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1 Abstract

Interferometric gravitational wave detectors require stabilization of angular degrees of freedom to better
than10−8 radians rms, in addition to stringent length control tolerances. A powerful auto-alignment
system has been developed to achieve this stability, and at its core is a sensing scheme called wavefront
sensing. Using wavefront sensing to control the angular degrees of freedom of a triangular input mode
cleaner cavity, the intensity of the light entering the main interferometer can be stabilized, noise sources
are suppressed, and the long-term lock stability is increased. A time-domain model of the 40 Meter’s
13.5 meter input mode cleaner wavefront sensing system will be presented. The choice of sensor config-
uration, actuators (PZT steering mirrors or cavity optics controllers), and servo filters, can be optimized
using this model. While simultaneously checking the validity of the model against the real system, which
has recently become operational, the model can be used to understand the more complicated behavior of
the system and give direction as it is commissioned and optimized.

2 Keywords

LIGO, gravitational waves, laser interferometry, wavefront sensing, dynamical alignment of mirrors,
alignment sensing and control, ASC, modal model, modal decomposition, triangular mode cleaner.
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3 Introduction

Wavefront sensing is a scheme which can dynamically detect both the input coupling to and the orienta-
tion of a complex optical resonator cavity. It is the cornerstone of a complicated auto-alignment system
which is used to enhance the stability of the cavity and give better noise performance.

The original plan for the mode cleaner auto-alignment system was to use steering mirror actuation,
i.e. the input beam would be steered into the mode cleaner using piezoelectric transducer (PZT) con-
trolled mirrors which control angle and position. The steering mirrors are then adjusted to minimize
the wavefront sensing error signal. However, at the LIGO Livingston Observatory, experience suggests
that this actuation scheme may not be ideal. As an alternative, they have suggested actuating on the
suspended mode cleaner mirrors.

To address this and other problems, a Simulink model of the mode cleaner auto-alignment system
has been created. The goal of the model is to answer questions about the difficulties of dynamic control
including: is it necessary to use PZT controlled mirrors to steer the input beam into the mode cleaner;
if the PZT mirrors are necessary, at what frequencies should feedback be devoted to the PZT mirrors
and the suspended mode cleaner mirrors; are two quadrant photodiodes looking at the reflected field
sufficient to control six angular degrees of freedom of three mirrors; if the input light is contaminated
with excessive higher order modes which do not resonate in the mode cleaner, is it still possible to sense
misalignment of the mirrors.

The basics of the detection/actuation scheme are simple:

1) Send phase modulated light into an optical resonator and look at the demodulated field reflected
from the cavity with a photodiode (PD) capable of distinguishing displacement, such as a PD
segmented into four quadrants.

2) Use lenses to “image” different parts of the mode cleaner (this is equivalent to tuning the Guoy
phase).

3) Look for the production of higher order modes by their characteristic beat patterns as they interfere
with the promptly reflected sidebands.

Thus the presence of higher order modes becomes an error signal for the auto-alignment system. Actu-
ation is then used to eliminate the presence of the higher order modes.

It has been my personal experience that to fully understand wavefront sensing and auto-alignment
systems, and thus the work explained in this paper, one must have a solid understanding of a myriad
of concepts. In writing this paper, one of my goals has been to present the bulk of these concepts
in a single document. In the hopes that future students will find it useful, I have included a lengthy
introductory section that gives a full theoretical treatment of the concepts involved. Whenever possible,
I have tried to add insightful explanations that allow an “intuitive” understanding of the workings of
Alignment Sensing and Control (ASC). In addition, I have provided many detailed references to much
more involved treatments of the topics.
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4 Theoretical Background

4.1 Fundamental Modes of the Radiation Field Inside an Optical Cavity

Light that propagates inside a resonator spreads due to diffraction off the mirrors. However, it must not
spread appreciably, or it will suffer large losses. Cavity radiation then, unlike plane and spherical waves,
is characterized by its finite transverse extent. Despite this major difference, the properties of light in a
cavity are best described in terms of its similarities to plane and spherical waves.

4.1.1 Gauss-Hermite Solutions: TEMmn Modes

When Maxwell’s equations are decoupled, the magnitude of the electric field,E, can be written as the
solution to the scalar wave equation. In free space, this becomes1

∇2E =
1

c2

∂2E

∂t2
. (1)

If a harmonic time dependence is assumed, i.e.

E(x, y, z, t) = E (x, y, z) e±ı̇ωt , (2)

thenE(x, y, z) satisfies the Helmholtz differential equation,

∇2E (x, y, z) + k2E (x, y, z) = 0 , (3)

wherek = ω/c.
Furthermore,z is chosen as the propagation direction by making

E(x, y, z) → E(x, y, z)e−ı̇kz (4)

If in addition, we enforce that partial derivatives with respect toz higher than first order are neglected2,
i.e. all rapid variation with respect toz is contained in the exponential in (4), then (3) becomes

(
∂2

∂x2
+

∂2

∂y2
− 2ı̇k

∂

∂z

)
E (x, y, z) = 0 . (5)

This equation is separable, and the general solution to the wave equation (1) becomes

E (x, y, z, t) =
∞∑

m,n=0

amnTEMmn =
∞∑

m,n=0

amnum (x, z) un (y, z) e−ı̇(kz±ωt) . (6)

Here the functionsum are the normalized Gauss-Hermite functions given by

um (x, z) =
(

2

π

) 1
4

(
1

2m m! w(z)

) 1
2

Hm

(√
2x

w(z)

)

exp

(
−x2

(
1

w(z)2
+ ı̇

k

2R(z)

))
exp

(
ı̇
(
m +

1

2

)
η(z)

)
, (7)

1The derivation of Maxwell’s equations and their simplification to the scalar wave equation can be found in [1].
2Specifically:kE′ À E′′ ¿ k2E. This is the equivalent of the paraxial approximation.
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whereHk is a Hermite polynomial and satisfies the ordinary differential equation

d2Hk

ds2
− 2s

dHk

ds
+ kHk = 0 . (8)

The first few Hermite polynomials are:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2 . (9)

The auxiliary functions in (7) are defined as follows:

z0 =
πw2

0

λ
, (10)

w(z) = w2
0

√
1 +

(
z

z0

)2

, (11)

R(z) = z

(
1 +

(
z0

z

)2
)

, (12)

η(z) = arctan
(

z

z0

)
. (13)

In these equationsλ = 2π/k = 2πc/ν is the wavelength of light, andw0 is the minimum spot size (the
significance of these equations will be clarified in section 4.1.2).

The functionsum are normalized such that

y=+∞∫

y=−∞

x=+∞∫

x=−∞
um(x, z)un(y, z)um(x, z)un(y, z) dx dy = 1 , (14)

where the overbar denotes complex conjugation. This normalization condition, together with the fact that
the Gauss-Hermite functions are orthogonal3, ensures that in any plane perpendicular to thez-axis, the
total amount of energy contained in each mode, TEMmn, is equal to the absolute square of its coefficient,
amn

4.

4.1.2 Physical Characteristics of the TEM00 Mode

TheTEM00 mode, more commonly called a Gaussian beam, illustrates the vast majority of the proper-
ties of all Gauss-Hermite modes. Settingm = n = 0,

E00 (x, y, z) =

√
2

π

1

w(z)
exp

(
−

(
x2 + y2

) (
1

w(z)2
+ ı̇

k

2R(z)

))
exp

(
ı̇ (η(z)− kz)

)
, (15)

where only the harmonic time dependence has been excluded. The solution for the Gaussian beam can
also be found by requiring that the solution to (3) be azimuthally symmetric5.

3For a comprehensive discussion of the mathematical properties of Hermite polynomials with respect to the Gaussian
weighting function, see [2].

4The definition ofamn is implicit in (6).
5See the derivation in [3], chapter 3.
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Briefly, the Gaussian beam describes an azimuthally symmetric beam propagating in the positive z
direction. Over 80% of the beam’s energy is contained close to the axis of propagation in a hyperboloid
of revolution, and in a given plane perpendicular to the axis, the transverse (radial) intensity distribution
of the beam is a Gaussian whose width is equal to the width of the hyperboloid in that plane. The
wavefronts of the beam are spherical, and in the far field the wavefronts look like those of a spherical
point source at the origin. The phase of the beam is almost that of a plane wave, but there is az-dependent
phase, called the Guoy phase, that causes the beam to lead an equivalent plane wave to the right of the
origin and lag it to the left.

The beam properties will be more thoroughly and easily explained after discussing the auxiliary
functions defined in (10) through (13).

One can obtain the physical significance ofw(z) by examining the power in the Gaussian beam. The
power is proportional to|E00|2; so

P00 ∝ |E00|2 =
2

π

1

w(z)2
exp

(−2 (x2 + y2)

w(z)2

)
. (16)

Whenx2 + y2 = w(z)2, the value of the exponential is1/e2. Thus, for every value ofz, w(z) is the
radius of a circle in the x-y plane at which the power has fallen by a factor of1/e2 compared with its
value on the beam axis. This is whyw(z) is commonly referred to as the beam spot size or beam radius.
The spot size,w(z), makes a hyperboloid of revolution, like the one shown in Figure 1. The radius of
the hyperboloid at any given z is given by (11).

Figure 1:The point at which the power is1/e2 its value on the axis forms a hyperboloid of revolution, which defines the
beam’s profile.

The minimum spot size,w0, always occurs atz = 0, which is called the beam waist. Besides the
wavelength of the radiation, the amplitude, and the choice of origin, the minimum spot size is the only
free parameter needed to determine the field. It has two main consequences: first, since the beam size
is always proportional tow0

6, it scales the overall size of the beam; second, from (11) one gets that the
asymptotes of the hyperboloid are given by±w0/z0, which becomes±λ/πw0, using (10). Thus, the
size of the waist determines the divergence of the beam: asw0 is made small, the beam converges down
to a smaller spot, but it alsoconverges and divergesmore quickly as you decreasew0. These concepts
are illustrated in Figure 2.

6See (11).
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Figure 2: The divergence of two different beams of the same wavelength (λ = 1µm). Clearly, as the waist size is made
smaller, the beam converges and diverges more rapidly. The exact numbers are not important, and are only meant to illustrate
the divergence’s dependence on spot size. In fact, a laser beam does not behave as usual when focused down to a spot size
equal to the wavelength; in mathematical terms: this violates the paraxial approximation (see the footnote on page 5).

As mentioned above, in the far field the beam is asymptotic to the lines±λ/πw0. The far field
divergence angle,θD, is defined to be the half-angle formed by these two lines, i.e.

θD = arctan(λ/πw0) . (17)

This clearly illustrates that the divergence of the beam is inversely related to the waist size,w0.
The Rayleigh length,z0, is another important beam parameter, but this one is not independent of

w0, as can be seen from its definition in (10). The beam hyperboloid diffraction ideas also clearly
illustrate the meaning ofz0: from (11), one can see that, in a distancez0 on either side of the beam waist
(z = 0), the spot size increases by a factor of

√
2 compared to the minimum size at the waist. Since the

hyperboloid increases in size most slowly near the waist,z0 can be thought of as the first distance over
which there is a significant change in the beam spot; furthermore, in the far field, each increment inz of
z0 increments the spot’s radius byw0.

In a given z-plane, the phase of the field is not constant; instead, the surfaces of constant phase are
given by

exp

(
−

(
x2 + y2

) (
ı̇

k

2R(z)

))
exp (ı̇ (η(z)− kz)) = constant. (18)

The Guoy phase,η(z), is defined in (13). It is a slowly varying component of the phase associated
with propagation7. Naively, it may be viewed as the amount by which the beam would lag or lead an
equivalent plane wave: atz = 0, where the Guoy phase is zero, a plane wavee−ikz would have equal
propagation phase, and atz = ±∞ the Guoy phase is±π/2. In other words, the beam acquires a phase

7Guoy phase is not unique to Hermite-Gaussian beams; it is an effect common to all diffraction phenomenon.
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shift of π/2− (−π/2) = π as it converges and diverges about the waist. The behavior of the Guoy phase
is illustrated in Figure 3.
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Figure 3:The Guoy phase,η(z), is shown here. Notice the slow convergence to±π/2 asz → ±∞. The x-axis is in units
of the Rayleigh range,z0, and the y-axis is in units ofπ radians.

