LIGO-T040242-00-Z
 FDT approach calculations of brownian noise in thin layer

Sergey Vyatchanin
Faculty of Physics, Moscow State University, Moscow 119899, Russia
e-mail: vyat@hbar.phys.msu.su

(Dated: August 19, 2004)
Here we present the detail calculations the brownian noise in coating for gaussian spot (see also [1]) using calculations[2] of thermoelastic noise.
[Note added by Kip S. Thorne: This is an unpublished manuscript written by Vyatchanin in 2004, as part of a dialogue between him, me, and Richard O'Shaughnessy, over how thermal noise scales with the size and shape of the laser beam. The key result in this manuscript is the equation in Section V.]

I. INTRODUCTION

We consider the infinite half-space covered by thin layer with thickness d . The parameters of film we denote by subscript f or superscript ${ }^{(f)}$ and parameters of substrate - by subscript s or superscript ${ }^{(s)}$. v_{f} and v_{s} are Poison ratios, E_{f}, E_{s} are Young modula.

We are interesting in fluctuations of generalized positions $\bar{X}(t)$ of surface: it is averaged over the beam spot's Gaussian power profile normal displacement u_{z} of the surface:

$$
\begin{equation*}
\bar{X}=\int \frac{e^{-r^{2} / r_{0}^{2}}}{\pi r_{0}^{2}} u_{z}(\vec{r}) d \vec{r} \tag{1}
\end{equation*}
$$

Here integral is over the surface, r_{0} is the radius at which the spot's light power flux has dropped to $1 / e$ of its central value.
Scheme of calculations. Brownian (structural) noise can be computed using fluctuation-dissipation theorem [3, 4] by the following thought experiment. We imagine applying a sinusoidally oscillating pressure,

$$
\begin{equation*}
P \equiv P(r)=F_{0} \frac{e^{-r^{2} / r_{0}^{2}}}{\pi r_{0}^{2}} e^{i \omega t} \tag{2}
\end{equation*}
$$

to face of half infinite space (covered by layer). Here F_{0} is a constant force amplitude, ω is the angular frequency at which one wants to know the spectral density of thermal noise, and the pressure distribution (2) has precisely the same spatial profile as that of the generalized coordinate
\bar{X}, whose thermal noise $S_{\bar{X}}(f)$ one wishes to compute.
The oscillating pressure P produces elastic energy in half space, where it gets dissipated. Computing the rate of this energy dissipation, $W_{\text {diss }}$, averaged over the period $2 \pi / \omega$ of the pressure oscillations we can just write down (in according with fluctuation-dissipation theorem) the spectral density of the noise $S_{\bar{\chi}}(\omega)$:

$$
\begin{equation*}
S_{\bar{x}}(\omega)=\frac{8 k_{\mathrm{B}} T W_{\mathrm{diss}}}{\mathrm{~F}_{0}^{2} \omega^{2}} \tag{3}
\end{equation*}
$$

here k_{B} is Boltzman's constant.
The rate $W_{\text {diss }}$ of dissipation via structural losses is given by the following standard expression:

$$
\begin{equation*}
W_{\text {diss }}=\omega \phi \mathcal{E}, \quad \mathcal{E}=\left\langle\int \mathrm{P}(\mathrm{r}) \mathrm{u}_{z} \mathrm{~d} \overrightarrow{\mathrm{r}}\right\rangle=\frac{1}{2} \int \mathrm{P}(\mathrm{r}) \mathrm{u}_{z} \mathrm{~d} \overrightarrow{\mathrm{r}} \tag{4}
\end{equation*}
$$

Here \mathcal{E} is averaged elastic energy, which is equal to work of external pressure force. The integral is taken over surface of half space; ϕ is loss angle, $\langle\ldots\rangle$ denotes an average over the pressure's oscillation period $1 / \mathrm{f}=2 \pi / \omega$ (in practice it gives just a simple factor $\left.\left\langle\left(\Re e^{i \omega t}\right)^{2}\right\rangle=1 / 2\right)$.

The computation below is made fairly simple by quasistatic approximations [7]: we can approximate the oscillations of stress and strain in the test mass, induced by the oscillating pressure P, as quasistatic. This approximation permits us, at any moment of time t, to compute the displacement field \vec{u} from the equations of static stress balance (equation (7.4) in [5])

$$
\begin{equation*}
(1-2 v) \nabla^{2} \vec{u}+\vec{\nabla}(\vec{\nabla} \cdot \vec{u})=0 \tag{5}
\end{equation*}
$$

with the boundary condition that the normal pressure on face be $\mathrm{P}(\mathrm{r}, \mathrm{t})(2)$ and that all other non-tangential stresses vanish at the surface.
We can devide value of $W_{\text {diss }}$ into substrate and coating (film) parts:
$W_{\text {diss }}^{f}=W_{\perp}^{f}+W_{\|}^{f}, \quad W_{\perp}^{f}=\frac{\omega \phi d}{2} \int P(r) u_{z z}^{f} d \vec{r}, \quad W_{\|}^{f}=\frac{\omega \phi}{2} \int\left(\sigma_{x z} u_{x}+\sigma_{y z} u_{y}\right) d \vec{r}$, Theoriginalofthismessagebouncedback, d

Below we calculate the elastic problem in substrate and film separately.

