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Here we present the detail calculations the brownian noise in coating for gaussian spot (see also
[1]) using calculations[2] of thermoelastic noise.

[Note added by Kip S. Thorne: This is an unpublished manuscript written by Vyatchanin in 2004,
as part of a dialogue between him, me, and Richard O’Shaughnessy, over how thermal noise scales
with the size and shape of the laser beam. The key result in this manuscript is the equation in
Section V.]

I. INTRODUCTION

We consider the infinite half-space covered by thin layer with thickness d. The parameters of film we denote by subscript
f or superscript (f) and parameters of substrate — by subscript s or superscript (s). νf and νs are Poison ratios, Ef, Es are
Young modula.

We are interesting in fluctuations of generalized positions X̄(t) of surface: it is averaged over the beam spot’s Gaussian
power profile normal displacement uz of the surface:

X̄ =

∫
e−r2/r2

0

πr2
0

uz(~r)d~r . (1)

Here integral is over the surface, r0 is the radius at which the spot’s light power flux has dropped to 1/e of its central value.
Scheme of calculations. Brownian (structural) noise can be computed using fluctuation-dissipation theorem [3, 4] by the

following thought experiment. We imagine applying a sinusoidally oscillating pressure,

P ≡ P(r) = F0
e−r2/r2

0

πr2
0

eiωt (2)

to face of half infinite space (covered by layer). Here F0 is a constant force amplitude, ω is the angular frequency at which
one wants to know the spectral density of thermal noise, and the pressure distribution (2) has precisely the same spatial
profile as that of the generalized coordinate

X̄, whose thermal noise SX̄(f) one wishes to compute.
The oscillating pressure P produces elastic energy in half space, where it gets dissipated. Computing the rate of this energy

dissipation, Wdiss, averaged over the period 2π/ω of the pressure oscillations we can just write down (in according with
fluctuation-dissipation theorem) the spectral density of the noise SX̄(ω):

SX̄(ω) =
8kBTWdiss

F2
0ω2

(3)

here kB is Boltzman’s constant.
The rate Wdiss of dissipation via structural losses is given by the following standard expression:

Wdiss = ωφE , E =

〈∫
P(r)uz d~r

〉
=

1

2

∫
P(r)uz d~r (4)

Here E is averaged elastic energy, which is equal to work of external pressure force. The integral is taken over surface of half
space; φ is loss angle, 〈...〉 denotes an average over the pressure’s oscillation period 1/f = 2π/ω (in practice it gives just a
simple factor 〈(< eiωt)2〉 = 1/2).

The computation below is made fairly simple by quasistatic approximations [7]: we can approximate the oscillations of
stress and strain in the test mass, induced by the oscillating pressure P, as quasistatic. This approximation permits us, at
any moment of time t, to compute the displacement field ~u from the equations of static stress balance (equation (7.4) in [5])

(1 − 2ν)∇2~u + ~∇(~∇ · ~u) = 0 (5)
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with the boundary condition that the normal pressure on face be P(r, t) (2) and that all other non-tangential stresses vanish
at the surface.

We can devide value of Wdiss into substrate and coating (film) parts:

Wdiss = Ws
diss + Wf

diss; Ws
diss =

ωφ

2

∫
P(r)us

z d~r ,

(6)

Wf
diss = Wf

⊥ + Wf
‖, Wf

⊥ =
ωφd

2

∫
P(r)uf

zz d~r, Wf
‖ =

ωφ

2

∫ (
σxzux + σyzuy

)
d~r, Theoriginalofthismessagebouncedback, duetotheuppercaselettersinyouremailaddress.Ihopethis

(7)

Below we calculate the elastic problem in substrate and film separately.

II. SUBSTRATE (ELASTIC INFINITE HALF SPACE)

We can assume that layer does not influence on deformations in substrate due to its small thickness. Then we can use
the solution to the quasistatic stress-balance equation (5) given by a Green’s-function expression (see (8.18) in [5]) with
Fx = Fy = 0, Fz = P(r), integrated over the surface of the test mass:

ux(x, y, z) =
(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0(x − x ′)

{
z

r3
−

(1 − 2νs)

r(r + z)

}
, (8)

uy(x, y, z) =
(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0(y − y ′)

{
z

r3
−

(1 − 2νs)

r(r + z)

}
, (9)

uz(x, y, z) =
(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0

{
2(1 − νs)

r
+

z2

r3

}
, (10)

r =

√
(x − x ′)2 + (y − y ′)2 + z2.