The Guoy phase actually determines the evolution of an arbitrary field distribution as it propagates
through free space. Since it is the only phase term not common to the Hermite-Gaussian modes, it
causes the spatial interference of these modes to vary in space. This will be discussed more thoroughly
in section 4.2.

If the Guoy phase is ignored, the terms remaining in a surface of constant phase is

exp

(
−ik

(
z +

x2 + y2

2R(z)

))
= constant. (19)

To understand the meaning of these surfaces of constant phase, consider a spherical point source emitting

spherically symmetric wave fronts of the forme−ik
√

x2+y2+z2
. Since the Gaussian beam has a limited

transverse extent, in generalz À √
x2 + y2, and the square root can be expanded in a Taylor series. To

first order, the above exponential becomese
−ik

(
z+x2+y2

2z

)
. If we identify the radius of curvature of the

point source’s waves asz, then comparing with (19), we see that the Gaussian beam has spherical wave
fronts with radii of curvature given byR(z).

The radius of curvature (ROC) of the wavefronts is not justz but a complicated function ofz given
by (12). At the waist, the ROC is±∞ (depending on the direction of approach), which corresponds
to a flat, planar wavefront. From the waist, the radius of curvature decreases in both directions until it
reaches the planesz = ±z0, where the ROC reaches its minimum, ROCmin = ±2z0. The ROC then
asymptotically approaches the line ROC= z, i.e. in the limit that|z| À z0, the ROC is equal toz, which
means that the wavefronts appear to come from a spherical point source at the origin. This behavior is
illustrated in Figure 4.
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Figure 4:The functionR(z) is shown here. The dotted lines are the planesz = ±z0, where the absolute value of the ROC
reaches its minimum,2z0. The lineROC(z) = z is shown to illustrate the asymptotic approach ofR(z). Both axes are in
units of the Rayleigh range,z0.

With the auxiliary equations, (10) through (13), defined in the above paragraphs, the behavior of the
Gaussian beam can be summarized as follows:

1) the transverse profile of the beam is a Gaussian whose width isw(z);

2) in order to conserve energy, the increasing width of the beam is balanced by the factor of1/w(z);

3) the phase of the beam is much like a plane wave, but the Guoy phase,η(z), slowly changes the
phase as it travels;

4) the quadratic transverse dependence of the phase creates spherical wavefronts with the ROC given
by R(z).

These properties are illustrated in Figure 5.

4.1.3 The Action of Focusing Elements on a Gaussian Beam

An ideal lens does exactly one thing: when a spherical wavefront with ROC= R1 is incident along the
axis of the lens of focal lengthf , it is transformed by the lens into a different spherical wavefront with
ROC= R2 such that1/R1 + 1/R2 = 1/f , which is just the Gaussian lens equation [3].

In this context, it is not complicated to understand how a lens transforms a Gaussian beam. There
are essentially two requirements that must be met: the radius of curvature of the input beam at the lens
is transformed according to the Gaussian lens equation above, and the spot size on either side of the lens
will be exactly the same. These two conditions determine what the properties of the Gaussian beam will
be on the other side because there is only one solution whose radius of curvature and width can satisfy
those criteria at a given position in space.
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Figure 5: The behavior of the Gaussian beam is summarized here: the hyperbolic curves correspond to the beam profile
and the local directions of propagation; the dark curved lines represent the spherical phase fronts of the beam given byR(z)
(note the flat wavefront at the waist); the dashed gaussian curves represent the transverse field distribution in a givenz-plane;
and the light straight lines indicate the asymptotic (far-field) beam propagation.

The equations that completely describe the transformation are easily derived in terms of the auxiliary
parameter

Q(z) ≡ π

λ
w(z)2 = z0

(
1 +

(
z

z0

)2
)

. (20)

Note the symmetry ofQ(z) andR(z) (see (12)). At the lens, the width,w(z), does not change; so,
neither doesw(z)2. SinceQ(z) andw(z)2 are related by a constant, thenQ(z) does not change at the
plane of the lens. This will simplify the calculations below.

We will now derive the equations that transform a Gaussian beam at a lens of focal lengthf posi-
tioned atz = z1, an arbitrary point along the beam path. Let the input beam have a waist atz = 0 and a
Rayleigh range,z0, equal toz00. Let the outgoing beam have its waist atz = zw and a Rayleigh range
equal toz01. If the input beam and output beam have a ROC equal toR andR′ respectively and values
of Q(z) equal toQ andQ′ respectively, then using the constraints on R and Q, we have the following
equations:

Q = Q′ , (21)

R′ =

(
1

R
− 1

f

)−1

, (22)

Q = z00

(
1 +

(
z1

z00

)2
)

, (23)

Q′ = z01

(
1 +

(
zw − z1

z01

)2
)

, (24)
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R = z1

(
1 +

(
z00

z1

)2
)

, (25)

R′ = − (zw − z1)


1 +

(
z01

(zw − z1)

)2

 . (26)

These equations can be solved (although not trivially) to yield the outgoing beam’s Rayleigh range and
the position of its waist:

z01 =
z00(

1− z1

f

)2
+

(
z00

f

)2 and (27)

|zw − z1| =
f

1 +
(

f
z00

)2
+

(
z1

z00

)2 (
1− 2f

z1

)
[
1 +

(
z1

z00

)2
(

1− f

z1

)]
, (28)

where the absolute value sign is used because the waist can be either real or virtual, corresponding to
a waist after or before the lens respectively. Thus the output beam is entirely specified by shifting the
coordinates of (15) byz → z − zw and using the parameterz01 as the Rayleigh range.

The Guoy phase has thus far not been mentioned, but it is quite a simple matter to discuss now that
the above equations have been given. The phase of any electric field must be continuous; so, the Guoy
phase must be matched on either side of the lens. From the waist to the lens, the input beam acquires a
Guoy phase ofη = arctan (z1/z00). After the lens, both the position of the waist and the Rayleigh range
have changed. Propagating fromz1 to some arbitrary positionz′ will increment the Guoy phase by

η′ = arctan

(
z′ − zw

z01

)
− arctan

(
z1 − zw

z01

)
, (29)

where all the parameters have been defined above.
In the paraxial approximation, a mirror acts on a spherical wavefront in exactly the same way that a

lens does, except that a mirror reverses the direction of propagation. Therefore, one can use all the ideas
and equations above with the lens’ focal length,f , replaced by half the mirror’s radius of curvature.

For further discussion of these topics see chapter 3 in [3] or the section in [4] on Guoy phase tele-
scopes.

4.1.4 Physical Characteristics of Higher Order Modes

When eitherm 6= 0 or n 6= 0, the radiation is no longer a simple Gaussian beam as described in section
4.1.2; instead, the field becomes one of the more complicated Gauss-Hermite modes given by

TEMmn = um(x, z)un(y, z)e−ı̇kz , (30)

where the functionum(x, z) is defined in (7).
There are two major differences between the Gaussian beam and its Hermite-Gaussian counterparts:

the first is that the transverse dependence is no longer a simple Gaussian, and the second is that the Guoy
phase accumulated per unit length is larger.

The transverse dependence of the electric field becomes the product of two Hermite polynomials and
the familiar Gaussian. This has some profound consequences:

12



1) the transverse dependence is no longer symmetric with respect to x and y;

2) as the mode indices increase, the majority of the power in the beam becomes concentrated further
and further from the axis, the result of which is that the TEM00 mode is the narrowest of the
Gauss-Hermite modes, and

3) for each TEMmn mode, there arem+n nodal lines in the transverse plane along which the electric
field (and thus the power) is identically zero.

Figure 6 shows the transverse extent of several Hermite-Gauss modes in a given plane.

TEM
00

TEM
01

TEM
02

TEM
10

TEM
11

TEM
12

TEM
20

TEM
21

TEM
22

Figure 6:Transverse power distributions of several Hermite-Gauss modes in an arbitraryz-plane. Key points to note are
the lack of x-y symmetry whenm 6= n, the increase in off-axis power with increasing index, and the nodal lines. Actual
photographs of these and other modes can be found in figure 3-4 of [3]

As the beam propagates, the Hermite polynomial spreads due to the factor of1/
√

w(z) in the ar-
gument of the polynomial. This spreading is exactly right to guarantee that the transverse field/power
dependence only scales up or down with changingz; the shape itself is constant.

From (13), one can see that the Guoy phase accumulated by the TEMmn mode is(m + n + 1) η.
This means that between any two points, the higher order mode is shifted in phase by a factor ofm + n
more than the Gaussian beam. This extra Guoy phase shift has profound consequences, especially in the
context of cavity resonance. This concept will be discussed in detail in section 4.1.5.
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Besides the transverse field dependence and extra Guoy phase, the higher order modes are essentially
identical to the Gaussian beam. In particular, all the auxiliary functions discussed in section 4.1.2 are al-
most exactly the same and have similar consequences: there is still a hyperboloid of revolution, although
the circle defined byw(z) now contains less than1−1/e2 of the power; the wavefronts are still spherical
with radii of curvature exactly the same as those of the Gaussian; and there is still az-dependent Guoy
phase.

4.1.5 TEMmn as Eigenmodes of an Optical Resonator

Consider the freely propagating (left to right) TEM00 mode shown in Figure 5. If at some point along
the path, the beam encounters a mirror whose ROC and center of curvature are equal to the those of the
beam’s spherical wavefront at that point, it will be perfectly retro-reflected. If a second mirror is also
placed with matching ROC and center of curvature at a second point along the beam path, it will again
be retro-reflected, making an exact spatial replica of itself as it bounces back and forth between the two
mirrors. This scenario is illustrated in Figure 7.

Mirror 1Mirror 2

z = 0

d
1

d
2

Figure 7:A resonator is created by placing two mirrors along the beam’s path at points where their ROCs and centers of
curvature match those of the propagating beam’s wavefronts. In practice, the mirrors would be made much larger than the
beam spot size to avoid large round trip losses.

As the beam bounces back and forth, it is superposed on top of itself many times. Thus, to avoid
destructively interfering itself out of existence, the beam’s phase must complete an integer number of
full cycles, 2π radians, every round trip. The phase not only depends on the wavelength, as it would
for a plane wave; the Guoy phase,η(z), must also be taken into account. Remembering that the beam
changes its direction of propagation on every bounce, the total round trip phase,φrt, becomes

φrt = 2 (n + m + 1)

(
arctan

(
d1

z0

)
− arctan

(−d2

z0

))
− 2k (d1 − (−d2)) , (31)
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whered2 is to the left of the waist, as shown in Figure 7. A given mode is said to be resonant, and thus
aneigenmodeof the cavity, ifφrt = 2πq, q ∈ Integers; this statement is called the resonance condition.

One can, in fact, run the argument backwards. If one places two curved mirrors at arbitrary positions
in space, only modes that propagate between the centers of curvature of the mirrors and satisfy the
resonance condition will be able to propagate with minimal losses. The spatial properties of these modes
can be easily calculated using resonator algebra.

Resonator algebra is nothing more than enforcing the fact that the ROC of an eigenmode must be
equal to the ROC of any mirror which it encounters along its path, this condition is independent of mode
indices. Consider the simple case whered2 = −d1, the radii of curvature of the two mirrors are equal,
and both mirrors have their concave sides facing one another. In this case, the beam waist must lie
halfway between the two mirrors (i.e. atz = 0). Letd = |d1| = |d2|, and let R be the radius of curvature
of both mirrors. Using 12 we have the following equations:

R = d

(
1 +

(
z0

d

)2
)

(32)

−R = −d

(
1 +

(
z0

d

)2
)

. (33)

These two equations are identical for a symmetrical resonator, and either one can be solved forz0; one
obtains

z2
0 = (R− d)d . (34)

Oncez0 has been obtained from the above equations8, one can find which TEMmn modes satisfy the
resonance condition by choosing a wavelength. These modes are the eigenmodes of the cavity.