II. SUBSTRATE (ELASTIC INFINITE HALF SPACE)

We can assume that layer does not influence on deformations in substrate due to its small thickness. Then we can use the solution to the quasistatic stress-balance equation (5) given by a Green's-function expression (see (8.18) in [5]) with $F_{x}=F_{y}=0, F_{z}=P(r)$, integrated over the surface of the test mass:

$$
\begin{align*}
u_{x}(x, y, z) & =\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}}\left(x-x^{\prime}\right)\left\{\frac{z}{r^{3}}-\frac{\left(1-2 v_{s}\right)}{r(r+z)}\right\}, \tag{8}\\
u_{y}(x, y, z) & =\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}}\left(y-y^{\prime}\right)\left\{\frac{z}{r^{3}}-\frac{\left(1-2 v_{s}\right)}{r(r+z)}\right\}, \tag{9}\\
u_{z}(x, y, z) & =\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}}\left\{\frac{2\left(1-v_{s}\right)}{r}+\frac{z^{2}}{r^{3}}\right\}, \tag{10}\\
r & =\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}} .
\end{align*}
$$

Note that we can not put $z=0$ here due to formal divergence of surface integral at $z=0$.
Below we will need the expression for $\Theta^{(s)}=\operatorname{div} \vec{u}$. Using (8-10) one can calculate longitudial and transversal parts of $\Theta^{(s)}$ separately:

$$
\begin{aligned}
\Theta_{\|}^{(s)} & =\partial_{x} u_{x}+\partial_{y} u_{y}=\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}}\left(\frac{3 z^{3}}{r^{5}}-\frac{2\left(1-v_{s}\right) z}{r^{3}}\right) \\
\Theta_{\perp}^{(s)} & =\partial_{z} u_{z}=\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}}\left(\frac{2 v_{s} z}{r^{3}}-\frac{3 z^{3}}{r^{5}}\right) \\
\Theta_{s} & =\Theta_{\|}^{(s)}+\Theta_{\perp}^{(s)}=-\frac{\left(1+v_{s}\right)\left(1-2 v_{s}\right) F_{0}}{\pi^{2} r_{0}^{2} E_{s}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}}\left(\frac{z}{r^{3}}\right)
\end{aligned}
$$

Using result of calculations presented in Appendix A we obtain

$$
\begin{align*}
\Theta_{s}= & -\frac{\left(1+v_{s}\right)\left(1-2 v_{s}\right) F_{0}}{2 \pi^{2} E_{s}} e^{i \omega t} \iint_{-\infty}^{+\infty} e^{-k_{\perp}^{2} r_{0}^{2} / 4} e^{-k_{\perp} z} e^{i\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y}, \tag{11}\\
& k_{\perp} \equiv \sqrt{k_{x}^{2}+k_{y}^{2}}, \\
\Theta_{\|}^{(s)}= & \frac{\left(1+v_{s}\right) F_{0}}{4 \pi^{2} E_{s}} e^{i \omega t} \iint_{-\infty}^{+\infty} e^{-k_{\perp}^{2} r_{0}^{2} / 4} e^{-k_{\perp} z} e^{i\left(k_{x} x+k_{y} y\right)}\left(k_{\perp} z-1+2 v_{s}\right) d k_{x} d k_{y}, \tag{12}\\
\Theta_{\perp}^{(s)}= & \frac{\left(1+v_{s}\right) F_{0}}{4 \pi^{2} E_{s}} e^{i \omega t} \iint_{-\infty}^{+\infty} e^{-k_{\perp}^{2} r_{0}^{2} / 4} e^{-k_{\perp} z} e^{i\left(k_{x} x+k_{y} y\right)}\left(2 v_{s}-k_{\perp} z-1\right) d k_{x} d k_{y}, \tag{13}\\
\left.\Theta_{s}\right|_{z=0}= & -\frac{2\left(1+v_{s}\right)\left(1-2 v_{s}\right) P}{E_{s}}, \tag{14}\\
\left.\Theta_{\|}^{(s)}\right|_{z=0}= & -\frac{\left(1+v_{s}\right)\left(1-2 v_{s}\right) P}{E_{s}}, \tag{15}
\end{align*}
$$

$$
\begin{equation*}
\left.\Theta_{\perp}^{(s)}\right|_{z=0}=-\frac{\left(1+v_{s}\right)\left(1-2 v_{s}\right) P}{E_{s}} \tag{16}
\end{equation*}
$$

