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1. Theory 
 
Anisotropic materials like sapphire have more than two elastic constants which describe 
the relationship between stress and strain.  Each of these constants has a real and 
imaginary part.  The ratio of imaginary to real parts is a loss angle that causes mechanical 
loss and thermal noise.  Thus, to fully characterize the thermal noise expected from 
sapphire mirrors, the full set of loss angles and moduli must be known. 
 
Sapphire has trigonal symmetry and therefore has six loss angles.  The energy in the 
crystal must be written in a positive definite format of six terms, each term corresponding 
to energy that is dissipated by one of the loss angles. The distribution of this elastic 
energy to each term when a Gaussian pressure is applied to the mirror face, in accordance 
with Levin’s method, can be obtained through finite element modeling.  Through this 
model, and values for the loss angles and other relevant mechanical properties, the 
Brownian thermal noise of sapphire mirrors can be predicted. 
 
To obtain values for the six loss angles, modal Q’s must be measured on sapphire 
samples.  The distribution of elastic energy into each term of the energy for every 
measured mode must be modeled as well.  When six or more modes have reliable Q’s 
measured, the six loss angles can be solved for using the model.  These loss angles may 
then be used in the thermal noise model. 
 
We have performed the calculations necessary to analyze Willem's and Busby's data for 
this anisotropic loss discussed in T030087-00-R.  The energy for sapphire may be written 
in a positive definite expression after applying a change of coordinates that evidences all 
the symmetric features of the crystal in the stiffness matrix. Traditionally, the stiffness 
matrix of a trigonal crystal is written as follows: 
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After applying a coordinate transformation, we obtain the symmetrized matrix shown in 
Equation 2. The advantage of such a stiffness matrix becomes apparent when we try to 
express the energy as a positive definite quantity. Note that the strains we refer to from 
now on are calculated in the coordinate system we obtain after the coordinate 
transformation and do not correspond to the strains we would use for calculating the 



 

energy provided the stiffness matrix C. We omit the primes of the new coordinate system 
from now on for the sake of brevity. 
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The strain energy of any crystal can be calculated from the following formula: 
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Where cij are the components of the stiffness matrix and εi and εj are the components of 
strain in matrix form. Using this formula with the stiffness coefficients from C’ and the 
strain matrix in the new reference system we can write the energy of sapphire in a 
positive definite form using the general formula: 
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where the matrix P for sapphire is (in GPa): 
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Using this new energy description we identify the non-redundant coefficients of the 
matrix P as the significant moduli with which we can associate loss angles.  
 
2. Calculations 
 
Using the strain terms obtained from Dennis Coyne’s models of the sapphire optics we 
were able to determine the energy ratios for each of the elastic moduli p for the six pink 
sapphire modes measured by Phil Willems and Dan Busby (see table 1). These energy 
ratios would theoretically help us predict the loss angles provided the loss is solely due to 
the bulk sapphire loss. However, fitting the data to this model results in negative and 



 

therefore unphysical values for the loss angles (see Table 2).  This is consistent with the 
fit in T030087-00-R which showed good results with a model using a single loss angle 
for bulk sapphire and a loss angle for the poorly polished barrel.  It seems the lossy barrel 
is masking any effect from anisotropy in this data. 

 
Table 1: Energy distributions for an m-axis sapphire cylinder. 

 
This data does allow for setting of limits on the individual loss angles.  If each loss angle 
but one is assumed to be zero, and the modal Q is assumed to be due to that loss angle, a 
limit value can be obtained on that phi.  Using the lowest phi found from this method for 
all the modes, a maximum phi can be quoted for each of the six loss angles.  These are 
shown in Table 2 
 

 Loss 
associat
ed with 

p11 

Loss 
associated 
with p22 

Loss 
associated 
with p33 

Loss 
associated 
with p44 

Loss 
associated 
with p12 

Loss 
associated 
with p34 

Fit 
Values 

-9.18e-7 9.96e-8 5.62e-6 1.49e-6 1.57e-6 -1.04e-4 

Limit ≤9.2e-8 ≤3.2e-7 ≤4.12e-9 ≤2.40e-8 ≤4.63e-6 ≤7.65e-8 
 

Table 2: Best fit for the loss angles given the measurements available and upper 
boundaries established given the constraint loss angle>0. 