All modes for whichm + n = constant will have the same resonance condition; thus, when one
such mode is resonant with a particular wavelength, all are resonant. In general, for a given wavelength,
no modes will be resonant. Moreover, when a given mode is resonant, modes with different indices will
in general not be9.

In most of the above discussion, the word resonance has been used in a manner that suggest only
modes that exactly satisfy the resonance condition will propagate. This is not strictly true; in fact, the
resonators discussed above are Fabry-Perot interferometers, and the propagation through a cavity is
determined by the equations governing a Fabry-Perot. One thing can be said for sure though: modes
which do not satisfy the resonance condition will suffer much larger losses than those that do. These
ideas will be clarified in section 4.3.1.

4.2 Modal Decomposition

Modal decomposition is a powerful technique that allows one to analyze the misalignment of a resonant
optical cavity10. One can do away with geometric considerations like tilted and offset beams; instead, one
analyzes these cases in terms of the eigenmodes of the perfectly aligned cavity. Using the completeness
and orthogonality of the Hermite-Gauss modes, one can decompose misalignment into the production
of higher order cavity modes.

8For explicit details on how to perform these calculations when the above conditions are not met, see section 4.3 of [3].
9A full discussion of resonance conditions can be found in section 4.6 of [3].

10The pioneering paper on this subject is [5].
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To see how this works, consider the case of a TEM00 mode offset in the x direction; it will be
shown in section 4.2.5 that this can be decomposed into the original TEM00 mode with no offset plus a
small amount of TEM10 that is proportional to the amount of offset. Figure 8 shows this decomposition
graphically.

Figure 8: A shifted eigenmode is decomposed into unperturbed cavity eigenmodes. The two symmetric lines represent
unperturbed TEM00 and TEM10 cavity eigenmodes. The third line is their sum, which is an offset TEM00.

Once the decomposition has been performed, there are simple equations that describe the propagation
of the eigenmodes. The process is easy to make recursive; so it is no more complicated for a beam
misaligned multiple times in different locations than the trivial case illustrated above. The real power
of this kind of analysis is that it can be treated by usual methods of linear algebra as will be shown in
Section 4.2.3.

4.2.1 The Modal Model

One normally thinks of radiation in terms of an equation that describes the electric field’s spatial and
temporal properties at all points in space and at all points in time. The beauty and simplicity of the
modal model is due to its departure from this description of radiation.

The modal model describes the electric field at any point in space and time as a set of complex
amplitudes. These amplitudes describe the magnitude andrelativephase of all TEMmn modes; in other
words, only the set ofamn from (6) are necessary to describe the field. Thus, the modal model is not a
spatial description of the field at all, but it is trivial to convert from one description to the other.
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4.2.2 Propagation and Guoy Phase

Consider an arbitrary set of eigenmodes as they propagate through space. The only change in the ampli-
tudes from one point to another is due to the Guoy phase11. If the beam waist is atz = 0, then between
any two points in space (say fromz1 to z2) the change in Guoy phase is

η(z2, z1) = arctan
(

z2

z0

)
− arctan

(
z1

z0

)
(35)

for any given mode, TEMmn. If one definesamn anda′mn to be the amplitudes atz = z2 andz = z1

respectively, then
a′mn = (m + n + 1) η(z2, z1)amn . (36)

This is a very simple equation, but it contains all the information necessary to propagate a given set
of amplitudes to any point in space12. This simplicity is really quite surprising. A demonstration of
the wealth of information that the Guoy phase propagator contains can be found in [6], section 4.1.5,
where it is shown that after reflecting off a tilted mirror, the Guoy phase is responsible for a laser beam’s
propagation in the direction given by the law of reflection; it combines two modes travelling straight
ahead in such a way that their maximum power travels in the reflected ray direction.

4.2.3 Formalism

First and foremost, general definitions will be madehere. Different notations abound in the literature;
we will use the notation found in [6], which is the notation followed in the e2e simulation package
used ubiquitously by the LIGO Scientific Community. The following equations define the propagating
electromagnetic field:

E(x, y, z, t) = exp (ı̇ωt) · E(x, y, z) , (37)

E(x, y, z) =
∑

amn · Prop (z, z) · Umn(x, y, z) , (38)

Prop (z, z) = exp [−ı̇k · (z − z)] · exp [ı̇(m + n + 1) · (η00(z)− η00(z))] , (39)

Umn(x, y, z) = um(x, z) · un(y, z) , (40)

η00(z) = arctan (z/z0) , and (41)

um (x, z) =
(

2

π

) 1
4 ·

(
1

2m m! w(z)

) 1
2

·Hm

(√
2x

w(z)

)
exp

(
−x2

(
1

w(z)2
+ ı̇

k

2R(z)

))
. (42)

Here,z is the position of the waist. Note thechange in the definition ofum from (7); the contribution
from the Guoy phase has been left off and included instead in the propagator. This is a subtle but
important change. It is part of the paradigm shift made necessary by the modal model; one focuses on
the set of amplitudes and how they transform from one point to another instead of a solution to the wave
equation at every point in space.

The basic problem in modal decomposition will be illustrated by considering the case of an off-
set TEM00

13 mode. Suppose we offset the mode by an amounth in the x direction. In other words,

11The factorsw(z) andR(z) obviously change as well, but they change in exactly the same way forall modes. Thus, they
do not need to be considered here.

12In fact, the bulk length phasek(z2− z1) has been ignored because it is the same for all modes. It will be stated explicitly
when the bulk length phase must be taken into account

13TEMmn andUmn are essentially interchangeable.
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TEM00(x, y, z) → TEM00(x− h, y, z). Using the above definitions, we get

E(x− h, y, 0) = a′00U00(x− h, y, 0) = a′00C̃e−((x−h)2+y2)/w2
0 , (43)

whereC̃ is a complex constant that includes the factors common to allUmn. The problem now is to
write this as a sum of eigenmodes,Umn(x, y, 0). Let us definêx = h/w0; if x̂ ¿ 1, we have

a′00C̃e−y2/w2
0e−((x−h)2)/w2

0 = a′00C̃e−(x2+y2)/w2
0e(2xh−h2)/w2

0

a′00U00 exp
((

2x

w0

)
x̂− x̂2

)
≈ a′00U00

[
1 +

((
2x

w0

)
x̂− x̂2

)
+

1

2

((
2x

w0

)
x̂− x̂2

)2
]

, (44)

whereU00 is intended to meanU00(x, y, 0).
Expanding the last line of (44) and discarding terms of higher order thanx̂2, we get

a′00U00

[
1 +

(
2x

w0

)
− x̂2 +

1

2

(
2x

w0

)2

x̂2

]
. (45)

It is now necessary to write the polynomials in (45) in a manner that facilitates projection onto the
orthogonal functionsUmn. This is most easily done by noting that14

U10 =
(

2x

w0

)
U00 and U20 =

1√
2

((
2x

w0

)2

− 1

)
U00 . (46)

Adding and subtracting1
2
x̂2 to (45) yields

TEM00(x− h, y, z) = a′00U00

[(
1− 1

2
x̂2

)
+ x̂

(
2x

w0

)
+

1√
2
x̂2 1√

2

((
2x

w0

)2

− 1

)]
, (47)

and using (46) we finally obtain

TEM00(x− h, y, z) =

[
a′00 ·

(
1− 1

2
x̂2

) ]
· U00 +

[
a′00 · x̂

]
· U10 +

[
a′00 ·

1√
2
x̂2

]
· U20 . (48)

The expressions in square brackets are exactly the coefficientsa′mn that describe the shifted mode in
terms of the cavity eigenmodes; this then is the result we desire:

a00 = a′00 ·
(
1− 1

2
x̂2

)

a10 = a′00 · x̂
a20 = a′00 ·

1√
2
x̂2 , and

amn ≈ 0 · a′00 {m > 2 or n 6= 0} . (49)

Clearly, the process used above was cumbersome and inefficient. This point becomes painfully
obvious when we consider the fact that we made the only non-zero field the TEM00. In fact, if there had
been a component of TEM10, it would make a significant contribution to allamn. One must start with

14These next equations are straightforward to derive using (40) and (42).
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E = a′00U00 + a′10U10 + a′01U01, replace all instances ofx by (x − h), expand, and project. This is a
terrible way to do things.

Two orthonormality conditions simplify the process above

∞∫

−∞
uk(x, z)ul(x, z) dx = δkl and

∞∫

−∞

∞∫

−∞
Umn(x, y, z)Ukl(x, y, z) dx dy = δmkδnl . (50)

If the original electric field were some arbitrary functionf(x, y, z), we could express it as a sum of
Umn(x, y, z) in the basis of the unperturbed cavity:

f(x, y, z) =
∑
m,n

amn · Umn . (51)

Using (50) and Fourier’s trick, one easily obtains

amn =

∞∫

−∞

∞∫

−∞
Umn(x, y, z)f(x, y, z) dx dy . (52)

This then replaces all the work done from (43) to (49).
It is usually the case that the input field is the sum of perturbedUkl; let us write this as

f(x, y, z) = Op [E(x, y, z)] =
∑

k,l

a′klOp [Ukl(x, y, z)] . (53)

For instance, in the above example, the operatorOffset[E(x, y, z)] = E(x−h, y, z). Inserting this into
(52),

amn =
∑

k,l

a′kl

∞∫

−∞

∞∫

−∞
Umn(x, y, z)Op [Ukl(x, y, z)] dx dy . (54)

With the stipulation that we are working with dual-indexed vector elements, (54) has the flavor of a
linear operator acting on a vector. In fact, this is exactly what one means by the modal model, and the
vector space is called modal space. If we define

MOp
mn,kl =

∞∫

−∞

∞∫

−∞
Umn(x, y, z)Op [Ukl(x, y, z)] dx dy , (55)

then (54) becomes simply
amn =

∑

k,l

a′klM
Op
mn,kl . (56)

Although this can obviously be generalized, we will be primarily concerned with only three fields:
TEM00, TEM10, and TEM01. In this case,MOp

mn,kl is made up of nine elements. If we define the electric
field at any point in space to be

E = a00U00 + a10U10 + a01U01 =



a00

a10

a01


 , (57)
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then the nine elements ofMOp
mn,kl can be arrayed in a 3x3 matrix as

MOp =



M00,00 M10,00 M01,00

M00,10 M10,10 M01,10

M00,01 M10,01 M01,01


 , (58)

where the first and second pairs of indices are for the outgoing and incoming fields, respectively. In
other words,M01,00 would be the ratio of unperturbed TEM01 produced to the amount ofOp[TEM00]
incident. Obviously, the ratio depends on the specific form of the operator.

If one performs the multiplication


M00,00 M10,00 M01,00

M00,10 M10,10 M01,10

M00,01 M10,01 M01,01






a00

a10

a01


 =



M00,00a00 + M10,00a10 + M01,00a01

M00,10a00 + M10,10a10 + M01,10a01

M00,01a00 + M10,01a10 + M01,01a01


 , (59)

one can see that the matrix only deals with TEM00, TEM10, and TEM01. It gives the amplitudes of the
outgoing modes as a function of the amplitudes of the incoming modes and the type of perturbation.

The next four sections will give the details of four different coupling operators: offset, tilt, mismatch
of beam waist size, and mismatch of beam waist position.

4.2.4 Offset Coupling

z

x

h

Figure 9:The input beam (dashed) is offset byh in thex direction with respect to the cavity eigenmode (solid).

