ
y2

]
(41)
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Making a decomposition in the truncated and orthogonal subspaces yields

2σ ln λ(y) = max
i

(
y′ · s′

i −
1

2
s′2

i + y⊥ · s⊥i −
1

2
s⊥i

2
)

(42)

The s⊥2 term is to second order small, which can be neglected. Using the
Cauchy-Schwarz identity −||a|| ||b|| ≤ a · b ≤ ||a|| ||b|| gives two bounds on
the RHS.

2σ ln λ(y) ≈ max
i

(
y′ · s′

i −
1

2
s′2

i ± ||y⊥|| ||s⊥i ||
)

(43)

If the result depends on the choice of the signs ± for given indexes, then
the truncation approximation cannot distinguish between those hypotheses.
The term ||y⊥|| can be approximated by the RMS value of the noise in the
orthogonal direction, ||y⊥|| ≈ √

K −N . To have the last term in (43) small
means

||s⊥i ||
||s′

i||
¿ 1√

K −N
(44)

Therefore relative squared integral of the signal template on the neglected
domain has to be small as compared to 1/(K −N). With this criterion the
likelihood function becomes

2σ ln λ(y) ≈ max
i

(
y′ · s′

i −
1

2
s′2

i

)
(45)

The signal template si should be chosen i� the the argument on the RHS is
maximum for that index, and the likelihood function exceeds the limit λ0.

The calculation time is given by the evaluation of each y′ · s′
i correlation

sum for the template family, each of which calculated on the corresponding
truncated time interval. This is considerably less then the time needed for
the evaluation for sums over the full data stream.

The error caused by the approximation can be estimated according to
(45). The e�ective signal strengths decrease to s′. The false alarm and
detection con�dence probabilities change with the substitution of s′ for s in
(35) and (36). The e�ective signal to noise ratio will be less by a factor of
order s′1/s1.

5 Multiple detectors
With the three LIGO detectors and the other gravitational-wave detectors
built around the world, we are fortunate to have more than one measurement
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for a given gravitational wave reaching Earth. Using a coincident analysis of
the multiple detectors e�ectively can improve the detection sensitivity with
orders of magnitude. We shall now examine the case with J independent
detectors.

We have used several subtle approximations for our algorithm. Firstly,
we shall only take into account the LIGO network, consisting of three nearly
aligned gravitational-wave detectors. The deviation from exact alignment is
taken negligible, so the detectors practically measure the same polarization
of the gravitational waves. Secondly, the detectors are generally described by
di�erent transfer characteristics and bias, resulting in dissimilar output even
for no noise and identical input. For the sake of the theoretical considerations
these di�erences are neglected. These two approximations are not crucial
for the proposed method, their relaxation is straightforward to carry out.
Third, we shall neglect the possible correlations in the noises present in the
di�erent detectors. For a better model, one should apply a transformation
similar to the Karhunen-Loeve expansion described above, thereby obtaining
a statistically independent set of data samples. Forth, the noise is assumed to
be Gaussian and stationary. The preprocessed signal of the LIGO detectors
are indeed highly Gaussian, and are stationary on the timescale of seconds.
Fifth, the noise is assumed to be white. The preprocessing of the detector
output generally produces a bandlimited nearly white noise, with notched
single frequencies. The white noise approximation provides a rough sense
of the e�ciency of the method. Future improvements should dissolve this
problem by the use of the Karhunen-Loeve expansion.

We shall use the same probabilistic description as in the single detector
case. Since the detectors are assumed to be totally independent, the prob-
ability of a given observation is just the product of the probabilities of the
single detectors. The likelihood functions are therefore

λ(y1, . . . , yJ) = max
i∈[1,...,I]

J∏
j=1

P (yj |Hi)

P (yj |H0)
= max

i

J∏
j=1

pi(yj)

p0(yj)
(46)

where

pi(yj) =
1√

2πσj

K∏

k=0

exp

[
−(yjk − sik)

2

2σ2
j

]
(47)

and

p0(yj) =
1√

2πσj

K∏

k=0

exp

[
− y2

jk

2σ2
j

]
(48)
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Note, that equation (47) can be written as

pi(yj) =
1√

2πσj

exp

[
− 1

2σ2
j

K∑

k=0

(yjk − sik)
2

]
(49)

