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It is shown that the tilt instability, induced by radiation pressure in an advanced LIGO arm cavity,
is 8.5 times stronger for Mexican-Hat mirrors and their mesa beams, than for spherical mirrors and
their Gaussian beams, when the beam sizes are chosen to have the same diffraction losses. This
result applies to the original version of the advanced-LIGO MH and spherical mirrors, with nearly
flat mirrors. A comparison for mirrors with radii of curvature R near L/2 = 2 km (and the same
beam shapes and sizes on the mirrors as for the nearly flat mirrors) is currently under study in
collaboration with members of Thorne’s Caltech group.

I. INTRODUCTION

Here we calculate the condition of angular instability
considered in [1] for FP interferometer with Mexican-hat
(MH) mirrors and compare it with instability condition
in gaussian (G) interferometer with spherical mirrors.

For simplicity we consider both mirrors (G or MH)
to be identical. We are interesting in symmentical tilt
[1] of both mirror by small angle θ as shown on fig. 1b.
For this case the new axis of mode is diplaced by small
distance δxsym being parallel to old axis. Then the dis-
tribution of field on each mirror will the same but shifted
by value δxsym. It is easy to see that for the case when
only one mirror is tilted (fig.1c) the new axis displaced
with some angle relatively old axis and field distributions
on each mirror will be shifted by different displacements:
δxnon−sym 6= δxsym. So to investigate angular instability
for MH mode we must analyze symmetrical tilt and not
a single tilt analysed in [2].

The difference between symmetric and single tilts is
easy to see for gaussian interferometer. For the case
when radius R of curvature is smaller than distance L
between mirrors tilt we have δxnon−sym > δxsym — it is
obvious from fig. 1b,c. In opposite case R � L we have
δxnon−sym < δxsym — it is illustrated on fig. 1d. It seems
that exactly last case corresponds to MH interferometer
with nearly flat surfaces of mirrors. It seems this reason
why D. Sigg [1] consider the case when R is only slightly
larger than L/2.

II. MAIN FORMULAS

Fundamental mode u0(~r) of FP interferometer due
to tilt is transformed into perturbed fundamental mode
ũ0(~r), which can be expanded over set of modes {un(~r)}
of unperturbed FP interferometer. We use the lowest
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FIG. 1: FP resonator with (a) perfectly positioned mirrors,
(b) with symmetricaly tilted mirrors and (c) with single tilted
mirror. (d) The difference between symetric and single tilt for
the case R � L.
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(dipolar) order of approximation:

ũ0(~r) ' u0(~r) + α1u1(~r), (2.1)

u0(~r) =
u0(r)√

2π
,

uk(~r) =
uk(r) coskφ√

π
, k = 1, 2, . . .

∫∞

0

[

u0(r)
]2

r dr = 1,

∫∞

0

[

uk(r)
]2

r dr = 1.

Here u0(~r), u1(~r) are fundamental axisymmetrical and
dipolar modes of non-perturbed FP resonator corre-
spondingly, u0(r), u1(r) are there parts depending on
only radial coordinate r. Coordinate r is assumed to be
dimensionless (in units of b =

√

2πL/λ ' 2.6 cm).

Now we can calculate the torque acting on mirror by
laser beam of power P

T =
2Pb

c

∫
(

ũ0(~r)
)2

r cosφ r dr dφ '

' 2Pb 2 α1

c

∫

u0(~r)u1(~r) r cosφ r dr dφ (2.2)

T ' 2
√

2 Pb,

c
× α1 I, (2.3)

I =

∫

u0(r)u1(r) r2 dr (2.4)

Here c is light speed. These formulas are valid both for
MH and G interferometers (of course sets {un(~r)} are dif-
ferent for MH and G modes). In sections below we calcu-
late values α1 and I for gaussian and MH interferometer.