In its full generality, an offset mode is displaced both in the x and y directions; an offset in the x
direction is illustrated in Figure 915. Let us define the offset operator as

Offset[E(x, y, z)] = E(x− h, y − k, z) . (60)

15Figures 9, 10, 11, 12, 13, and 14 in this section have been adapted from [6] with permission.
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Thus, using (55),

MOffset
mn,kl =

∞∫

−∞

∞∫

−∞
Umn(x, y, z)Ukl(x− h, y − k, z) dx dy, . (61)

Since an offset mode stays offset by the same amount as it propagates, we can choose to do the decom-
position anywhere we want; for simplicity, let us choose the planez = 0. Just as in the worked example,
we definex̂ = h/w0 and ŷ = k/w0. Evaluating (61) by straightforward integration, we get for the
matrix,

MOffset = exp

[
−(x̂2 + ŷ2)

2

] 


1 x̂ ŷ
−x̂ 1− x̂2 −x̂ŷ
−ŷ −x̂ŷ 1− ŷ2


 . (62)

This is the exact answer for these matrix elements, i.e. no approximations have been made as to the
smallness of̂x or ŷ. In practice, the offsets might be on the order of 10µ m at the largest, and the Mode
Cleaner beam waist is 1858µ m; so, at most,̂x and ŷ are on the order of5 × 10−3. Therefore, it is
perfectly sensible to ignore all second order terms; making these approximations, the matrix becomes

MOffset ≈



1 x̂ ŷ
−x̂ 1 0
−ŷ 0 1


 . (63)

4.2.5 Tilt Coupling

z

x

θ

L

Figure 10:The input beam (dashed) is tilted byθ with respect to the cavity eigenmode (solid). The axis of rotation is the
line parameterized by{x = 0, z = L}.

Consider a mode tilted with respect to the cavity axis by an amountθx in pitch andθy in yaw, crossing
the axis at some arbitraryz; this is illustrated in Figure 10. The projection of its amplitude onto the axis
will vary as the cosine of the tilt angles; thus, its amplitude does not change to first order. However, the
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mode will have its bulk phase offset by an amountexp [−ı̇k (θxx + θyy)], where at the crossing point
the phase is equal on axis. Therefore, the tilt operator is defined as16

Tilt[E(x, y, z)] = E(x, y, z) exp [−ı̇k (θxx + θyy)] = E(x, y, z) exp


−2ı̇

(
Θ̂xx + Θ̂yy

)

w(z)


 , (64)

where

Θ̂x(y) = θx(y)πw(z)/λ =
w(z)

w0

· θx(y)

θD

, (65)

andθD is the divergence angle, defined in (17).
So the tilt matrix elements become,

MTilt
mn,kl =

∞∫

−∞

∞∫

−∞
Umn(x, y, z)Ukl(x, y, z) exp


−2ı̇

(
Θ̂xx + Θ̂yy

)

w(z)


 dx dy . (66)

Evaluating (66) by straightforward integration,

MTilt = exp


−

(
Θ̂2

x + Θ̂2
y

)

2







1 −ı̇Θ̂x −ı̇Θ̂y

−ı̇Θ̂x 1− Θ̂2
x −Θ̂xΘ̂y

−ı̇Θ̂y −Θ̂xΘ̂y 1− Θ̂2
y


 . (67)

This is the exact answer for these matrix elements, i.e. no approximations have been made as to the
smallness of̂Θx or Θ̂y. In reality, the tilts might be on the order of 10µ rad at the largest, and the Mode
Cleaner divergence angle is 182µ rad; so, at most,̂Θx andΘ̂y are on the order of5×10−2. Therefore, it is
also perfectly sensible to ignore all second order terms in the Tilt matrix; making these approximations,
the matrix becomes

MTilt ≈




1 −ı̇Θ̂x −ı̇Θ̂y

−ı̇Θ̂x 1 0

−ı̇Θ̂y 0 1


 . (68)

4.2.6 Waist Size Mismatch Coupling

The coupling to higher order modes due to the mismatch of the waist size is trivial to compute. The
two sets of eigenmodes (those with the correct waist size and those without) are identical in all respects
except for the constantw0. If we define the waist of the input beam to bew′

0 and that of the cavity
eigenmode to bew0, then the operator can be written as

WSM [E(x, y, z, w0)] = E(x, y, z, w′
0) , (69)

where WSM is an acronym for waist size mismatch.
The WSM matrix elements become,

MWSM
mn,kl =

∞∫

−∞

∞∫

−∞
Umn(x, y, z, w0)Ukl(x, y, z, w′

0) dx dy . (70)

16In [6], the tilt operator is defined more rigorously asTilt [E(x, y, z)] = E(x · cos θ − (z − L) · sin θ, y, L + x · sin θ +
(z − L) · cos θ), but the answers obtained here will be exactly the same.
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Figure 11:The waist size of the input beam (dashed) isw′0, but the waist size of the cavity eigenmode (solid) isw0.

If we define the coupling coefficient for WSM to be

ŵ =
w′

0

w0

− 1 , (71)

then integrating (70),

MWSM =




2

(
w′0
w0

)

1+

(
w′

0
w0

)2 0 0

0




2

(
w′0
w0

)

1+

(
w′

0
w0

)2




2

0

0 0




2

(
w′0
w0

)

1+

(
w′

0
w0

)2




2




. (72)

This is the exact answer for these matrix elements. Ifw′ ≈ w, then

2
(

w′0
w0

)

1 +
(

w′0
w0

)2 ≈ 1− 1

2
ŵ2 . (73)

This is expression is unity even to first order, and the matrix representing the mismatch will simply be
the identity matrix. Therefore, a waist size mismatch will cause no first order coupling.

4.2.7 Waist Position Mismatch Coupling

In Figure 12, the waist position of the input beam is offset in the positive direction of propagation.
Clearly then, at the origin, the input has a negative and finite radius of curvature. The eigenmode,
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z

x

d

Figure 12:The waist of the input beam (dashed) is offset from the waist of the eigenmode (solid) byd in the positivez
direction.

however, has an infinite radius of curvature at the origin. To take this into account, we must use the ROC
term in (42).

For allTEMmn modes, the transverse phase variation associated with the ROC at a givenz is given
by

exp

[−ı̇k (x2 + y2)

2R(z)

]
. (74)

If d ¿ z0, then using (12), the ROC becomes approximately

R(−d) = −d

(
1 +

(
z0

d

)2
)
≈ −z2

0

d
. (75)

Substituting (75) into (74) and using (10), we have an approximate expression for the transverse
phase

exp

[
−ı̇

2π

λ

(−d

z0

)
1

2z0

(
x2 + y2

)]
= exp

[
ı̇ d̂

(x2 + y2)

w2
0

]
, (76)

whered̂ = d/z0
17.

The operator becomes

WPM [E(x, y,−d)] = Prop(−d, 0) · exp

[
ı̇ d̂

(x2 + y2)

w2
0

]
E(x, y, 0) , (77)

17It should be clear that̂d is positive when the input mode has its waist downstream of the eigenmode as shown in Figure
12.
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where WPM is an acronym for waist position mismatch, and the propagation operator is defined in (39).
The WPM matrix elements are,

MWPM
mn,kl =

∞∫

−∞

∞∫

−∞
Umn(x, y, 0)Ukl(x, y,−d)Prop(−d, 0) exp

[
ı̇ d̂

(x2 + y2)

w2
0

]
dx dy . (78)

Integrating (78),

MWPM = exp[ı̇kd] · exp[−ı̇(m + n + 1) arctan(d/z0)]




1

1−ı̇

(
d̂
2

) 0 0

0 exp[ı̇2 arctan(d̂/2)]

1+

(
d̂
2

)2 0

0 0 exp[ı̇2 arctan(d̂/2)]

1+

(
d̂
2

)2




.

(79)
The two exponential factors,exp[ı̇kd] andexp[−ı̇(m + n + 1) arctan(d/z0)], come from bulk displace-
ment and Guoy phase shifts (respectively) acquired from the offset.

Reducing the matrix elements to first order approximations,

MWPM ≈ exp[ı̇kd] · exp[−ı̇(m + n + 1) arctan(d/z0)]



1 + ı̇

(
d̂
2

)
0 0

0 eı̇d̂ 0

0 0 eı̇d̂


 . (80)

This can be simplified even further to yield

MWPM ≈ exp[−ı̇(m + n + 1) arctan(d/z0)] · eı̇kd



eı̇d̂/2 0 0

0 eı̇d̂ 0

0 0 eı̇d̂


 . (81)

Clearly, there is no change in amplitude associated with WPM, since the magnitude of all the matrix
elements are unity to first order. However, the resulting phase shifts will tend to detune the input mode
from resonance.

4.2.8 The Reflection Operator

In the analysis of cavities, the most significant alignment problem is the tilt in pitch and yaw of the
mirrors. In Figures 13 and 14, one can see that when a mirror is tilted away from a beam previously at
normal incidence, the reflected beam will be travelling at twice the tilt angle with respect to the direction
of retroreflection, which is just a statement of the law of reflection. Therefore, one can simply use the
tilt operator already discussed in Section 4.2.5 by replacing all instances ofΘ by 2Θ.

To determine the sign ofΘ, one must compare the direction of propagation of the reflected beam in
the new and old coordinate systems [6]. Let us define a front surface reflection to be one in which the
beam is travelling in thenegativez direction and a back surface reflection when travelling in thepositive
z direction. Using Figures 13 and 14 as a guide, one obtains

MRef−front =




1 +2ı̇Θ̂pitch −2ı̇Θ̂yaw

+2ı̇Θ̂pitch 1 0

−2ı̇Θ̂yaw 0 1


 , (82)
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Figure 13: Reflection from the front and back surfaces of a mirror that has been tilted away from normal incidence by
Θy(yaw).
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Figure 14: Reflection from the front and back surfaces of a mirror that has been tilted away from normal incidence by
Θx(pitch).

for reflections off the front surface at normal incidence, and

MRef−back =




1 −2ı̇Θ̂pitch −2ı̇Θ̂yaw

−2ı̇Θ̂pitch 1 0

−2ı̇Θ̂yaw 0 1


 , (83)

for reflections off the back surface at normal incidence.
Keep in mind that if the mirror is defined to be aligned when it is not at normal incidence (in a ring

cavity, for example), then the beam will not necessarily be deflected through twice the tilt angle of the
mirror.

Figure 15 illustrates reflection from a mirror. The vector law of reflection gives the wavevector,k′, of
reflected rays in terms of the incident ray’s wavevector,k. If the mirror’s surface has unit-normal vector
n̂ at the point of reflection, then

k′ = k − 2(n̂ · k)n̂ . (84)

One would like to parameterize the deflection of the reflected ray in terms of small misalignments of
the mirror. The rotation matrices for yaw and pitch are
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Figure 15:The vector law of reflection says that thek-vector’s projection onto the mirror normal changes sign on reflection.

Ryaw =




cos y sin y 0
− sin y cos y 0

0 0 1


 and Rpitch =



1 0 0
0 cos p sin p
0 − sin p cos p


 , (85)

where p and y are the pitch and yaw angles respectively. If the angles are small, then the matrices become

Ryaw ≈



1 y 0
−y 1 0
0 0 1


 and Rpitch ≈



1 0 0
0 1 p
0 −p 1


 . (86)

These two matrices in their approximate form commute with each other; in addition, they are incre-
mental in the sense that one could move one degree in both pitch and yaw by making 10, 0.1 degree
steps in any order.

In this context, the pitch and yaw angles form a coordinate pair and define a unique orientation for
the mirror. If the initial normal vector of the mirror is described in terms of the spherical coordinate
angles,θ andφ, then the aligned normal vector will be

n̂ =



sin θ cos φ
sin θ sin φ

cos θ


 . (87)

Applying the inverse of the reflection operators18 from equation (85),

n̂′ =




sin θ cos φ− y · sin θ sin φ
y · sin θ cos φ + sin θ sin φ− p · cos θ

p · sin θ sin φ + cos θ


 . (88)

18The inverse matrices are used because one wants to describe the misaligned systemfrom the aligned system.
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One can now use the normal vector in (88) with (84) to determine how much the reflected beam will
be deflected from its aligned direction for a given misalignment in pitch or yaw.