Substituting in (46) gives the likelihood ratio for multiple detectors.

ln λ(y1, . . . , yJ) = max
i

J∑
j=0

K∑

k=0

(yjk − 1

2
sik)

sik

σ2
j

(50)

Let ∗ denote the index for which the argument on the RHS is maximal,
indicating that s∗ is the signal closest to most yj. Abbreviating the k-sum
with the scalar product, we get

ln λ(y1, . . . , yJ) =
J∑

j=0

1

σ2
j

(yj · s∗ − 1

2
s2
∗) (51)

This equation can be simpli�ed in the case of identical detectors, when σj = σ
for all j.

ln λ(y1, . . . , yJ) =
1

σ2

[(
J∑

j=0

yj

)
· s∗ − J

2
s2
∗

]
(52)

The log likelihood function therefore only depends on the sum of the individ-
ual detectors' measurements, and is otherwise independent of the individual
yj values. The use of multiple detectors improves the detection e�ciency by
the increased number of data points. Instead of N data points, there are
JN data points for J detectors. The results of Section 3 can be substituted
directly for this number of dimensions. Equation (46) and (50) show that
the detection with multiple detectors is analogous to the detection with an
increased sampling rate. The detection sensitivity increases with a factor of√

J .

6 False alarm rejection methods
The previous chapters de�ned the optimal mathematical algorithm for de-
tecting a signal in noise. The detection was limited by the probabilistic
nature of the noise, and the derived methods built on the exact form of the
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probability distribution function, the normal distribution. The algorithm
was optimal if the expected signal waveforms were assumed known and the
detectors were assumed to have stationary noise.

An interesting result of the likelihood detection is that it only depends
on

∑
j yj the sum of the measurements in the individual detectors. The

measurement, when only one detector provides all of the contribution to the
likelihood function, is treated equally with the measurement when each detec-
tor see an equal amount, 1/J of the same signal. The former measurements
can be vetoed on intuitive grounds. The elimination of these measurements,
decrease the false alarm rate.

Two measurable quantities are the most likely time positions and signal
strengths of the signal s1 in the individual detectors. The relative time shift
check is important when the synchronization of the detectors is not available,
i.e. the a priori direction of the signal is unknown. The elimination of the
unphysical decisions can be the next step of the burst search algorithm.

6.1 Relative time shift check
Assume that the multiple decision rules (20) and (21) were evaluated for
signals si with all of their time-shifted versions Lt si, and a nonzero decision
D1 was made for a signal s1. The variable t is a continuous index in theory,
but is restricted to discrete values according to the sampling frequency of
the measurement. Next, we evaluate the test separately for each detector
for the Lt s1 signals to obtain the most likely estimate of the arrival times
t̂j, (j ∈ {1 . . . J}) in the various detectors. This is obtained with probability
distributions

P (t̂j | s1, D1) (53)
This can be calculated theoretically for the given s signal waveform, Fs sam-
pling frequency, P (n) noise statistics for the maximum likelihood detection.
Let us de�ne the relative time shifts τ̂ij = t̂i − t̂j. Therefore each τ̂ij is a
random variable. Let ∆τ̂ denote its variance.

There are two possible kinds of measurements that can be accomplished
with gravitational wave detectors:

1. The detection in cooperation with other facilities, such as optical and
neutrino detectors.

2. The detection only in the gravitational wave channel.

27



In the �rst case, there is an extra information for the gravitational waves,
their exact direction is known. Therefore the relative time shifts between
the gravitational wave detectors is calculable. By preforming a shift of the
data streams with these magnitudes, the detectors can be synchronized. The
synchronized signal templates have

ti = tj (54)

for each pair of detectors. In Section 5, this is exactly what was assumed
for an approximation, the individual probabilities were calculated with the
same s∗ hypothesis. The multiple detector maximum likelihood detection
rule (52) already uses this information, and no fundamental improvements
should be awaited for with the relative time shift check.

In the second case there is a weaker constraint: the relative time shifts
have to be below a theoretical limit τmax for each detector pair.