III. GAUSSIAN (G) FP INTERFEROMETER

For FP resonator with spherical mirrors we can easy
obtain the displacement of optical axis δxsym:

δxsym ' Rθ

b
=

L θ

b(1 − g)
, (3.1)

g = 1 −
L

R
, (3.2)

Here g is so called g-parameter, L is distance between
mirrors (in cm), R is radius of mirror curvature (in cm).
Now we can write down and expand in series the main

mode ũG
0 of FP resonator with tilted merrors:

ũG
0 ~r) =

√
2

r0

e−r2

δx
/2r2

0 , (3.3)

r2
δx =

(

r cosϕ − δxsym

)2

+ r2 sin2 ϕ, (3.4)

ũ0~r) ' uG
0 (r)

(

1 −
r δxsym cosϕ

r2
0

)

(3.5)

= uG
0 (r) −

δxsym cosϕ

r0

uG
1 (r) = (3.6)

= uG
0 (r) −

√
πδxsym

r0︸ ︷︷ ︸
αG

1

uG
1 (r) cosϕ√

π
︸ ︷︷ ︸

uG

1
(~r)

(3.7)

See expressions for u0(r), u1(r) in Appendix. Using
the known formula (see e.g. [3])

r2
0 =

1
√

1 − g2
,

we can express coefficient αG
1 as following

αG
1 =

√
π L θ (1 + g)1/4

b (1 − g)3/4
' 0.0315 × θ

10−8
(3.8)

We caslculate in Appendix A the integral I:

IG = r0 =
1

(1 − g)1/4
' 1.807 . (3.9)

Here for numerical estimates we used the parameters:
b = 2.6 cm, L = 4 km, g = 0.952 (the fiducial config-
uration studied in Sec. IV of [2]).

IV. MEXICAN-HAT (MH) FP
INTERFEROMETER

Our numerical calculations for fiducial MH mirrors
with the same diffraction loss as our fiducial spherical
mirrors (radius of mesa beam D = 4b ' 10.4 cm; con-
figuration studied in Sec. IV of [2]) gives (see details in
Appendix B)

IMH '
∫∞

0

uMH
0 (r)uMH

1 (r) r2 dr ' 2.65, (4.1)

αMH
1 ' 0.182 ×

(

θ

10−8

)

(4.2)

V. COMPARISION OF MH AND G MODE

To compare angular instability in MH and G mode I
calculate factor

B =
αMH

1 IMH

αG
1 IG

' 0.182 × 2.65

0.0315 × 1.807
' 8.47 (5.1)
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This factor show how much the torque T (see formula
(2.2)) is larger for MH mode than for G mode (with the
same power circulating inside), i.e critical power (which
is enough to produce angular instability) in interferom-
eter with MH mirror is abour B ' 8.47 times smaller
than critical power in interferometer with sphecical mir-
rors (which g-factor is g = 0.952).

Note that this instability does not look like inevitable
one: it can be depressed by introduction of additional
yaw rigidity by feed back control system.

APPENDIX A: CALCULATION OF IG

I write down the expressions for main G axisymmetric
and dipolar modes (recall that r is dimensionless radial
coordinat in units of b):

uG
0 (r) =

√
2

r0

e−r2/2r2

0 , (A1)

uG
1 (r) =

√
2 r

r2
0

e−r2/2r2

0 , (A2)

∫∞

0

[

uG
0 (r)

]2
r dr = 1,

∫∞

0

[

uG
1 (r)

]2
r dr = 1 (A3)

Here r0 is dimensionless radius of beam (the intensity on

mirror is proportional to ∼ e−r2/r2

0),
Now I can calculate integral IG:

IG =

∫∞

0

uG
0 (r)uG

1 (r) r2 dr =

=

∫∞

0

2

r2
0

e−r2/r2

0 r3 dr =

=

∫∞

0

r0

(

r2

r2
0

)

e−r2/r2

0 d

(

r2

r2
0

)

= r0 (A4)

APPENDIX B: EIGEN MODE OF MH FP
INTERFEROMETER

a. Perfect positioned MH mirrors. The main ax-
isymmetric mode uMH

0 (~r) and dipolar mode uMN
1 (~r) ful-

fils integral equations:
∫

G0(~r1,~r2) uMH
o (~r2) d~r2 = uMH

0 (~r1), (B1)

∫

G0(~r1,~r2) uMH
1 (~r1) d~r1 = λMH

1 uMH
1 (~(r2), (B2)