4.2.9 Propagation Matrix

When TEMmn modes propagate from point 1 to point 2, a unit of Guoy phase is defined to be

Prop(z2, 0)− Prop(z1, 0) = e−ı̇k(z2−z1)
(
arctan

[
z2

z0

]
− arctan

[
z1

z0

])
= e−ı̇k(z2−z1)∆η (89)

In terms of the matrix algebra then, we can define a propagation matrix

Prop(z2, z1) = e−ı̇k(z2−z1)



eı̇∆η 0 0
0 e2ı̇∆η 0
0 0 e2ı̇∆η


 . (90)

4.2.10 Unitary Property of the Reflection Operator

An important property of the reflection operator is that it is unitary to first order inΘ̂:

MM † =




1 cı̇Θ̂1 dı̇Θ̂2

cı̇Θ̂1 1 0

dı̇Θ̂2 0 1







1 −cı̇Θ̂1 −dı̇Θ̂2

−cı̇Θ̂1 1 0

−dı̇Θ̂2 0 1


 (91)

=



1 + (cΘ1)

2 + (dΘ2)
2 −cı̇Θ̂1 + cı̇Θ̂1 −dı̇Θ̂2 + dı̇Θ̂2

−cı̇Θ̂1 + cı̇Θ̂1 1 + (cΘ1)
2 cdΘ1Θ2

−dı̇Θ̂2 + dı̇Θ̂2 cdΘ1Θ2 1 + (dΘ1)
2


 (92)

≈


1 0 0
0 1 0
0 0 1


 . (93)

Here,c andd are real coefficients that give the amount of coupling (c = d = 2 for reflections at normal
incidence).

The unitary property will be used often in the calculation of misaligned cavity fields because in-
version of a reflection matrix is identical to conjugation and transposition, which are much simpler
operations.

4.3 Misaligned Optical Cavities

The steady-state fields of optical cavities are normally deduced under the assumption that the cavity is
perfectly aligned. Normally, deducing the fields of amisalignedcavity would involve finding solutions
to Maxwell’s equations that satisfied the perturbed boundary conditions. However, with the methods
discussed in Section 4.2, we can easily find the fields in misaligned optical cavities.
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Figure 16:A typical Fabry-Perot cavity is constructed of two partially reflecting mirrors, separated by a distance, L. The
left-travelling and right-travelling waves are the steady-state fields of the cavity.

4.3.1 Worked example: The Fabry-Perot Interferometer

Consider the simple case of a perfectly-aligned Fabry-Perot cavity. If the incident field is matched to the
cavity’s eigenmode, then all the fields in Figure 16 will have the same spatial properties as the incident
field. We can therefore deal only with the amplitudes and phases of the fields as there will be no coupling
between different transverse modes.

We would like to write the transmitted, reflected, and circulating fields in terms of the input field.
The easiest way to do this is to find a set of fields that are self-consistent:

Ereflected = r1Eincident + t1E4 (94)

Etransmitted = t2E2 (95)

E1 = t1Eincident − r1E4 (96)

E2 = eı̇φE1 (97)

E3 = −r2E2 (98)

E4 = eı̇φE3 , (99)

whereeı̇φ = Prop(L/2,−L/2) as defined in (39). The reflectivities and transmissivities satisfy the
relations

ri =
√

Ri (100)

ti =
√

Ti (101)

R + T + L = 1 , (102)

where L is the relative energy loss per pass.
The convention has been used here that a phase shift ofπ (sign flip) is added for reflections off coated

sides of mirrors19.
Equations (96) through (99) yield a solution forE1:

E1 ≡ Ecirculating = t1Eincident + r1r2e
2ı̇φEcirculating =

t1
1− r1r2e2ı̇φ

Eincident . (103)

19In this case the curved faces of the mirrors are taken to be coated
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This circulating field is related to all the fields internal to the cavity by a multiplicative constant using
(96) through (99). In particular,

E2 = eı̇φEcirculating (104)

E4 = −r2e
2ı̇φEcirculating . (105)

Substituting (103) through (105) into (94) and (95) yields

Ereflected =

(
r1 − r2t

2
1e

2ı̇φ

1− r1r2e2ı̇φ

)
Eincident (106)

Etransmitted =
t1t2e

ı̇φ

1− r1r2e2ı̇φ
Eincident . (107)

Equations (103, (106), and (107) determine all the fields in Figure 16. Any standard optics text20

will discuss these field equations in full detail.
Let us write the fields in a slightly different form:

Ecirculating = t1[1− r1r2Grt]
−1Eincident (108)

Ereflected = [r1 − (r2
1 + t21)r2Grt][1− r1r2Grt]

−1Eincident (109)

Etransmitted = t1t2Prop(L/2,−L/2)[1− r1r2Grt]
−1Eincident , (110)

whereGrt is the round trip operator that transforms the fieldE1 into the fieldE4
21. In this case,

Grt = Prop(L/2,−L/2)Prop(L/2,−L/2) . (111)

If the cavity were misaligned, then at each reflection, there could also be a change in amplitude
or phase due to coupling between different TEMmn modes. The amount of coupling is given by the
operators defined in Section 4.2. Equations (94) through (99) become

Ereflected = r1M 1Eincident + I t1E4 (112)

Etransmitted = t2IE2 (113)

E1 = t1IEincident − r1M 1E4 (114)

E2 = Prop(L/2,-L/2)E1 (115)

E3 = −r2M 2E2 (116)

E4 = Prop(L/2,-L/2)E3 , (117)

Here, the fields are vectors whose elements contain the amplitude and phase of each TEMmn mode22.These
equations will be solved in exactly the same way as above; however, instead of division, the equations
must be manipulated using matrix inversion23.

20See for instance [7], section 9.6.
21The definitions of these fields are shown in Figure 16.
22This was described on page 19, (57).
23Note thatI is the identity matrix.
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Ecirculating = t1[I − r1r2Grt]
−1Eincident (118)

Ereflected = M 1
†[Ir1 − (r2

1 + t21)r2Grt][I − r1r2Grt]
−1Eincident (119)

Etransmitted = t1t2Prop1→2[I − r1r2Grt]
−1Eincident (120)

Grt = M 1Prop2→1M 2Prop1→2 (121)

One can now easily deduce the amplitudes and phases of the TEM00, TEM10, and TEM01 fields at
any point in space. We will be particularly interested in the reflected field.

4.3.2 The Triangular Mode-Cleaner Cavity

x

zy

M1 M2

M3

Eincident

Ereflected

Etransmitted

Ecirculating

L1

L2L3

Figure 17:LIGO mode cleaners are triangular; there are typically two flat mirrors placed close together and a third, curved
mirror placed far from the other two.

Figure 17 shows a schematic diagram of a triangular mode cleaner cavity. All conventions used in
this analysis will be those used in [8].

The two flat mirrors, M1 and M2, are set at±45 degrees from thez axis; thus,L2 = L3, and the
cavity has a line of symmetry that runs parallel to the x axis, halfway between the two flat mirrors.

The spatial properties of the beam can be found using the resonator algebra defined in Section 4.1.5.
Since the cavity waist, by symmetry, occurs halfway between the two flat mirrors, the triangular cavity
is equivalent to a symmetric Fabry-Perot cavity with half-lengthL ≡ L1/2 + L2 = L1/2 + L3, and both
mirrors having a radius of curvatureR, equal to that of the triangular cavity’s curved mirror. Thus,

z0 =
√

L(R− L) . (122)

To derive the cavity fields shown in Figure 17, one does exactly the same analysis as that shown in
Section 4.3.1. There is one quirk in the derivation that must be mentioned: because of the odd number
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of reflections, there is a spatial flip that occurs for fields in thex− z plane. This can be described with a
“flip-in-x” operator [8] defined as

Xmn,kl = (−1)mδmkδnl ⇔ X =



1 0 0
0 −1 0
0 0 1


 . (123)

This operator must act on the fields each each time they circulate in the cavity.
The field equations become

Ecirculating = t1[I − r1r2r3Grt]
−1Eincident (124)

Ereflected = M 1[Ir1 − (r2
1 + t21)r2r3Grt][I − r1r2r3Grt]

−1Eincident (125)

Etransmitted = t1t2PropL1
[I − r1r2r3Grt]

−1Eincident (126)

Grt = −XM 1
†PropL3

M 3
†PropL2

M 2
†PropL1

(127)

4.4 Modulation, Demodulation, and Control

Section 4.3 describes how the fields of an interferometer are transformed when an optical cavity is
misaligned. In this section, we will show how a laser with two phase modulation sidebands can be used
to produce an error signal that is proportional to a specific cavity misalignment such as the tilt of a front
mirror.

4.4.1 Motivation

Consider a sine-phase modulated laser reflected from a Fabry-Perot Cavity24. When the carrier is reso-
nant, it will be completelytransmitted, but the sidebands, which are far from resonance, are completely
reflected. If, however, the back mirror is misaligned in the x-z plane, then a small amount of TEM10

at the carrier frequency will be reflected as well. The sidebands are unaffected by this misalignment
because they do not resonate inside the cavity.

This is simply modelled25 as

E(x, y, t) = ı̇TEM00[ω − Ω]− ı̇TEM00[ω + Ω] + aeı̇θTEM10[ω] (128)

∝ e−(x2+y2)
[
ı̇eı̇(ω−Ω)t − ı̇eı̇(ω+Ω)t + aeı̇θeı̇ωt2x

]
, (129)

whereθ is the relative (Guoy) phase of the reflected TEM10 and TEM00 modes, and a is a real constant
that describes the amount the mirror is misaligned.

The intensity falling on the photodiode is proportional to the absolute square of the field:

I(x, y, t) ∝ E(x, y, t)E(x, y, t) (130)

∝ e−2(x2+y2)
[
2− 2 cos[2Ωt] + (2ax)2 + 8ax sin[Ωt] cos[θ]

]
. (131)

To see what this means, let us examine the behavior of the intensity fora = 0.5 and various values
of θ, which can be varied by letting the fields propagate in space because the TEM10 will advance twice
as fast as the TEM00 fields.

24The meaning of phase modulation will be made clear in the following section.
25The specific form of the field should become absolutely clear in the following sections.
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For θ = 0, π/4, π/2, we get

I(x, y, t)θ=0 = e−2(x2+y2)
[
2− 2 cos[2Ωt] + (2ax)2 + 8ax sin[Ωt]

]
, (132)

I(x, y, t)θ=π/4 = e−2(x2+y2)
[
2− 2 cos[2Ωt] + (2ax)2 + (8/

√
2)ax sin[Ωt]

]
, (133)

I(x, y, t)θ=π/2 = e−2(x2+y2)
[
2− 2 cos[2Ωt] + (2ax)2

]
. (134)

Figures 18, 19, and 20 show these intensity distributions at different snapshots in time.

Figure 18:Whenθ = 0, a thick line appears to move through the spot with frequencyΩ. This series extends over a time
interval equal to1/Ω.

Figure 19:Whenθ = π/4, one spot gets smaller than and swallowed by the other at frequencyΩ. This series also extends
over a time interval equal to1/Ω.

Figures 18, 19, and 20 show the time varying intensity distributions given by the above three equa-
tions. The important thing to notice about these figures is that, although there will be a time-varying
intensity pattern for all values ofθ, the symmetry of that distribution varies withθ as well. Let us try to
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Figure 20:Whenθ = π/2, the two spots symmetrically merge together at frequency2Ω, and nothing happens at frequency
Ω. This series extends over a time interval equal to1/2Ω because nothing is happening at frequencyΩ.

parameterize this symmetry property by finding the difference in total intensity on the left and right side
of x = 0. We will call this function Err:

Err(t) =

∞∫

0

∞∫

−∞
I(x, y, t) dydx−

0∫

−∞

∞∫

−∞
I(x, y, t) dydx (135)

If one looks at (131), it is clear that the only term that is not symmetric with respect tox = 0 is the
terme−2(x2+y2)8ax sin[Ωt] cos[θ]. Therefore, all the other terms do not contribute to Err, and the value
of Err becomes

Err(t) =
√

8πa cos[θ] sin[Ωt] . (136)

We now have an error signal that is proportional to the amplitude and sensitive to the relative phase of the
TEM10 mode incident on the detector. This error signal oscillates sinusoidally atΩ, and if we multiply
by sin[Ωt] and average over one cycle (I-phase demodulation), we obtain a constant error signal that is
proportional to the misalignment, a.