τmax
ij =

1

c
dij (55)

where dij is the spacial separation of the detectors and c is the speed of light.
Let us approximate the τ̂ij probability distribution with a normal distri-

bution of variance

σij =

{
∆τ̂ij cooperation with other channels

∆τ̂ij + τmax only gravity wave detectors (56)

in the two cases respectively. The probability distribution is therefore

P (τ̂ij | s1, D1) =
1√
2πσ

exp

[ ∑

different pairs

− τ̂ 2
ij

2σ2
ij

]
(57)

The index q ∈ {1 . . . Q} will be used for the detector pairs, and τ = {τ̂q | q ∈
{1 . . . Q}} to abbreviate notation, where Q = 1

2
J(J − 1) for J detectors. For

the sake of this estimate we will assume σ = σij for all pairs.

P (τ̂ | s1, D1) =
1√
2πσ

exp

[
− 1

2σ2
τ̂ 2

]
(58)

The uncertainty in τ̂ is

τRMS =
√

∆τ̂ 2 =
√

Qσ (59)
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The probability distribution when no signal is present (i.e. S = s0) is
approximated by a uniform distribution for the arrival time estimators, t̂j,
of the signal.

P (t̂ | s0, D1) ≈ 1

TQ
(60)

where T is the smallest of the following two parameters: the observation time
and the typical cuto� scale of the τ̂ij distributions.7

The likelihood function can be associated to the given t̂ estimators:

λ(t̂) =
P (τ̂ | s1, D1)

P (t̂ | s0, D1)
≥ λ0 (61)

where τ̂ is calculable for a given t̂ using τ̂ij = t̂j − t̂i. The value of λ0 can be
chosen to eliminate the triggers which are most likely false alarms.

For a measurement of length T with J detectors, the detections with
||t̂|| > τ0 can be rejected. (τ0 = 3τRMS is a reasonable choice.) This is a
simple decision rule, for which the false alarm rate and decision probabilities
can be easily calculated.

If there were no signal present (i.e. s0), the false alarm probability is
obtained from the uniform distribution. It is proportional to the measure of
the region Dτ

1 in the parameter space:

P τ
FA = P (Dτ

1 | s0, D1) =
√

JSJ−1
τJ−1
0

T J−1
(62)

where Dτ
1 is the event when the decision D1 is not vetoed after the test,

and SJ−1 is the volume of the J − 1 dimensional sphere, given by (83). The
indices FA and τ refer to the false alarm probability with the time shift test.
Explicitly for J = 2 gravitational wave detectors we get P τ

FA = 2
√

2(τ0/T )
or J = 3 detectors yields P τ

FA =
√

2π(τ0/T )2.
The detection con�dence is calculable for the distribution given by (58).

P τ
TD = P (Dτ

1 | s1, D1) = 2F

(
τ0√
Qσ

)
− 1 (63)

where F is the cumulative unit Gaussian distribution function and the indices
TD and τ refer to the true detection with the time shift test.

7It is expected, that for low signal strengths this distribution will indeed be �at for a
scale T >> τ̂RMS , where τ̂RMS is the variance when the signal s1 is there. If this condition
does not hold, the time shift check will not be able to improve the detection method.
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Equations (62) and (63) are the probabilities of the false alarms and good
detections. It is important that this test is executed after the original detec-
tion rule, it is used after a given trigger was generated. The �nal false alarm
probability is thus the original multiplied by this value PFAP τ

FA, and simi-
larly the true detection probability PTDP τ

TD. Therefore both the false alarms
and true detections are decreased by this method. Nevertheless, equations
(62) and (63) show that the false alarms can be decreased by a huge factor,
whereas the good detections stay nearly the same. The only condition is
that the total observation time has to be large compared to the uncertainty:
T À τ0 and τ0 À τRMS.

6.2 Relative signal strength check
The second physical constraint can be to reject the triggers with inconsistent
signal strength estimates over the various detectors. Recall that the original
methods derived in this study are only sensitive to the sum

∑
i yi of the

individual measurements, but are otherwise insensitive to the distribution
among the detectors. Also note, that the derived methods depended only
on the waveforms, but not on the value of the signal strength, provided that
it crossed a given threshold. Introducing this extra constraint eliminates
the alarms which have large signal strengths in only a negligible number of
detectors.

Our conjecture is that from this additional requirement, the corrections
in the decisions will be insigni�cant with a low number of detectors. The
exact calculations are left to future studies.

