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1 Modification history 
Revision 00 – early draft 

Revision 01 – more rational ordering of topics, discussion of bend radius, effect of higher 
stress, etc. 

2 Thanks 
This note does not attempt to break any new ground. I have simply collected together the 
understanding I have gleaned from a variety of people and places, and in some cases expressed 
it in ways that I find easier to understand. Where I could, I have gone through the derivations 
in order to be sure that I understand them and in particular any limitations and so can apply the 
results with accuracy and confidence. Many people have helped, notably Mike Plissi, Calum 
Torrie, and Norna Robertson but there are others. Some of these I have cited, others I have not 
and I apologize to anyone who was left out.  

3 Introduction  
The principal free variables in the design of the spring are  

Dimensions: the length, the width at the base and at the tip, the thickness 

Material properties: Young’s modulus and the maximum allowable stress 

The principal performance criteria are  

Stiffness – which governs the natural frequency of the blade-mass system. From this we find 
the deflection under load and the “uncoupled” frequency, meaning the frequency of the system 
formed by the spring and the mass it immediately supports (and ignoring, for the time being, 
the elasticity of the intervening wire). 

Highest stress in the blade. This will not exceed the maximum allowable stress for an 
acceptable design. It will occur at the blade root if the shape is trapezoidal, and all along the 
blade if the shape is triangular. 

Internal vibration modes; the key one being the lowest. This is hard to determine analytically 
because of the shape of the blade, but one can make a prediction based on measurements and 
extrapolation. 

Another important parameter is the radius to which blade should be formed in order to be flat 
in use. 

The purpose of this note is to explore the relationships between the free variables and the 
performance criteria. This is ground which has already been gone over by others – see for 
example references [1] [2] and [5], and the work is largely for my own understanding. I have 
tried to use the same symbols as in [5] which is the most recent exposition. 

4 Triangular blade  – design equations 

4.1 Deflection and stiffness 

I shall follow the engineer’s approach and find the deflection from standard methods then infer 
the stiffness. Consider a simple encastered blade (built in at one end) whose width varies 
linearly to a point at the free end, and which point the load is applied. Take the x dimension 
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along the blade with x =0 at the tip and the y dimension for deflection. The simple beam 
equation [ref 3] is  

EI
M

dx
yd
=2

2

 

Where y and x are as noted above, M is the bending moment, E the Young’s Modulus and I is 
the second moment of area. In the simple case given, the bending moment simply varies with 
x. The second moment of area is given by  

12

3bdI =   

Where b is the breadth of the blade and d is the thickness. Define a as the maximum blade 
width (at the root) and l and the length, then with a load P the moment is given by 

PxM =  

And the SMA is given by 

12

3ha
l
xI ×=  

(renaming the thickness as h). 

Substituting into the original expression gives 
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Integrating to find the slope and deflection 
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The slope and deflection are both zero when x=l, so the constants of integration are 
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When x = 0, the deflection is given by B which, encouragingly, agrees with references such as 
[1], [2] and [5]. Comparing with [5]: 
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3

36
Eah

Pl
=λ  

(this is exactly the same as eqn (3) in ref [5] with α = 1.5 (see below) and with P=mtg.  

Note that mt is the total mass supported by the spring – this is different from m which is the 
mass of the stage immediately below. 

The stiffness is given from the standard 

k
P

=λ   whence 

3

3

6l
Eahk =  

4.2 Uncoupled natural frequency 

From the standard equation 

m
kf

π2
1

=  

And noting that the relevant mass is the mass supported by the spring at this stage m, and not 
the total mass supported by the spring mt we can substitute the stiffness from the expressions 
above to get 

32

3

24 ml
Eahf
π

= which is the same as equation (5) in [5] when α=1.5 

4.3 Stress 

The stress at any point along the blade occurs at the top and bottom surfaces and is given by 

2
h

I
M

×=σ  

Substituting expressions for M and I we find that the stress is independent of x and is given by 

2

6
ah

Pl
=σ   

as also reported in [1] and in [5]. 

4.4 Internal modes 

See note in section 5.4 about internal modes 

4.5 Bend radius 

See note in section 5.5 on bend radius 
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5 Trapezoidal blade – design equations 

5.1 Deflection 

For the case of the trapezoidal blade the procedure outlined above becomes very messy and so 
I have not typeset it. Appendix 1 has the derivation in which I was much helped by already 
having the results in ref [2]. 

The result for maximum deflection given by [2] is 

3

34
Eah

Plαλ =   

where the factor α varies between 1.5 for a triangular blade and 1 for a parallel-sided blade, 
and depends upon β (the ratio of the widths at the two ends, b/a) as shown in figure 4. This can 
be rewritten, as in [5] for example, as  

3

34
Eah

glmtαλ =   

This gives the same result as that derived above when α =1.5. 