If we were to use a detector constructed of two half-planes (left and right ofx = 0), then we could
subtract the signals from these two halves to generate Err(t), and then use demodulation to reduce Err(t)
to a constant error signal.

Referring back to Section 4.2.1, we know that if the mirror is offset,θ = 0, and we should place a
photodiode as close as possible to the cavity because we are most sensitive whenθ = 0; we would then
have an error signal proportional to the offset.

If the mirror is tilted, thenθ = π/2, and we have no sensitivity to tilt; however, if we allow the fields
to propagate into the far-field, thenθ will evolve to 0 again, and we will have an error signal proportional
to the tilt.

This isamazing! We have an error signal where we can optically determine what sort of misalign-
ment we can see. If we want offset, we have a near-field photodiode; if we want tilt, we have a far-field
photodiode, and each is blind to the other.

If this weren’t enough, if we had also allowed the front mirror to be misaligned, then

E(x, y, t) = (ı̇TEM00[ω − Ω]− ı̇TEM00[ω + Ω])(1 + beı̇α) + aeı̇θTEM10[ω] (137)

34



∝ e−(x2+y2)
[
(ı̇eı̇(ω−Ω)t − ı̇eı̇(ω+Ω)t)(1 + beı̇α) + aeı̇θeı̇ωt2x

]
, (138)

Going through the same simple procedure, we would find

Err(t) =
√

8π(a cos[θ] sin[Ωt]− b cos[α] cos[Ωt] + b cos[α]) . (139)

If we multiply by sin[Ωt] and average over a cycle, we get

Err∝ a cos[θ] . (140)

If we multiply by cos[Ωt] and average over a cycle, we get

Err∝ b cos[α] . (141)

Thus, by picking the demodulation phase26, we can choose which mirror we are sensitive to (I-phase
for the front mirror and Q-phase for the back), and then we can pick the kind of misalignment we want
to see by controlling the propagation distance.

The beauty and simplicity of this scheme accounts for its ubiquity.

4.4.2 Phase Modulation

If the phase of an electric field is sinusoidally modulated in time, it can be decomposed into three fields
with a well-defined relationship:

eı̇ωt ⇒ eı̇(ωt+Γ sinΩt) ≈ eı̇ωt (1 + ı̇Γ sin Ωt) (142)

= eı̇ωt
(
1 +

Γ

2
eı̇Ωt − Γ

2
e−ı̇Ωt

)
= eı̇ωt +

Γ

2
eı̇(ω+Ω)t − Γ

2
eı̇(ω−Ω)t , (143)

whereΓ is a small number called the modulation index.
Clearly, the modulated phase decomposes into the original field, one field shifted up by the modula-

tion frequency, and one field shifted down by the modulation frequency.

4.4.3 Demodulation

If a phase modulated field is incident on a photodiode, the intensity measured will be

EE = (E0 + E+eı̇Ωt + E−e−ı̇Ωt)eı̇ωt(E0 + E+e−ı̇Ωt + E−e+ı̇Ωt)e−ı̇ωt (144)

= [|E0|2 + |E+|2 + |E−|2] + [(E0E− + E+E0)e
ı̇Ωt) + CC] + [E+E−e2ı̇Ωt) + CC] (145)

If one multiplies this intensity bycos(Ωt + φ) and averages over one cycle, then only the terms
oscillating atΩ will have a non-zero average. If we define this demodulated signal to beS, then

S =
Ω

2π

t+ 2π
Ω∫

t

(
A cos(Ωτ + φ)eı̇Ωτ + A cos(Ωτ + φ)e−ı̇Ωτ

)
dτ , (146)

where
A = E0E− + E+E0 . (147)

26This is explained below.
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This is a simple integration to perform:

S =
1

2
(Ae−ı̇φ + Aeı̇φ) . (148)

φ is known as the demodulation phase, and from (148) we can recover the well-known results:

φ = 0 ⇒ cos(Ωt + φ) = cos(Ωt) (149)

S = SI = Re[A] = Re[E0E− + E+E0] (150)

φ = −π

2
⇒ cos(Ωt + φ) = cos(Ωt) (151)

S = SQ = −Im[A] = −Im[E0E− + E+E0] . (152)

Note, however, thatφ can take on any value.

4.4.4 Demodulation with Higher Order Modes Present

In the model, we will need to take into account the different spatial components of fields. Suppose we
substitute into (144)

E0 = Acψ00 + Bcψ10 + Ccψ01 (153)

E+ = A+ψ00 + B+ψ10 + C+ψ01 (154)

E− = A−ψ00 + B−ψ10 + C−ψ01 , (155)

where the A’s, B’s, and C’s are the complex amplitudes of the TEM00, TEM10, and TEM01 fields respec-
tively, and the superscript denotes the frequency (carrier, SB+, or SB-) of the field. Then after a lot of
algebraic manipulation, we get,

A = E0E− + E+E0 = g00,00|ψ00|2 + g10,10|ψ10|2 + g01,01|ψ01|2
+g00,10ψ00ψ10 + g00,01ψ00ψ01 + g10,01ψ10ψ01 , (156)

where

g00,00 = AcA− + A+Ac , (157)

g10,10 = BcB− + B+Bc , (158)

g01,01 = CcC− + C+Cc , (159)

g00,10 = AcB− + A−Bc + A+Bc + AcB+ , (160)

g00,01 = AcC− + A−Cc + A+Cc + AcC+ , (161)

g10,01 = BcC− + B−Cc + B+Cc + BcC+ . (162)

Now one can use (148) to calculate the demodulated signal.

4.4.5 Quad Photodiodes

Since the TEMmn modes are orthogonal over all space, then if S is measured on a regular photodiode,
all the cross terms between different modes cancel in the above calculations.
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Integral of
In Quadrant |ψ00|2 |ψ10|2 |ψ01|2 ψ00ψ10 ψ00ψ01 ψ10ψ01

1 1/4 1/4 1/4 1/
√

8π 1/
√

8π 1/2π

2 1/4 1/4 1/4 −1/
√

8π 1/
√

8π −1/2π

3 1/4 1/4 1/4 −1/
√

8π −1/
√

8π 1/2π

4 1/4 1/4 1/4 1/
√

8π −1/
√

8π −1/2π

Table 1:This table gives the integrals of the products of different TEMmn modes in the four quadrants. These values are
critical to calculating pitch and yaw signals.

If, however, we have the fields centered on a photodiode with four separate quadrants, then the cross
terms do not cancel. Table 1 gives the integrals of the products of TEMmn modes; each is given over the
four quadrants transverse to the propagation direction.

To calculate pitch and yaw signals, one needs to calculate the demodulated field in each quadrant:

Si =
∫ ∫

Qi

(Ae−ı̇φ + Aeı̇φ) dx dy . (163)

This integration will require many applications of the table above.
To calculate pitch and yaw signals, one needs to take various linear combinations of theSi’s:

Pitch = S1 + S2 − S3 − S4 (164)

Y aw = S1 − S2 − S3 + S4 . (165)

5 Wave Front Sensing Time-Domain Modelling

In this section, the details of the Simulink model will be explained in full.
Simulink is a Matlab program that solves differential equations in discrete or continuous time. The

model is constructed as a block diagram, and Simulink steps through each point in time, making all
necessary calculations before proceeding to the next value of time.

In this model, the positions of the MC and PZT mirrors and the laser coming from the pre-stabilized
laser (PSL), along with a myriad of parameters27 are used to determine the intensity falling on the
WFS photodiodes at any given time. These fields then determine an error signal that is fed back to the
mirrors to correct their position. Transfer functions for the mirrors can be added to simulate the dynamic
response of the system, noise can be added at any point in the loop, and filters can be designed and
optimized for noise suppression.

The model uses the formalism described in this paper to calculate the perturbations of the electric
fields caused by the time-varying misalignments of the mirrors (PZT and MC).

27These parameters will be discussed in Section 5.1.
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5.1 Model-Wide Parameters

Simulink has the property that signals can be sent to various parts of the model remotely. The pentagonal
blocks are remote sending and receiving blocks. These allow for all the model-wide parameters to be
input on the front end of the model, rather than having to input them multiple times. Additionally, the
remote property allows for a cleaner appearance, because multiple wires do not need to be drawn from
the parameters to their corresponding blocks.

Figure 21: All global parameters are entered on a single screen; they are broadcast to all relevant subsystems by the
pentagonal blocks.

The model has a multitude of parameters which need to be set/understood.
Figure 21 shows all the parameters which can be set within the model, with the exception of the field

amplitudes themselves.

5.1.1 Mode Cleaner Geometric and Reflectivities

Referring back to Figure 21, first, the geometric properties of the mode cleaner must be set. These are
the parameters in the box labeled “PARAMETERS.”

Eventually, the geometric parameters will be reduced to just three geometric parameters: the distance
from Waist to flat mirrors, the distance from waist to curved mirror, and the radius of curvature of the
curved mirror. The rest of the parameters can be calculated using these three numbers.
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Presently, the numbers must be calculated “by hand.” This can be done quite easily with the resonator
algebra defined in Section 4.1.5 and the definitions of the auxiliary functions in section 4.1.1.

Next the PZT mirror geometry must be set. This is simply the distance between the two PZT mirrors.
The next set of parameters is the set of mirror reflectivities and losses. These are thePowerreflec-

tivities and losses. Currently, the total round trip loss (the combined loss is lumped into the loss of the
first mirror) is 100 parts per million (ppm).

5.1.2 Frequency Parameters

The next group of parameters are the “FREQUENCY PARAMETERS” in Figure 21.
The free spectral range (FSR) of the cavity is 11.0689 MHz. The carrier must be an odd multiple of

half the free spectral range to be resonant in the mode cleaner. This resonance condition is derived using
the sign convention that light aquires a pi phase shift when reflecting off the coated side of an optic.

For the model to work properly, the carrier must be resonant in the mode cleaner. The first frequency
at which the carrier is resonant is 5534463.76 Hz. The fact that the actual laser frequency is millions of
FSRs does not matter for the model. Additionally, the carrier frequency can be ramped for diagnostic
purposes; to ramp the frequency, connect the switch to “Ramp” instead of “Carrier Resonant.”

The local oscillator frequency must also be set. This is the frequency at which the electro-optic
modulators are driven; thus, this is the modulation frequency of the sidebands. Currently at the 40m, the
MC sideband frequency is 29.486 MHz.

5.1.3 Guoy Phase Parameters

The next set of parameters refer to those marked “GUOY PHASE PARAMETERS” in Figure 21.
Unlike the real system, the model easily facilitates changing the Guoy phase telescopes. Currently,

the two wavefront sensors are set at 90 degrees and 180 degrees [9]. Using the model, it is simple to
explore the effects of changing the WFS positions in Guoy phase.

Additionally, the model allows one to look at an arbitrary demodulation phase. Thus, one can quickly
switch back and forth between I (0 degrees) and Q (90 degrees). Currently, both WFS are looking at I
phase [9].

5.1.4 Field Amplitudes and Phases

Figure 22 shows the blocks that multiply the input coupling matrix to find the amplitudes and phases of
the carrier and sidebands.

The amplitudes of the fields must be input. For things to make sense, the absolute values of the
amplitudes should add to unity; this is currently satisfied as|0.90|+ |−0.05|+ |0.05| = 1. In addition, it
is imperativethat the sign of the SB- field be negative. This is because the definition of phase modulation
sidebands puts the two sidebandsπ out of phase with one another.