7 Burst search templates
In Appendix A it is shown that the e�ective template family consists of
orthogonal signal templates, if the number of templates is greater than 7.
Additional templates do not carry signi�cant additional information, and
cannot increase the sensitivity. Two methods were obtained from the prob-
abilistic considerations and were compared in Section 3.2. The �rst method
was to decide between the null and a single alternate hypothesis only and
the second method was to decide between multiple alternate hypotheses. The
later method was shown to be more reliable in certain regards, but needed
a much larger signal to noise ratio (s/n ≈ 1/

√
J) than the single hypothesis
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test (s/n ≈ 1/
√

JN).8 For the multiple hypothesis method, the construction
of a template family is necessary.

Let B denote the region of the K-dimensional space, which is the union of
all waveforms called bursts. The acceptance domain of a burst template s∗ ∈
B was a chopped cone in the K-dimensional vector space of the measurement
(see Figure 1). Let this region be denoted by S∗. Any element of S∗ has the
largest component in the s∗ direction in any orthonormal coordinate system.
The template family is e�ectively is a choice of basis9 {si | i ∈ {1 . . . I}} for
which ⋃

i∈{1...I}
Si ⊂ B (64)

where Si is the region attributed to si. An e�ective template family is a
choice of templates which is minimal and "spans" B, i.e.

⊎

i∈{1...I}
Si = B (65)

All e�ective template families are identical in terms of sensitivity and per-
formance, therefore any given choice is su�cient to use.

Let us use the de�nition, that a burst waveform is a discrete sampled
Gabor function, which is within the sensitive bands of the LIGO detectors.
Thus a burst signal can be written as

sk(A1, A2, f, σ, t0) = [A1 sin(2πftk) + A2 cos(2πftk)] exp

[
− t2k

2σ2

]
(66)

8Recall that J was the number of detectors and N was the e�ective data length of the
signal.

9With this de�nition, the linear combination of bursts are not necessarily bursts. What
one burst basis (template) "spans" is a chopped tube, and the "span" of several burst bases
is the union of those solids in the K-dimensional vector space.
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where the parameters are subject to the following constraints

tk = t0 +
1

Fs

k (67)

k = {1, 2, . . . , K} (68)
0 < t0 < T (69)

||s|| = 1 ⇔ A2
1 + A2

2 ≈ 1/
√

2πσ2 (70)

100 = f0 <
f

Hz
< f1 = 1000 (71)

0.01 = σ0 <
σ

s
< σ1 = 1 (72)

The e�ective template family should be minimal and orthonormal. We
will construct a signal family with a small nonzero overlap in the continuous
limit, which will become in�nitesimal after the truncation of the data stream.
Note that one can apply the Gauss Jordan elimination to obtain a truly
orthonormal base.

In the parameter family {A1, t0, σ, f} let us observe how many parameters
need to be varied. First generate all possible t0 time shifts, for a signal with
a given f and σ. The number of di�erent time shifts will be

nt0 ≈
T

6σ
(73)

Next we can vary the f frequencies with a linear resolution between the
bounds f0 and f1.10 The number of di�erent f values is

nσ =
f1

f0

(74)

For each of these signals σ can be varied, with a step size increasing as a
geometrical series. This way the scalar product (i.e. cross correlation) of the
neighboring functions in the σ series will be equal. The number of di�erent
σ parameter values is

nσ =
ln(σ1/σ0)

ln 6
(75)

Finally the A1 value can be given a binary value, to have the signal norm
�xed. If A1 = 0 then A2 should be assigned the appropriate value with (70),
otherwise A2 = 0. Therefore

nA = 2 (76)
10For very short σ signals, the restriction is that f > 2σ.
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Therefore the size of the proposed template family is

I = nAnfnσ

∑
σ

nt0 = 2

(
f1

f0

) (
ln(σ1/σ0)

ln 6

)(
T

σ0

1

5

)
(77)

where we have evaluated the sum of the geometrical series. If the limits of the
parameter choices are given according to (67-72), this gives I ≈ 1000·T/s. For
J independent detectors with e�ective sampling frequencies Fs = 4096 Hz,
the number of data points is K = 4096 · JT/s.

Substituting these numbers for the false alarm and true detection prob-
abilities (35) and (36), the false alarm rates become calculable, for a given
choice of margin m.