5.2 Frequency 

The uncoupled natural frequency can be derived from the stiffness, which itself can be found 
from λ  in the normal manner: 

αππ 3

3

42
1

2
1

ml
Eah

m
kf ==   

5.3 Stress 

The maximum stress will occur at the root and will be same as that given for the triangular 
blade. The stress elsewhere along the blade will be lower than for a triangular blade of the size 
length, width, thickness, and loading. 

5.4 Internal modes 

It is hard to derive an expression for internal vibrational modes of a trapezoidal plate clamped 
at one end and pinned at the other, and no suitable expressions have been found in the 
literature (for the closest I found, see [6]). However, the standard vibration literature (see for 
example [7]) deals with plain beams (not tapered) and the results have been extrapolated to 
trapezoidal plates in a simple manner [1],[4] as follows: 

2l
hf i ∝  

Where h and l are the thickness and length of the blade, for a given root width and taper. Sadly 
this gives no insight in to how the internal modes vary with shape factor. 

5.5 Bend radius 

There are two approaches to finding the radius to which the blade should be bent in order to 
take a straight form when under load. The first is arrived at by considering the deflection and 
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working out what shape the blade would have to be in order to deflect that amount. Some 
simple geometry gives 

( ))cos(1 R
lR −=λ  

from which R can be found. I see two problems with this approach. One is that the deflection 
has been derived using simple beam theory which assumes small deflections. Most of the 
blades will have deflections which significantly distort the blade geometry and cannot be 
considered small. (Note that this argument does not affect the stress and stiffness results, 
because the blade is in a flat, or near-flat state, when the stress and stiffness results are 
applied.) The second is that it is only for a triangular blade that the stress is constant along the 
blade and so it is only for a triangular that a constant bend radius will apply. If this is unclear, 
consider the following. 

The standard beam bending result, from which the formulae above were derived, is  

I
M

R
E

y
==

σ  

(it is by setting 
dx

ydR
2

= that the expression at the start of section 2 was arrived at). 

The relevant result here is 

M
EIR =  

Note that M and I will vary along the blade. For a triangular blade (or for a portion of a blade 
which forms part of a triangle having the load application point at its apex), it turns out that M 
and I vary in the same way, giving a constant value of R. However, for a trapezoidal blade the 
radius near the tip will be lower than at the root. 

It would be interesting to compare values of R derived from these two approaches with 
practical and FEA results. 

6 Summary of equations 
All of the equations can be summarised by considering the trapezoidal case; the triangular case 
is obtained by putting α=1.5 

Parameter Equation Equation 
number 

Deflection 
3

34
Eah

glmtαλ =  
(1) 

Uncoupled 
frequency απ 3

3

42
1

ml
Eahf =  

(2) 

Stress 
2

6
ah

Pl
=σ  

(3) 

Lowest internal 
mode 2l

hf i ∝  
(4) 
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The key equations for design are (2), (3) and (4). 

7 Graphical interpretation 
I find it helpful to visualize results graphically.  

7.1 Varying length and thickness (fig 1) 

A graph whose axes show length and thickness is a good place to start. 

Take the top blades of the AdLIGO quads with parameters as currently given in the conceptual 
design document. The load (for stress purposes) is given by a half share of the weight of all the 
masses: 

2/81.9*)40402222( +++=P  

The mass for uncoupled frequency is half the top mass 
2/22=m  

I have taken Young’s modulus as 176 Gpa (as reported in [5]). For want of somewhere to start 
I have used numbers current at the time I started writing, supplied by Norna (email at the end 
of this note). The blades have a root width of 95mm and alpha= 1.36. Allowing a maximum 
stress of 951 MPa we can plot l against h from equation (3). Requiring an uncoupled frequency 
of 2.41 Hz we can plot l against h from equation (2). See figure 1. 

The dotted line is the one given by the stress equation – designs below the line are ruled out 
because the blade is too thin or too long and that makes the stress too high. The solid line is the 
one given by the uncoupled frequency equation – designs above that line are ruled out because 
the blades are too thick or too short and therefore too stiff. The “obvious” design is the one 
where the lines cross (h=~4.4mm, l=~480mm) but there is a range of possible designs which 
could be used if, for example, the design required a longer blade. Naturally the effect on the 
overall suspension system of changes in uncoupled frequency would need to be checked but 
making it lower is likely to be acceptable. But as will be seen shortly, the effect on the internal 
modes of moving away from the intersection point is likely to be undesirable. 

7.2 Varying blade width as well as length and thickness (fig 2) 

It is a simple matter to produce graphs with various values of blade width: see figure 2. 

One counter-intuitive result is that the shortest possible blade (the “obvious” design where the 
lines cross) is shorter for a wider blade. 