These fields are sent remotely to many blocks within the model.
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Figure 22:The amplitudes of the fields are entered into these blocks; the sum of the amplitudes should be one.

Figure 23: The dynamic pitch and yaw angles of the MC mirrors are controlled by these blocks. They can be easily
switched from closed-loop positions to open-loop constant offsets, which are useful for diagnostics.

5.2 Dynamic Alignment of Mirrors and PSL

5.2.1 Mode Cleaner Mirrors: Pitch and Yaw

The group of blocks that determines the alignment of the MC mirrors is shown in Figure 23. The pitch
and yaw angles of the mirrors are input in radians. All six angular degrees of freedom are independent.

The switches should be kept on the round inputs, which completes the feedback loop. However, for
diagnostic purposes, constant offsets have been set to one microradian. In addition to these constant
offsets, a sinusoidal input or ramp may replace any of the static misalignments.

The six mirror angles are combined into a single signal via the “bus” block, which is the long black
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bar. This single signal is then broadcast to the rest of the model.

5.2.2 PZT Mirrors: Pitch and Yaw

Figure 24:The dynamic pitch and yaw angles of the PZT mirrors are controlled by these blocks. The open input ports
receive information about the PSL.

The group of blocks that determines the alignment of the PZT mirrors is shown in Figure 24. Just like
the MC mirrors, the pitch and yaw angles of the mirrors are input in radians. All four angular degrees of
freedom are independent.

Again, for closed loop operation, the switches should be set to the round input blocks. The constant
offsets are only there as diagnostic tools.

5.2.3 PSL: Angles and Offsets

At PZT mirror 1, the PSL beam will be travelling at an angle to its ideal path; it will also be offset from
this path. These deviations adversely affect the coupling to the mode cleaner and are essentially noise.

Figure 25 shows the blocks which govern these deviations of the PSL input laser beam. Like the
other dynamic parameters, in normal operation the switches will be set to the round input blocks, and
diagnostics can be done with the constant deviations.

5.3 Mode Cleaner Reflectivity Matrices

From (125), we see that the reflectivity matrix is a complicated function of matrices, involving products,
sums, and inverses. A central role is played byGrt, the round trip operator, which is itself the product
of 6 matrices. Of the 6 matrices involved in the reflectivity matrix, the three mirror alignment matrices
are dynamic and the three propagators are static.

Figure 26 shows the block that broadcasts the reflectivity matrix to the rest of the model. For each of
the three fields (carrier and two sidebands), 21 subsystems in four sub-levels are contained within this
block. Fortunately, the 21 subsystems arealmostidentical for all three fields, which makes constructing
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Figure 25:The dynamic PSL inputs consist of the pitch and yaw angles (radians) and the offsets (meters) in and perpendic-
ular to the plane of the interferometer. These inputs are measured at PZT mirror 1. The open input ports receive information
about the PZT mirrors.

three no harder than one. They differ, of course, in the propagator matrices because the sidebands
are at different frequencies than the carrier. This change is easily made using the broadcast sideband
frequencies shown in Figure 21.

5.3.1 Round Trip Operator

The bulk of the work that goes into computing the reflectivity matrix goes into calculating the round trip
operator (RTO). Figure 27 shows the RTO subsystem.

Three misalignment matrices, three free space propagation matrices28, and the flip operator29 are
multiplied in the center of the system to yield the round trip operator defined in (127).

5.3.2 RTO: Misalignment Matrices

The three matrices on the left are the adjoints of the misalignment operators (82) and (83). However,
only the fields incident on the curved mirror are at normal incidence when aligned; thus, the coefficients
that multiply the normalized angles in (82) and (83) are not two for the flat mirrors30.

Inside the “MCCM Misalignment (M3) Matrix (adjoint) Subsystem” block shown in Figure 28, there
is a series of subsystems that performs simple operations: the angles are normalized, and the matrix is
concatenated from its scalar elements. The blocks that perform these operations are shown in Figure 29.

The system takes as its inputs the dynamic alignment angles of the curved mirror; it also takes the
width of the beam at that mirror,w(z) at MCCM, which is broadcast by the “PARAMETERS” box
shown in Figure 21.

28The construction of these matrices is discussed in the following sections
29The flip operator is discussed in Section 4.3.2.
30Refer to the discussion in Section 4.2.8.
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Figure 26:Within this block, the reflectivity matrix of the MC is constructed. Since the mirror alignments are dynamic, so
too is the reflectivity matrix.

The angles passed to the reflection matrix must be normalized per the discussion in Section 4.2.5.
Figure 30 shows how this is accomplished. The angle is simply multiplied byπw(z)/λ.

After the angles have been normalized, they are passed to the block labelled “MCCM Misalignment
Matrix Generator.” The contents of this block are shown in Figure 31. The subsystem is responsible for
the concatenation of the normalized misalignment angles and various constants into the misalignment
matrix.
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Figure 27:This subsystem calculates the round trip operator (127) based on the dynamic MC mirror angles and the global
parameters discussed in Section 5.1.

Figure 28:This block constructs the reflection matrix for the curved mirror (MCCM).
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Figure 29:The innards of the MCCM reflection matrix block normalizes the misalignment angles using the width of the
beam, and concatenates the normalized angles (after being multiplied by the proper complex constants) into the reflection
matrix (adjoint).

Figure 30:The angle normalization block performs the requisite multiplication.
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Figure 31: The MCCM misalignment matrix generator concatenates the normalized misalignment angles and various
constants into the misalignment matrix.
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This completes the description of the misalignment matrix. Each mirror has its own group of subsys-
tems which creates and constantly updates the elements of the matrix. The only difference between the
matrices of different mirrors are the numerical coefficients that multiply the normalized misalignment
angles and the angles themselves.

5.3.3 RTO: Free Space Propagators

Figure 32:The free space propagator can continually update the accumulated phase, although the only thing that would
change dynamically might be the carrier frequency.

The free space propagator is responsible for the accumulated phase (Guoy and bulk length) of a
mode as it propagates around the optical cavity. It takes as its inputs the distance from the waist to each
of the points to which it will propagate; it also takes the Rayleigh range and frequency of the radiation.
These features are shown in Figure 32

Figure 33 shows the contents of the free space propagator. The frequency is multiplied by−ı̇2π/c
and then the length, and that product is exponentiated to makee−ı̇kl.

The distances from the waist to each point and the Rayleigh range are used to construct terms like
Prop(z1, 0) = arctan[z1/z0], which is the Guoy phase accumulated propagating from the waist toz1.
The differenceProp(z2, 0) − Prop(z1, 0) is one unit of accumulated Guoy phase, and this quantity is
concatenated to make the free space propagation matrix defined in (90).

5.3.4 Reflectivity Matrix Calculator

Figure 34 shows the remaining subsystems used to calculate the reflectivity matrix. The outputs of the
“Round Trip Operator Subsystem” are the round trip operator and the misalignment matrix of MCFM1.
These matrices, together with the mirror parameters from Figure 21, are combined in various combina-
tions to make the reflectivity matrix defined by (125).
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Figure 33:The free space propagator contains blocks that compute the bulk length phase and Guoy phase accumulated
between two points.

Figure 34:This group of subsystems performs the remaining calculations to make the reflectivity matrix.
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5.3.5 Reflected Fields

The model generates three reflectivity matrices, one for the carrier, upper sideband, and lower sideband.
These matrices are identical except for the frequency of the field they deal with.

The next step is to multiply each of the three input fields by the corresponding reflectivity matrix.
This then gives the amplitude and phase of the TEM00, TEM10, and TEM01 fields for each of the three
frequencies. This makes a total of 9 fields.

5.4 Input Coupling

1) PSL Offset and Tilt

3) Causes MC Input Offset and Tilt Mismatch

2) Together with Misaligned PZT Mirrors

Figure 35:This illustration shows how the input mode can be mismatched to the requisite cavity mode.

Figure 35 shows the basic problem with input coupling. The cavity has a well-defined axis along
which its eigenmodes must propagate. If the input laser beam is offset or tilted from this ideal direction,
then it will not couple efficiently to the mode cleaner (MC). One problem with this is that not as much
light will be coupled through the MC, which decreases potential gravitational wave signals. In addition,
the light that does not couple to the MC will be reflected, which will distort the error signal used to
control the alignment of the MC. One must then decide whether it is better to move the MC mirrors to
match the input mode or move the PZT mirrors to match the input mode to the MC; if one does not
decide in advance, then the meaning of the ASC error signal will be ambiguous.

There are 8 degrees of freedom which must be controlled to steer the laser into the MC: PSL offset
in and out of the plane of the MC (2), PSL pitch and yaw tilts (2), PZTM1 pitch and yaw (2), and
PZTM2 pitch and yaw (2). The program has no problem keeping track of all these degrees of freedom,
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but calculating what the tilts and offset at the MC will be in terms of these 8 degrees of freedom is
non-trivial. The next few sections deal with how these calculations are done.

5.4.1 Analytical Calculations of Input Coupling

y1

p1

p2

y2

z

y

x

(-d1,0,0) (-d1,d2,0)

(0,0,0)

Figure 36:The geometric definitions of the PSL path include directions of positive increase for all PZT mirror angles and
the distances between the pivot points (centers) of the PZT mirrors.

Figure 36 shows the geometry of the laser input path. The PSL inputs a beam that has an offset in
both thez andx directions; these will be called∆xL and∆zL. It also has an initial tilt in thex− y (yL)
andy− z (pL) planes. The two PZT mirrors have their pitch and yaw angles defined according to Figure
36.

To calculate the final misalignments of the beam when it reaches the first mode cleaner mirror, we
will need to calculate how the original misalignments of the PSL propagate through arbitrarily mis-
aligned PZT mirrors to become the final misalignments.

Consider the case of a line passing through the pointpline = (xline, yline, zline), whose direction is
given by a vector~k = 〈kx, ky, kz〉31. Also consider a plane containing the pointpplane = (xplane, yplane, zplane)
and having a unit normal vector̂n = 〈nx, ny, nz〉. Figure 37 illustrates this situation.

The parameterized equation of the line can be obtained with elementary vector analysis:

x = tkx + xpoint y = tky + ypoint z = tkz + zpoint , (166)

31I have chosen to usek because it will turn out that it doesn’t matter if the vector is normalized, and the k-vector of a ray
is in the direction of propagation.
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(xpoint,ypoint,zpoint)

k = <kx,ky,kz>

n = <nx,ny,nz>

(xplane,yplane,zplane)

Figure 37: A line passing through the pointpline = (xline, yline, zline) with vectork = 〈kx, ky, kz〉 travels towards a
plane with unit normal̂n = 〈nx, ny, nz〉 and pointpplane = (xplane, yplane, zplane).

where t is an arbitrary constant that parameterizes the line.
The equation of the plane is

(x− xplane)nx + (y − yplane)ny + (z − zplane)nz = 0 . (167)

If the vector is not parallel to the plane, then substituting the values of x, y, and z from 166 into 167
yields a single equation that can be solved for t:

t = −
~∆ · n̂
~k · n̂ , (168)

where
~∆ ≡ 〈xpoint − xplane, ypoint − yplane, zpoint − zplane〉 . (169)

Substituting this value for t back into 166 gives the point at which the line and plane intersect:

xintersection = xpoint −
~∆ · n̂
~k · n̂ kx , (170)

yintersection = ypoint −
~∆ · n̂
~k · n̂ ky , (171)

zintersection = zpoint −
~∆ · n̂
~k · n̂ kz . (172)

Now, suppose the plane were a mirror, the ray would reflect with a new k-vector,~k′, given by the
vector law of reflection (84). The reflected ray defines a new line with~k′, and it would definitely pass
through the point(xintersection, yintersection, zintersection), since the ray is continuous. In addition, it is
natural to use the center of the PZT mirror for the point contained by the plane; the mirror pivots around
this point, which means it is theonlypoint that is always on the plane.