λFA =
1

8J
F (
√

2JK −
√

2m) (78)

This false alarm rate has a corresponding detection probability given by
(36) or (114), which can be calculated exactly. Executing the burst search
algorithm yields a detection rate, λD, for these burst signals. The a priori
probability of the given bursts are then calculable

P (si | i ∈ {1 . . . I}) =
λD − λFA

P (si | i ∈ {1 . . . I},¬D0)
(79)

In fact, this calculation can be carried out for any subset of the burst signals
leading to the a priori probabilities of those signals. If λD ≈ λFA, then the
result can be used to obtain an upper limit for the event rate. Since false
alarms follow a Poison distribution, the uncertainty is

∆λ =
√

λFA (80)

Therefore the upper limit for the true detection rate is

λTD < λFA +
√

λFA (81)

By applying the two additional procedures of Section 6, namely the relative
time shift and signal strength check, the false alarm rates can be reduced.
This leads to a stronger upper limit for the burst rate.

33



8 Conclusions
In this study, we have investigated the theory of optimal signal detection
in noise. A probabilistic interpretation was associated to the problem. The
single alternate hypothesis and the multiple alternate hypotheses maximum
likelihood detection methods were de�ned which were shown to give the
greatest detection probability for a �xed false alarm rate. The single alternate
hypothesis method such as the Neyman-Pearson detection can only be used
e�ectively if there was an a priori belief that there is only one possible signal
waveform present in the data stream. In the realistic case however, a large
population of signal templates have to be used. With no a priori information,
the maximum likelihood detection method was shown to be optimal and the
necessary and su�cient size of the template family was de�ned.

The measurement probability distribution was imagined in a K dimen-
sional vector space. This gave a basis independent visualization. Using this
aid, we could carry out the calculations to describe the e�ciency of the
method. We derived the analytic approximations to the detection con�dence
and the false alarm probabilities. This de�ned the optimal detection expec-
tations for a given waveform. The results naturally depended on K, the
length of the data stream, which demonstrated how the e�ciency improved
for longer waveforms.

The calculations on the limitations of the proposed estimate were car-
ried out only for the white noise case. Nevertheless it was pointed out,
that using the exact form of the autocorrelation function of noise is possible
with the Karhunen-Loeve expansion, which leads to a statistically indepen-
dent realization of the measurement. The KL transformation is a unitary
transformation that corresponds to a rotation of the basis vectors in the K
dimensional vector space. The calculation results are therefore valid in the
general case after the KL transformation.

We have also generalized to the case of multidetector signal detection.
The likelihood function was derived assuming that the detectors were in-
dependent. The corresponding optimal detection e�ciency with multiple
detectors were identical with the single detector case with a larger sampling
frequency. This way the calculations for the single detectors could be applied
also in the general case.

Finally we have shown that the maximum likelihood detection method has
also the advantage that the physical requirements can be easily incorporated.
Since each individual detector measures the same gravitational wave signal,
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the relative signal strengths and time shifts are known additionally. This
way, a given detection trigger can be checked for these requirements, and the
unphysical triggers can be vetoed. This improvement increases the e�ciency
by decreasing the false alarm rate.

Future plans include the numerical check of the theoretical calculations
with Monte Carlo simulations. The optimal code can be applied to search the
data streams of the available science runs of the LIGO detectors. In particu-
lar, selected time intervals with associated optical triggers can be examined
closely to see what consequences can be drawn from those measurements for
their gravitational radiation signatures. Also, the systematic data analysis
of the gravitational wave detectors' statistics for the full science runs can be
used to obtain upper limits for the statistical presence of burst signals.
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10 Appendix A.
For an e�ective template family, the qK number of lowest strength templates
will be the number of points available on the

√
K radius K-dimensional

sphere having a
√

K − 1 separation. Hereby we present the derivation of the
formula for qK .