7.3 Internal modes of blades (fig 3) 

Lines showing constant values of (h/l2) are shown in figure 4. The higher modes are at the top 
left of the graph (short, thick blades) and so for the highest possible internal modes, one is 
driven towards the intersection point between the strength and stiffness lines.  

7.4 Optimum combination of length, width and thickness 

It will generally be the case that the higher the internal modes, the better. It is clear from 
looking at fig 4 that the optimum design from this point of view will be the point where the 
stress is the highest allowed and the uncoupled mode is the highest allowed, ie. the point where 
the lines in fig 1 cross. The locus of all such points for varying values of a is found by solving 
(2) and (3) simultaneously and eliminating a: 
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From (3): 
a
lPh ×=

σ
62    (5) 

From (2): 3

3
2

4
2

lm
Eahf
α

π =  

Whence:
a
l

E
mfh

32
3 42

×
×

=
απ    (6) 

 

Dividing (5) and (6): 
PE

mflh
6

42 2
2 σαπ

×
×

×=    (7) 

The interesting point here is that the form of this equation (h/l2=const) is the same as for the 
internal mode equation. In other words, the locus of the optimum blade designs on figure 2 or 
figure 3 is a line of constant fi. (This is fairly obvious from careful study of figure 3.) 
Modifying the values of h,l and a will change the appearance of the blade but will not improve 
upon the lowest internal mode. What WILL have an effect is changing α , but we don’t 
currently have an expression for how α  affects the internal modes so we cannot say any more 
than that. 

The final point to be made here, is that if one wanted to use a particular value of blade length, 
then there is a combination of thickness and width that will give the optimum internal mode. 

7.5 Varying the allowable stress 

If we allow the maximum stress to rise, can we design a blade with higher internal modes? 
There are two ways to look at this. One is to look at it graphically. Looking at figure 2, the 
dotted line will move down if we allow a higher stress value. This moves the intersect to the 
left. Turning now to figure 3, such a movement will indeed raise the internal mode. The other 
way is to do it algebraically – simply consider the effect on equation (7) (Previous section) of 
raising σ . The locus of optimum solutions (h vs l) will move up, giving a higher internal 
mode. 

8 Other blade shapes 

8.1 Non-trapezoidal shapes 

All of the above, of course, assumes a trapezoidal blade with perfect fixings and ideal beam-
like behaviour. It is unlikely that the Advanced LIGO blades will be entirely trapezoidal, they 
will not be ideally constrained, and they will behave like plates with Poisson edge-effects and 
all the rest. However, the exploration above gives at least some idea of the sorts of effects to 
expect. 

8.2 Varying alpha 

In all that has been considered above, α  is a simple geometrical number found for a 
trapezoidal blade by measuring it, finding β , and applying the complicated formula. For non-
trapezoidal blades, one can define de facto an equivalent α , by measuring one aspect of the 
blade performance and then inferring it from (1), (2) or (3). One can then go on to use it with 
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some confidence in the other equations in order to predict the other behaviours of that blade 
and other blades of the same shape. Naturally this will depend upon knowing the value of, for 
example, E. Such measurements have resulted in values of α above 1.5 which, for the purely 
geometrical definition, would not be meaningful but which are perfectly sensible when applied 
to non-trapezoidal blades. 
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-----Original Message----- 

From: Norna A Robertson [mailto:norna@fastloki.stanford.edu] 

Sent: 26 August 2003 16:16 

To: Greenhalgh, RJS (Justin) 

Subject: info on wires etc 

 

 

Justin 

 

Here are the numbers you are looking for. 

 

Upper wires: length = 0.54 m, but NOT vertical - vertical height is 0.517m 

with wires sloping inwards from half separation at blade tips of 0.25 m to 

half separation at attachments to top mass of 0.09 m 

radius = 700 micron 

 

Uppermost blades  length = 0.48 m, width at base =9.5 cm, thickness =4.4 

mm, uncoupled freq.=2.41 Hz, max. stress=951 MPa (shape factor used=1.36) 

 

Let me know if you need anything else. 

 

Norna 
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Figure 1. Design curves for stress and frequency (a=95mm)
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Figure 2 - design curves with various blade widths
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Figure 2. Design curves for various blade widths. The curves s80, s95, s110 refer to the
stress constraint for widths of 80, 95 and 110 mm. The curves f80, f95, f110 are
frequency constraints for the same widths. 
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Figure 3 - addition of frequency curves. Frequencies are 
arbitrary in magnitude, f3>f2>f1.
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Figure 4 
Alpha vs Beta
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Figure 3. The lines s80, f80 etc are reproduced from figure2. The lines
f1, f2 and f3 give constant values of internal mode frequenc 
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