This then allows us to determine what the final misalignment of the PSL beam is after it propagates
to the first MC mirror. Refer to Figure 36 as the following procedure is explained.
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1) The incoming beam is a line that passes through the pointp0 = (∆xL, 0, ∆zL) and
~k0 = 〈− sin(yL), cos(yL) cos(pL), cos(yL) sin(pL)〉 ≈ 〈−yL, 1, pL〉.

2) The first PZT mirror has unit normal̂n1 ≈ 〈 1√
2
y1 − 1√

2
,− 1√

2
y1 − 1√

2
, p1〉 and pivots around the

point (0, 0, 0).

3) Use (84) to calculate the reflected k-vector,~k′, using the incident k-vector and the first PZT normal.

4) Calculate the point of intersection,pint,1, for the first line and PZT mirror.

5) The reflected beam is now a line passing throughpint,1 with ~k′.

6) The second PZT mirror has unit normaln̂1 ≈ 〈 1
−√2

y2 + 1√
2
, 1√

2
y2 + 1√

2
, p2〉 and pivots around the

point (−d1, 0, 0).

7) Use (84) to calculate the reflected k-vector,~k′′, using~k′ and the second PZT normal.

8) Calculate the point of intersection,pint,2, for the second line and PZT mirror.

9) The reflected beam is now a line passing throughpint,2 with ~k′′.

10) The last normal vector is〈0, 1, 0〉, which is normal to the plane passing through the center of the
first MC mirror at(−d1, d2, 0). This is the plane at which the misalignments will be defined and
the coupling to the mode cleaner calculated.

11) The last intersection is calculated using the second reflected line and the above-mentioned plane.
Call this intersection(xint,3, d2, zint,3).

12) The final offset in x is∆x = xint,3 + d1.

13) The final offset in z is∆z = zint,3.

14) The final yaw tilt isyaw = − arctan(k′′x/k
′′
y).

15) The final pitch tilt ispitch = arctan(k′′z/k
′′
y).

All of the normals to the mirrors in the above procedure were calculated using (88).

5.4.2 Model Calculations of Input Coupling

The input coupling is calculated by the model according to the method described in Section 5.4.1. Figure
38 shows the block that does the bulk of the work. It takes as its inputs the initial k-vector of a beam, a
point through which the line passes, the mirror’s unit normal, and the mirror’s pivot point32. Its output
is the new line’s normal vector and the point at which the incoming beam and mirror intersect. These
outputs can then be fed to another identical block, and so the final misalignment can be found iteratively.

For the sake of brevity, the innards of the block will not be shown here, but they simply do exactly
the same steps as were described in Section 5.4.1.

32To facilitate calculations, all points(x, y, z) should be fed to the block as a vector〈x, y, z〉.
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Figure 38:This block calculates the line of the reflected beam based on the incoming beam’s direction and fixed-point and
mirror’s unit normal and pivot point.

5.4.3 Coupled Fields

The subsystems described in Section 5.4.2 continuously update the input coupling into the mode cleaner.
With that information, the tilt and offset matrices are calculated according to Sections 4.2.5 and 4.2.4
respectively.

These matrices multiply the input fields shown in Figure 22. The resulting vectors are the fields that
will couple to the Mode Cleaner; thus, it is these fields that will be multiplied by the reflectivity matrices.

5.5 WFS Signals

5.5.1 Guoy Phase Telescopes

After the input-coupled fields are multiplied by the reflectivity matrices, the reflected fields are sent to
another free space propagation matrix. This propagation matrix represents the Guoy phase telescope,
and allows one to tune the relative phases of the different TEMmn modes.

Actually, two identical copies are made of the reflected fields, and each one is sent to a different
Guoy phase telescope.

5.5.2 QPD

After the Guoy phase telescopes, the fields fall on the quad photodiodes (QPD). At this point, each of the
nine field components (3 frequencies x 3 spatial modes) are separated into separate components. From
these separate components, the calculations follow the work in Sections 4.4.3 through 4.4.5.

5.5.3 ASC Error Signals

After the fields from various quadrants are combined to make the pitch and yaw error signals, the optical
plant is complete.
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5.6 Results

The current state of the model is such that only a limited number of things can be tested.

5.6.1 PZT Control Matrix

One significant thing that has been done is the development of a PZT mirror control matrix. By moving
the PZT mirrors in such a way that only pitch, yaw, or either offset is produced at the first MC mirror,
one can deduce a numerical control matrix for the values of the parameters being tested. By varying the
parameters, one can try to deduce the control matrix for arbitrary parameters.

If the PZT mirrors are tilted such that

p1 = arbitrary (173)

y1 = 0 (174)

p2 = −d1 + d2

d2

p1 (175)

y2 = 0 , (176)

then there will be a tilt in pitch at the first MC mirror without any offset.
If the PZT mirrors are tilted such that

p1 = 0 (177)

y1 = arbitrary (178)

p2 = 0 (179)

y2 = +
d1 + d2

d2

y1 , (180)

then there will be a tilt in yaw at the first MC mirror without any offset.
If the PZT mirrors are tilted such that

p1 = −p2 (181)

y1 = y2 = 0 , (182)

then there will be a tilt a∆z offset and no tilt.
If the PZT mirrors are tilted such that

p1 = p2 = 0 (183)

y1 = y2 , (184)

then there will be a∆x offset and no tilt.

5.6.2 A Working Model

The success of the model itself is significant. There are thousands of blocks in hundreds of subsystems,
and getting them to work was a challenge.

I have devised several ways of checking the model thus far. First, I built a Mathematica model of a
plain Fabry-Perot cavity using methods identical to those explained in this paper. The Fabry-Perot has
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trivial behavior, and I was able to derive analytical expressions for many things; the result was that I
trusted my methods. Second, I built a Mathematica model of my model; this allowed me to compare
the numerical results, and after some debugging, I found the two were identical. Therefore, I have good
reason to trust the results of my model.

In addition, I have set up various checks within the Simulink model; one of these checks is to generate
the Pound-Drever-Hall error signals for the aligned cavity. The model passes this test with flying colors.

5.7 Future Work

5.7.1 Mechanical Response

The transfer functions for all mirrors are currently unity. This is okay for the PZT mirrors, whose
resonances are well into the hundreds of Hertz, but transfer functions of the MC mirrors are critically
important if the model is to be realistic.

5.7.2 Noise

Although there are many places at which one could add noise, there is currently no noise being added at
any point.

The most important, of course, is the PSL pointing noise. Next in line must be the seismic noise’s
coupling to the MC mirrors.

5.7.3 Filtering

Once frequency dependent noise is added, it will be natural to investigate what the optimal filtering will
be for the servo.

5.7.4 Optimization of the Real Mode Cleaner

This is, of course, the most important thing of all. Eventually, I hope to use this model to determine the
best choice of filters and parameters for the 40m mode cleaner.

Alexei Ourjoumtsev recently did an excellent job bringing the mode cleaner ASC servo online, but
it needs to be optimized [9].
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7 Appendix 1: Mode-Matching Program

During the modification of the PSL, Conor Mow-Lowry and I found it necessary to quickly calculate
both the focal length and position of two lenses such that a beam waist occurred at a specific location,
with a specific size.

Using the work derived in Section 4.1.3, I wrote a program in Mathematica which takes as input two
available focal lengths, reasonable guesses for the positions of the lenses, and the desired waist size and
position; with these inputs, the program finds an exact solution with real waists.

The program uses Mathematica’s algebraic language to find an equation for the position and size of
the new waist of a beam with a lens (or mirror) inserted into its path at an arbitrary position; to do this, it
uses (27) and (28) from page 12. It then finds the equation of another new waist and position using the
beam properties given by the last equation. Then the root-finding program is used to find the solution.

Below is the Mathematica code; it is printed so that it can be typed directly into Mathematica.
Additionally, it appears in such a way that it can be copied and pasted directly into Mathematica. If the
reader wishes to use the program, I can either send them the Mathematica file or the text file which can
be pasted in.

\!\(w0toz0[w0_] := \(\[Pi]\ w0\ˆ2\)\/\(1064*10\ˆ\(-6\)\)\)

(*Converts waist to confocal parameter (mm)*)

w0toz0[0.371]

406.402

\!\(z0tow0[z0_] := \@\(\(1064*10\ˆ\(-6\)*z0\)\/\[Pi]\)\)

(*Converts confocal parameter to waist (mm)*)

z0tow0[406.42]

0.371008

\!\(z0prime[f_, z00_, zlens_] :=
z00\/\(\((1 - zlens\/f)\)\ˆ2 + \((z00\/f)\)\ˆ2\)\)

(*finds the new confocal parameter given a lens of focal length f,
initial confocal parameter z00, and position of lens zlens (all in
mm)*)

z0prime[343.6,w0toz0[0.371],6*25.4]

237.855

z0tow0[237.855]

57



0.283826

\!\(wp[f_, z00_,
zlens_] := \(zlens + f + \((zlens\/z00)\)\ˆ2*\((zlens - f)\)\)\/\(1 + \

\((f\/z00)\)\ˆ2 + \(\((zlens\/z00)\)\ˆ2\) \((1 - \(2
f\)\/zlens)\)\)\)

(*finds the new waist position (provided that it is downstream of
the lens) \ given the same initial parameters as for z0prime*)

wp[343.6,w0toz0[0.371],6*25.4]

384.096

%/25.4

15.1219

(*these numbers match those calculated by Alexi’s program*)

z0prime[343.6,237.89,1295.4-384.096]

74.1279

z0tow0[%]

0.158448

wp[343.6,237.89,1295.4-384.096]

1431.8

1431.8037322802506+384.096

1815.9

(*follow these steps to fix a waist’s size and position: *)

(*1. find the beam waist position (input) and call this position
z=0*)

(*2. find the beam waist size and call this w00*)

(*3.convert w00 to z00 using w0toz0[w00]*)
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(*4. let the position of lens 1 (f=f1) be z1*)

(*5. let the position of lens 2 (f=f2) be z2*)

(*6. compute z0prime[f1,z00,z1]=z01*)

(*7. compute wp[f1,z00,z1]=zw1 *) (*note: in both the above
calculations, z1 is an unspecified parameter*)

(*8. compute z0prime[f2,z01,z2-zw1]=z02*)

(*9. the waist size is w02=z0tow0[z02]*)

(*10. compute wp[f2,z01,z2-zw1]+zw1 = zw2*) (*zw2 is the waist
position*)

(*11. Use FindRoot to find values of z1 and z2 *) (*such that the
expressions for zw2 and w02 are the ones desired*)

(*When all this is done, the program becomes:*)

findvalues[f1_,f2_,w00_,w02_,zw2_,guessz1_,guessz2_]:=
Module[{},z01=z0prime[f1,w0toz0[w00],z1];zw1=wp[f1,w0toz0[w00],z1];

FindRoot[{z0tow0[z0prime[f2,z01,z2-zw1]]\[Equal]w02,
wp[f2,z01,z2-zw1]+zw1\[Equal]zw2},{z1,guessz1},{z2,guessz2}]]

(*where
f1 and f2 are the focal lengths of lens 1 and 2 respectively
w00 is the input beam’s waist radius
w02 is the desired output beam’s waist radius
zw2 is the desired position of the output beam’s waist
guessz1 and guessz2 are initial guesses for the positions of lens 1 and 2 \
respectively*)

(*don’t forget that if you are not working from z=
0 you need to shift your coordinates so
that the input beam’s waist is at z=0*)

(*Various solutions are possible depending on the initial guesses
for z1 and \ z2, as can be seen by the next three outputs:*)

findvalues[343.6,343.6,0.371,0.150,1701.8,152.4,1295.4]
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{z1\[Rule]61.6195,z2\[Rule]1169.56}

findvalues[343.6,343.6,0.371,0.150,1701.8,500,1000]

{z1\[Rule]1248.2,z2\[Rule]1753.61}

findvalues[343.6,229.0,0.371,0.150,1701.8,800,900]

{z1\[Rule]395.884,z2\[Rule]1384.61}
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