It seems evident, that the number of such points qK is proportional to
11The other two papers are [13] and [14].
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SK , the surface area of the unit sphere. Explicitly,

√
K − 1

K−1
qK =

√
K

K−1
SK =

2
√

K
K−1

πK/2

Γ(K/2)
(82)

For K À 1, we can simplify with the K − 1 power factors.

qK = SK =
2πK/2

Γ(K/2)
(83)

However, Γ(n) grows faster than nne−n for large K, therefore SK approaches
0. This is an interesting feature of multidimensional Euclidean geometry:
above the 7th dimension the surface of the unit sphere decreases, and van-
ishes faster than exponentially with the number of dimensions. Naturally
the number of unit separation points qK on the unit sphere is a monotonic
function of the dimensions. For dimensions k > 7, one point can always be
chosen for each dimension along the corresponding basis vectors and one in
the opposite direction. The distance between these points and the selected
points in the previous subspaces are surely greater than one. Therefore for
large number of dimensions, where SK−SK−1 < 2 the number qK increases12
as 2K.

qK =

{
19 + 2K for K ≥ 7

SK otherwise (84)

This is therefore the number of di�erent unit-strength signals one can distin-
guish in unit variance noise13. The approximation of qK = 2K corresponds
to a template family with a minimal mutual separation of

√
2K. For larger

strength signals with norm s1 >
√

K, the surface of the sphere is larger
leading to a generally larger number of detectable signals.

sK−1
1 SK =

2sK−1
1 πK/2

Γ(K/2)
(85)

Although larger than (83), the s1 radii sphere's surface also approaches zero
with the number of dimensions. Therefore, just as in the unit norm case,
the increase of the number of distinct templates qK can be estimated by 2K

12For lower dimensions K<7, eq. (83) is valid. The q number increases as 2, 6, 12, 19,
26, 31, 33 for k ≤ 7.

13If the opposite sign signals are identi�ed, then qK/2 is the number of signals we can
measure.
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above a certain number of dimensions. This number, corresponding to 7 for
s1 =

√
K, will generally depend on s1. We shall only work with the qK = 2K

lower bound approximation in this study.

11 Appendix B.
Here we derive the multiple alternate hypotheses false detection probability
for Section 3.2.

Recall from 3.2, that the decision is made in favor of a template si exactly
if the measurement y assumed a point within a chopped cone solid. The cone
has an axis along s1, peak at the origin s0, radius

√
K − 1, and the top cuto�

at me1. A measurement, y, at a larger angle from the origin, corresponds to
a di�erent template of the unit sphere, and the tip of the cone corresponds
to the no signal case s0.

We have used the distinction between confusion and false alarm probabil-
ities. The former was PC

ij = P (Di |Hj, i 6= j), whereas the later was de�ned
by P FA

i = P (Di |H0) for each i ∈ [1 . . . I]. The individual false alarm proba-
bilities are equal, so the total false alarm probability is P FA = IP FA

1 , where
I is the number of alternate hypotheses. The expected total false detection
is

< False detection >= IP FA
1 P (H0) +

∑
ij

PC
ij P (Hj) (86)

Since for the a priori probabilities P (H0) À P (Hj), the false detection is
dominated by the false alarms over the confusion terms.

The false alarm probability associated with the s1 signal is

P FA
1 = P (D1 |s0) =

∫

chopped cone

dy

(
√

2π)K
exp

−y2

2
(87)

Let us now make a small digression in order to work out the correct
intuition one needs to better comprehend the task (87). There is a counter-
intuitive consequence of multidimensional geometry: the radial distribution14
of the distribution

√
2π

(−1)
exp(−y2/2) is negligible within the unit sphere

and is only non-zero for radii around κ =
√

K. This latter region for high K

14The radial distribution is the probability density of a measurement to fall on the
spherical surface of radius r and thickness dr.
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dimensions is far away from the unit sphere. The reason for this peculiarity
is that the surface area of a K dimensional sphere grows with rK−1, a high
power of the radius. When calculating the contributions of spherical surfaces
away from the origin, the far away regions are enhanced by a great amount.
As we shall see, this is the reason for the relative insensitivity of the multiple
hypotheses detection compared to the single alternate hypothesis method of
3.1.

Changing to spherical coordinates, the angle dependant integrals can be
evaluated as ∫

...

dy

(
√

2π)K
=

∫ ∞

m

dy

(
√

2π)K
yK−1SK

qK

(88)

since s1 occupies 1/qK of the total spherical surface.

P (D1 |s0) =

∫ ∞

m

dy

(
√

2π)K
yK−1SK

qK

exp
−y2

2
= (89)

=
1

2
√

π
K

SK

qK

∫ ∞

m2/2

dzz
K
2
−1 exp(−z) = (90)

=
1

qK

Γ(K/2,m2/2)

Γ(K/2)
(91)

Where in the �rst equation we have changed to the variable15 z = y2/2, and
in the second we have used the de�nition of SK from (83) and the incomplete
Gamma function Γ(n, µ). Note that Γ(n) = Γ(n, 0).