Where we assume that eigen value of main mode uMH
0 (~r)

is equal to 1. The kernel G0 is the following:

G0(~r1,~r2) = −
i

2π
exp i

(

(~r1 −~r2)2

2
− h1(~r1) − h2(~r2)

)

,

h1 = kH1 h2 = kH2, k =
2π

λ
, (B3)

where H1 and H2 are physical deviations (in cm) of mir-
ror’s surface from plane surface.

b. FP interferometer with slightly symmetric tilted

MH mirrors as shown on fig. 1b. The tilt is equiva-
lent to small deviations of mirror’s position from perfect

one:

δh1 ' 2kb r1 cosϕ1 θ (left mirror) (B4)

δh2 ' 2kb r2 cosϕ2 θ (right mirror). (B5)

Due to symmetry the complex field distributions on each
mirror are the same. We are interesting in main mode
ũMH

0 (~r) which can be expand in series of modes of res-
onator with perfectly positioned mirrors. We use lowest
(dipolar) approximation:

ũMH
0 (~r) ' uMH

0 (~r) + αMH
1 uMH

1 (~r)

The eigen value of this mode will be slightly differ from
unity: λ̃0 ' 1 + ∆. Then we have the following integral
equation for ũMH

0 (~r)

(1 + ∆)
(

uMH
0 (~r1) + αMH

1 uMH
1 (~r1)

)

= (B6)

=

∫

G0(~r1,~r2)
(

1 − i δh1(~r1) − iδh2(~r2)
)

×

×
(

uMH
0 (~r) + αMH

1 uMH
1 (~r)

)

d~r2,

This equation can be simplified:

∆uMH
0 (~r1) +

(

1 + ∆ − λMH
1

)

αMH
1 uMH

1 (~r1) =

= −i

∫

G0(~r1,~r2)
(

δh1(~r1) + δh2(~r2)
)

× (B7)

×
(

uMH
0 (~r) + αMH

1 uMH
1 (~r)

)

d~r2,

Multiplying equation (B7) by uMH
0 (~r1) and integrating

over d~r1 one can find that addition ∆ has second order
of smallnes: ∆ ∼ θ2 and below we assume ∆ = 0.

Multiplying equation (B7) by uMH
1 (~r1) and integrating

over d~r1 one can find αMH
1 :

(

1 − λMH
1

)

αMH
1 = −i

(

1 + λMH
1

)

× (B8)

×
∫

uMH
0 (~r1) uMH

1 (~r1) δh1(~r1) d~r1,

αMH
1 =

i2
√

2 kb θ
(

1 + λMH
1

)

(

1 − λMH
1

) × (B9)

×
∫∞

0

uMH
0 (r) uMH

1 (r) r2 dr

︸ ︷︷ ︸
IMH

=

=
i2
√

2 L IMHθ(1 + λMH
1 )

b(1 − λMH
1 )

(B10)

Our numerical calculations for MH modes with D = 4
(radius of MH beam is equal to Db ' 10.4 cm) gives

IMH ' 2.65.

We can take from [4] (table V) the value of λMH
1 =

eiπ×0.0404 and then calculate αMH
1 :

αMH
1 ' 0.182 ×

(

θ

10−8

)



4

[1] Daniel Sigg, Angular Instability in High Power FP Cavi-
ties, LIGO-T030120-00.

[2] E. d’Ambrosio, R. O’Shaughnessy, S. Strigin, K.Thorne
and S. Vyatchanin, “Reducing Thermoelastic Noise in
Gravitational-Wave Interferometers by Flattening the
Light Beams”, currently under LSC review in preparation
for submission to Phys. Rev. D;
I used the file ms030628 rostEdit.pdf

[3] A. E. Siegman, Lasers, Univ. Science Book, 1996, ch. 19

[4] O’Shaughnessy, S. Strigin and S. Vyatchanin, “The impli-
fications of Mexican-hat mirrors: calculations of thermoe-
lastic noise and interferometer sensitivity to perturbation
for Mexican-hat mirror proposal for advanced LIGO”; cur-
rently under review in preparation for submission to Phys.

Rev. D;
I used the file tou draft2.pdf