 
3. Thermal noise  
 
Brownian thermal noise in Advanced LIGO due to these limiting phis can be calculated.  
An FEA model of an advanced LIGO sapphire optic was constructed with a Gaussian 
pressure of width 6.0 cm applied to one face.  This is following the method of Levin to 
calculate thermal noise.  The elastic energy distributed into the six different energy terms 
is calculated for the whole optic.  The ratio of energy in each energy term is then 
multiplied by the corresponding phi and summed across all energy terms to obtain the 
effective phi for thermal noise calculations. 
 

 Energy ratios associated with the elastic moduli 
Predicted 
frequency 

(Hz) 

Measured 
frequency 

(Hz) 

Mode 
number 

Measured 
loss 

p11 p22 p33 p44 p12 p34 

14402 14151 4 3.87e-9 0.78% 0.11% 94.0% 0.02% 0.04% 5.06% 
16240 16546 5 5.56e-9 2.59% 1.73% 87.90% 2.56% 0.12% 5.09% 
16949 16732 6 4.17e-8 2.92% 1.09% 55.33% 32.72% 0.31% 7.63% 
17526 17907 9 2.22e-8 24.13% 2.51% 68.15% 0.04% 1.50% 3.67% 
23158 23310 13 1.72e-8 4.9% 2.65% 64.62% 21.2% 0.15% 6.47% 
24154 23791 15 1.35e-8 2.59% 1.25% 29.95% 56.35% 0.21% 9.65% 



 

The energy ratios from this model are shown in Table 3.  Using 5 X 10-11 as the phi for 
every term except one, where the limiting value from Table 2 is used, allows the effect of 
these limits to be seen.  The results are shown in Table 4.  It is important to keep in mind 
these are limits, and worse case scenarios. 
 

Percentage of energy due to each of the moduli 
p11 p22 p33 p44 p12 p34 

14.85% 36.99% 4.01% 30.16% 9.47% 4.52% 
Table 3: Energy ratios in a static analysis with pressure from a Gaussian beam. 

 

Table 4: Effect  
of phi limits on thermal noise, single advanced LIGO interferometer sensitivity to binary 

neutron star inspirals, and the relative rate of gravitational wave events. 
 
Using the results from the fit in T030087-00-R, a predicted thermal noise in advanced 
LIGO from the lossy barrel can also be calculated.  The same FEA model was used, and 
the energy ratio stored in the barrel over the bulk was found to be 3.0 X 10-3 within a 
relatively thick surface depth set by the FEA mesh.  The fit in T030087-00-R got an 
effective barrel polish phi of 4.5 10-7 within roughly the same surface depth.  Using these 
two values and a 200 million Q for the bulk sapphire, an effective Q for thermal noise 
calculations is found to be 157 million.  This, in turn, predicts a Brownian thermal noise 
at 100 Hz of 3.3 X 10-21 m/rtHz and a binary neutron star inspiral range of 188 Mpc with 
very low coating thermal noise.  This is in contrast to the goal of about 3.0 X 10-21 m/rtHz 
and 200 Mpc.  A sensitivity change from 200 to 188 Mpc means a 20% drop in the 
gravitational wave event rate. 
 
 
4. Conclusions 
 
The limit that can be set on the six sapphire phis, and the corresponding thermal noise, is 
a worst case scenario.  The most likely interpretation is that the modal Q's seen by 
Willems and Busby are dominated by the barrel polish, and the actual anisotropic loss in 
sapphire is much better than these limits.  To be confident that the sapphire loss is much 
less, further tests are necessary. 
 
Getting these samples repolished to a less lossy level is an obvious possibility.  The 
samples could then be remeasured for Q, and the same analysis could be performed.  
Since the loss in the barrel could give rise to some excess thermal noise in advanced 

 p11 p22 p33 p44 p12 p34 Goal 
Eff Q (106) 56 8.2 201 93 2.3 121 200 
Thermal noise 
at 100 Hz  
(10-21 m/rtHz) 

 
5.2 

 
14 

 
2.9 

 
4.0 

 
28 

 
3.7 

 
3.0 

BNS range 179 134 190 185 92 187 200 
Relative rate 0.72 0.30 0.86 0.79 0.097 0.82 1.0 



 

LIGO, achieving good barrel polish may be necessary on its own.  Both mechanical and 
flame polishing might be explored. 
 
The difficulty in polishing these samples comes from their size.  Working with smaller 
samples that can be polished to a higher standard could also provide useful data.  A 150 
mm diameter X 80 mm thick sapphire sample is available at MIT for Q measuring.  This 
sample will be hung using a wire sling similar to Willem and Busby's within a week.  If 
Q's for multiple modes can be measured, more useful limits may be set on all six loss 
angles in sapphire. 
 