To make this more visible, let us express the answer in terms of the
Gaussian cumulative probability density F (x). Recall that the complete and
the incomplete Gamma functions are de�ned with the same integral formula,
only the the bounds of the integral domains are di�erent. The kernel function
is φ(z, n) = zn−1 exp(−z). For large n, one can approximate the kernel with
a Gaussian using the saddle point method. Carrying out the calculations
and using the Stirling formula for the Γ function, we get

φ(z, n) ≈ Γ(n)√
2π
√

n− 1
exp

[
−(z − (n− 1))2

2(n− 1)

]
(92)

The relative error of this approximation is of order 10−3 for n = 10, and
decreases further for larger n. Substituting this in the de�ning integrals of

15Notice that z is a random variable with Poison distribution. Nezzem meg valahol.
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the Γ functions, we obtain

Γ(n, µ)

Γ(n)
=

∫ ∞

µ

dz√
2π
√

n− 1
exp

[
−(z − (n− 1))2

2(n− 1)

]
(93)

=

∞∫

µ−(n−1)√
n−1

dz√
2π

exp(−z2/2) = F

[
(n− 1)− µ√

n− 1

]
(94)

Substituting this approximations for the false alarm rate (89) we get

P (D1 |s0) =
1

qK

F

[−µ + κ√
κ

]
≈ 1

2K
F

[−µ + κ√
κ

]
(95)

where µ = m2/2 and κ = K
2
− 1, and eq. (84) was used for qK assuming that

K is large.
In the previous solution, we calculated the result by approximating the

analytical answer (89). It turns out that the Gaussian approximation of the
original integral formula leads to a smaller error. We only present the result
of that calculation for K À 1 here.

∫ ∞

m

dy

(
√

2π)K
yK−1SK

qK

exp
−y2

2
≈ 1

qK

∫ ∞

m

dy√
π

exp[−(y −
√

K)2] (96)

Recall that y is the polar coordinate representation of the measured signal16,
or equivalently its empirical standard deviation. We have obtained that for
K-long data samples, this has an approximately normal distribution of mean√

K and variance 1/
√

2. 17

After changing the integration variable, this simpli�es to
1

qK

∫ ∞

m−√K

dy√
π

exp[−y2] =
1

qK

∫ ∞

√
2(m−√K)

dy√
2π

exp[−y2/2] (97)

Therefore the result for the false alarm rate is

P FA
1 = P (D1 |s0) =

1

2K
F [
√

2K −
√

2m)] (98)

16We are assuming that there is no true signal present for this calculation. S = s0
17Let us point out that this result does not contradict the central limiting distribution

theorem. That theorem applies for the arithmetic mean of identical distributions, whereas
we have calculated the distribution of the second order mean. The second order mean has
a variance 1/

√
2 instead of 1, the variance for the simple mean.
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Equation (98) is a better approximation of the exact answer (89) than the
previously obtained (98) result. The false alarm probability for each single
template decreases as K−1. This is a big advantage in favor of long long data
streams.

There is a second aspect, which shows why longer signal samples are
better in terms of detection. The noise strength grows just as the signal
strength, but according to equation (96) its relative uncertainty decreases as
1/
√

2K. Observe in Figure 4 that the detection threshold can be adjusted
very close to s =

√
K (i.e. s/n = 1) for long (large K) data streams.

12 Appendix C.
Here we derive the correct signal detection probability for Section 3.2. The
signal s1 is accepted whenever the measurement y falls in the region of the
previous case D1

P (D1 |s1) =

∫

D1

dy

(
√

2π)K
exp

[−(y − s1)
2

2

]
= (99)

=

∫

D1−s1

dy

(
√

2π)K
exp

−y2

2
= (100)

= P (D1 |s0) +

∫

(D1−s1)\D1

dy

(
√

2π)K
exp

−y2

2
(101)

= P (D1 |s0) + I (102)
This extent of which the detection probability will be higher than the false
alarm rate is therefore determined by the integral over the region (D1−s1)\
D1. We shall abbreviate this formula with I. Recall that D1 is a chopped
cone with an upper cuto� at a distance m from the cone's peak.