Note that we can not put z = 0 here due to formal divergence of surface integral at z = 0.
Below we will need the expression for Θ(s) = div ~u. Using (8-10) one can calculate longitudial and transversal parts of

Θ(s) separately:

Θ
(s)
‖ = ∂xux + ∂yuy =

(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0

(
3z3

r5
−

2(1 − νs)z

r3

)
Θ

(s)
⊥ = ∂zuz =

(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0

(
2νs z

r3
−

3z3

r5

)
Θs = Θ

(s)
‖ + Θ

(s)
⊥ = −

(1 + νs)(1 − 2νs) F0

π2 r2
0Es

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0

( z

r3

)
Using result of calculations presented in Appendix A we obtain

Θs = −
(1 + νs)(1 − 2νs)F0

2π2Es
eiωt

∫ ∫+∞
−∞ e−k2

⊥r2
0/4e−k⊥zei(kxx+kyy)dkx dky, (11)

k⊥ ≡
√

k2
x + k2

y,

Θ
(s)
‖ =

(1 + νs)F0

4π2Es
eiωt

∫ ∫+∞
−∞ e−k2

⊥r2
0/4e−k⊥zei(kxx+kyy)

(
k⊥z − 1 + 2νs

)
dkx dky, (12)

Θ
(s)
⊥ =

(1 + νs)F0

4π2Es
eiωt

∫ ∫+∞
−∞ e−k2

⊥r2
0/4e−k⊥zei(kxx+kyy)

(
2νs − k⊥z − 1

)
dkx dky, (13)

Θs|z=0 = −
2(1 + νs)(1 − 2νs)P

Es
, (14)

Θ
(s)
‖ |z=0 = −

(1 + νs)(1 − 2νs)P

Es
, (15)
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Θ
(s)
⊥ |z=0 = −

(1 + νs)(1 − 2νs)P

Es
(16)

The formulas above for the particular case z = 0 may be obtained easier using formulas pointed by Kip Thorne:

lim
z→0

z(√
x2 + y2 + z2

)3
=

δ(x) δ(y)

2π
, lim

z→0

z3(√
x2 + y2 + z2

)5
=

δ(x) δ(y)

6π
. (17)

A. Cross Term

Here we calculate uxy using (8 and 17):

uxy(x, y, z)|z→0 =
(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0
(x − x ′)(y − y ′)

r2

{
−3z

r3
+

1 − 2νs

(r + z)

[
1

r
+

1

r + z

]}
= (18)

=
(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞ dx ′ dy ′ e−(x ′2+y ′2)/r2

0
(x − x ′)(y − y ′)

r2

1 − 2νs

(r + z)

[
1

r
+

1

r + z

]
= (19)

=
(1 + νs)

2πEs

F0

π r2
0

∫∞
−∞

dkx dky

(2π)2
e−(k2

x+k2
y)r2

0/4 e−ikxx−ikyy × Ixy, (20)

Ixy =

∫∞
−∞ dx ′ dy ′ eikx(x−x ′)+iky(y−y ′) (x − x ′)(y − y ′)

r2

1 − 2νs

(r + z)

[
1

r
+

1

r + z

]
= (21)

=

∫
r dr dφeik⊥r cos(φ−φ0) sinφ cos φ

1 − 2νs

(r + z)

[
1

r
+

1

r + z

]
, kx = k⊥ cos φ0, ky = k⊥ sinφ0,

It seems that the result of calculation does not have to depend on φ0 due to axial simmetry of pressure profile. Hence one
can assume φ0 = 0. Then integrating over φ we obtain that Ixy = 0.

III. LAYER (FILM)

We assume that deformations of layer in transversal plane are the same as in substrate, i.e. Θ
(f)
‖ = Θ

(s)
‖ |z=0. One can use

equation (5.13) for stress in [5] for calculation Θ
(f)
⊥ ≡ u

(f)
zz :

σzz ≡ −P =
Ef

(1 + νf)(1 − 2νf)

(
(1 − νf)u

(f)
zz + νf (u(f)

xx + u(f)
yy)︸ ︷︷ ︸

Θ
(s)

‖ |z=0

)
. (22)

Using this equation one can find u
(f)
zz and full expansion Θf in layer introducing “effective” modula Yf and Ys:

u(f)
zz = −

P

Yf(1 − νf)

(
1 −

νfYf

Ys

)
, (23)

Θf = −
P

Ys

(
1 +

Ys

(1 − νf)Yf
−

νf

1 − νf

)
= −

P

Yf(1 − νf)

(
1 +

Yf(1 − 2νf)

Ys

)
, (24)

Ys =
Es

(1 + νs)(1 − 2νs)
, Yf =

Ef

(1 + νf)(1 − 2νf)

IV. SPECTRAL DENSITY

Now we can calculate the spectral density of brownian noise in coating using (23):

Wf
diss =

ωφd

2
× 1

Yf(1 − νf)

(
1 −

νfYf

Ys

)
×

∫
P2d~r =

ωφd

2
× F2

0

2πr2
0

× 1

Yf(1 − νf)

(
1 −

νfYf

Ys

)
, (25)

Sf
X̄(ω) =

2kBT φd

πr2
0 ω

× 1

Yf(1 − νf)

(
1 −

νfYf

Ys

)
(26)



4

V. CONCLUSION

So we prove that spectral density of Brownian (structural) fluctuations in coating is proportional to ∼ r−2
0 .

The key question is the following: does the expression (23) is valid for arbitrary axial distribution of pressure or not? It
seems that answer is ‘yes’.