Notice the rotational symmetry around the axis parallel to s1, K−2 inte-
grals can be evaluated in cylindrical coordinates. What remains are integrals
over a two dimensional domain

I =

∫ ∞

m

dr
rK−2SK−1√

2π
K−1

∫ r

r−s1

dy√
2π

exp(−r2/2) exp(−y2/2) (103)

+

∫ m

0

dr
rK−2SK−1√

2π
K−1

∫ m

m−s1

dy√
2π

exp(−r2/2) exp(−y2/2) (104)
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The remaining two integrals can be evaluated numerically for a given (s1,m)
pair18. We shall instead use analytic approximations to get a more visible
functional form. Firstly, we can apply the saddle point approximation (96),
and use K À 1 to �nally obtain

I =

∫ ∞

m

dr√
π

∫ r

r−s1

dy√
2π

exp[−(r −
√

K)2] exp(−y2/2) (106)

+

∫ m

0

dr√
π

∫ m

m−s1

dy√
2π

exp[−(r −
√

K)2] exp(−y2/2) (107)

The order of magnitude of s1 which is possible to detect is
√

K. Therefore
the boundary m is between 0 and s1 ∝

√
K. Shifting the r coordinate by√

K, and rescaling by
√

2, we get

I =

∫ ∞

√
2(m−√K)

dr√
2π

∫ r√
2
+
√

K

r√
2
+
√

K−s1

dy√
2π

exp

[
−r2 + y2

2

]
(108)

+

∫ √
2m−√2K

−√2K

dr√
2π

∫ m

m−s1

dy√
2π

exp

[
−r2 + y2

2

]
(109)

Let us denote the two parts of this sum as I1 and I2 respectively. The second
integral can be obtained analytically

I2 =
[
F (
√

2K −
√

2m)− F (
√

2K)
]
[F (m)− F (m− s1)] (110)

For the �rst integral I1, we can make use of the fact that the integrand is
rotationally symmetric. By rotating the axes in the "parallel" and "perpen-
dicular" dimensions of the domain, it is possible to give two bounds on the
integral I1.19

I1− < I1 < I1+ (111)
18One of these can be calculated analytically. The remaining integral

1
2
erf(+

√
K)F (s1 −m) +

∫ ∞

m−s1

dy

2
√

2π
exp(−y2/2)erf(y + s1 −

√
K) (105)

is plotted on Figure 4.
19The domain of the integral I1 is an in�nite trapeziod, which can be bounded by two

in�nite rectangles from above and from below respectively. The integrals over rectangles
are separable. Their values will be denoted by I1− and I1+.
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Explicitly,

I1− = F

[√
2

3
(
√

K − 2m)

]{
F

[
m + s1 −

√
2K√

3

]
− F

[
m−√2K√

3

]}

(112)

I1+ = F

[√
2

3
(s1 +

√
K − 2m)

] {
F

[
m + s1 −

√
2K√

3

]
− F

[
m−√2K√

3

]}

(113)

For the sake of an estimate we shall use the central value between the bounds.
The results can hereby be substituted in (101) to give

P (D1 |s1) =
1

2K
F (
√

2K −
√

2m) (114)

+
[
F (
√

2K −
√

2m)− F (
√

2K)
]
[F (m)− F (m− s1)]

+ F

[√
2

3

(s1

2
+
√

K − 2m
)]{

F

[
m + s1 −

√
2K√

3

]

−F

[
m−√2K√

3

]}

Whereas the false alarm rate was given by (98)

P (D1 |s0) =
1

2K
F [
√

2K −
√

2m)] (115)

Equations (114) and (115) gives the detection con�dence and false alarm
rate for the maximum likelihood method, for a given strength signal s1. We
have assumed the noise to be unit variance Gaussian for each data sample
point and of much larger a priori probability than the alternate hypothe-
ses. The alternate hypotheses templates were evenly distributed on the

√
K-

radius sphere with a minimum separation of
√

2K. Comparing with (31) and
(34), it is obvious that the false alarm rate is indeed decreased for the multi-
ple hypotheses detection by a large amount, i.e. by a factor of 1

2K
, however

the the true detection probability is also decreased. Therefore the detection
sensitivity will be much lower in this case (see Figure 4 and Figure 2) with a
signal to noise ratio of s/n ∝ 1.
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