One can assume, for example, that mesa beam pressure distribution can be presented as sum (integral) of gaussian
distributions. If this assumption is valid then one can easy scale the formula (26) for mesa beam by substitution∫

P2
gauss(r)d~r ⇒ ∫

P2
mesa beam(r)d~r

APPENDIX A: AUXILIARY INTEGRALS

Here we calculate auxiliary integrals:

G0 =
1

π r2
0

∫∞
−∞ e(x ′2+y ′2)/r2

0
1

r
dx ′dy ′,

G1 =
1

π r2
0

∫∞
−∞ e(x ′2+y ′2)/r2

0
z

r3
dx ′dy ′,

G2 =
1

π r2
0

∫∞
−∞ e(x ′2+y ′2)/r2

0
z3

r5
dx ′dy ′,

r =

√
(x − x ′)2 + (y − y ′)2 + z2

Integral G0

G0 =

∫∞
−∞ dx ′dy ′

∫∞
−∞

dkx dky

(2π)2
e−(k2

x+k2
y)r2

0/4 eikx(x ′−x)+iky(y ′−y)eikxx+ikyy 1

r
=

=

∫∞
−∞

dkxdky

(2π)2
e−(k2

x+k2
y)r2

0/4 eikxx+ikyy ×G

G =

∫∞
−∞ dx ′dy ′eikx(x ′−x)+iky(y ′−y) 1√

((x − x ′)2 + (y − y ′)2 + z2

We can take integral G over dx ′dy ′ using notation k⊥ =
√

k2
y + k2

z (see also formula 2.5.24.1 in [8] and formula 2.12.4.28
in [9])

G =

∫∞
−∞ dx ′dy ′eikx(x ′−x)+iky(y ′−y) 1√

(x − x ′)2 + (y − y ′)2 + z2
=

=

∫∞
0

r ′dr ′
∫2π

0

dφeik⊥r ′ cos φ) 1√
z2 + r ′2

=

∫∞
0

r ′dr ′2π
J0(k⊥r ′)√
z2 + r ′2

=
2π

k⊥
e−k⊥z,

where J0(x) is Bessel function of zero order.
Substituting G into (A1) we have:

G0 =

∫∞
−∞

dkxdky

(2π)2
e−(k2

x+k2
y)r2

0/4 eikxx+ikyy × 2π

k⊥
e−k⊥z =

∫∞
0

∫2π

0

k⊥ dk⊥ dφ

2π
e−k2

⊥r2
0/4 eik⊥r cos φ × 1

k⊥
e−k⊥z =

=

∫∞
0

dk⊥ e−k2
⊥r2

0/4 J0(k⊥r)× e−k⊥z, below we use formula 2.12.9 from [9]:

G0|z=0 =

√
π

r0
exp

(
−r2

2r2
0

)
I0

(
−r2

2r2
0

)
, r =

√
x2 + y2, (A1)

where I0(x) is modified Bessel function of zero order.
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Integral G1 Using formula

z

r3
= −∂z

(
1

r

)
we have:

G1 =

∫∞
−∞ dx ′dy ′

∫∞
−∞

dkx dky

(2π)2
e−(k2

x+k2
y)r2

0/4 eikx(x ′−x)+iky(y ′−y)eikxx+ikyy × ∂z

(
−1

r

)
=

=

∫∞
−∞

dkxdky

(2π)2
e−(k2

x+k2
y)r2

0/4 eikxx+ikyy × (−1)
∂

∂z
G

Finally we obtain

G1 =

∫∞
−∞

dkxdky

2π
e−(k2

x+k2
y)r2

0/4 eikxx+ikyy e−k⊥z, G1|z=0 =
2

r2
0

e(x2+y2)/r2
0 . (A2)

Integral G2. Using formula:

z3

r5
=

1

3

(
z ∂2

∂z2
−

∂

∂z

)
1

r

one can obtain

G2 =

∫∞
−∞

dkxdky

2π
e−(k2

x+k2
y)r2

0/4 eikxx+ikyy 1

3k⊥

(
z ∂2

∂z2
−

∂

∂z

)
e−k⊥z = (A3)

=
1

3

∫∞
−∞

dkxdky

2π
e−(k2

x+k2
y)r2

0/4 eikxx+ikyy
(
k⊥z + 1

)
e−k⊥z, (A4)

G2|z=0 =
2

3r2
0

e(x2+y2)/r2
0 . (A5)

APPENDIX B: CALCULATION OF ux, uy, uz,

Calculation of uz. Using expression (A2) for auxiary integral G1 one can find that contribution of second term in figure
brackets in (10) is zero in limit z → 0. So we calculate the contribution of first term in figure brackets in (10) using expression
for G0 (A1):

uz(x, y, z) =
(1 − ν2

s)F0

πEs
×
√

π

r0
exp

(
−r2

2r2
0

)
I0

(
−r2

2r2
0

)
, r =

√
x2 + y2 (B1)
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