The formulas above for the particular case $z=0$ may be obtained easier using formulas pointed by Kip Thorne:

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{z}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}}=\frac{\delta(x) \delta(y)}{2 \pi}, \quad \lim _{z \rightarrow 0} \frac{z^{3}}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{5}}=\frac{\delta(x) \delta(y)}{6 \pi} \tag{17}
\end{equation*}
$$

A. Cross Term

Here we calculate $u_{x y}$ using (8 and 17):

$$
\begin{align*}
\left.u_{x y}(x, y, z)\right|_{z \rightarrow 0} & =\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}} \frac{\left(x-x^{\prime}\right)\left(y-y^{\prime}\right)}{r^{2}}\left\{\frac{-3 z}{r^{3}}+\frac{1-2 v_{s}}{(r+z)}\left[\frac{1}{r}+\frac{1}{r+z}\right]\right\}= \tag{18}\\
& =\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{-\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}} \frac{\left(x-x^{\prime}\right)\left(y-y^{\prime}\right)}{r^{2}} \frac{1-2 v_{s}}{(r+z)}\left[\frac{1}{r}+\frac{1}{r+z}\right]= \tag{19}\\
& =\frac{\left(1+v_{s}\right)}{2 \pi E_{s}} \frac{F_{0}}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{0}^{2} / 4} e^{-i k_{x} x-i k_{y} y} \times I_{x y} \tag{20}\\
I_{x y} & =\int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{i k_{x}\left(x-x^{\prime}\right)+i k_{y}\left(y-y^{\prime}\right)} \frac{\left(x-x^{\prime}\right)\left(y-y^{\prime}\right)}{r^{2}} \frac{1-2 v_{s}}{(r+z)}\left[\frac{1}{r}+\frac{1}{r+z}\right]= \tag{21}\\
& =\int r d r d \phi e^{i k_{\perp} r \cos \left(\phi-\phi_{0}\right)} \sin \phi \cos \phi \frac{1-2 v_{s}}{(r+z)}\left[\frac{1}{r}+\frac{1}{r+z}\right], \quad k_{x}=k_{\perp} \cos \phi_{0}, \quad k_{y}=k_{\perp} \sin \phi_{0}
\end{align*}
$$

It seems that the result of calculation does not have to depend on ϕ_{0} due to axial simmetry of pressure profile. Hence one can assume $\phi_{0}=0$. Then integrating over ϕ we obtain that $\mathrm{I}_{x y}=0$.

III. LAYER (FILM)

We assume that deformations of layer in transversal plane are the same as in substrate, i.e. $\Theta_{\|}^{(f)}=\left.\Theta_{\|}^{(s)}\right|_{z=0}$. One can use equation (5.13) for stress in [5] for calculation $\Theta_{\perp}^{(f)} \equiv \mathfrak{u}_{z z}^{(f)}$:

$$
\begin{equation*}
\sigma_{z z} \equiv-\mathrm{P}=\frac{\mathrm{E}_{\mathrm{f}}}{\left(1+v_{\mathrm{f}}\right)\left(1-2 v_{\mathrm{f}}\right)}(\left(1-v_{\mathrm{f}}\right){u_{z z}^{(f)}}_{(\mathrm{f})}+v_{f} \underbrace{\left(u_{x x}^{(f)}+u_{y y}^{(f)}\right)}_{\left.\Theta_{\| x}^{(s)}\right|_{z=0}}) . \tag{22}
\end{equation*}
$$

Using this equation one can find $u_{z z}^{(f)}$ and full expansion Θ_{f} in layer introducing "effective" modula Y_{f} and Y_{s} :

$$
\begin{align*}
u_{z z}^{(f)} & =-\frac{P}{Y_{f}\left(1-v_{f}\right)}\left(1-\frac{v_{f} Y_{f}}{Y_{s}}\right) \tag{23}\\
\Theta_{f} & =-\frac{P}{Y_{s}}\left(1+\frac{Y_{s}}{\left(1-v_{f}\right) Y_{f}}-\frac{v_{f}}{1-v_{f}}\right)=-\frac{P}{Y_{f}\left(1-v_{f}\right)}\left(1+\frac{Y_{f}\left(1-2 v_{f}\right)}{Y_{s}}\right) \tag{24}\\
Y_{s} & =\frac{E_{s}}{\left(1+v_{s}\right)\left(1-2 v_{s}\right)}, \quad Y_{f}=\frac{E_{f}}{\left(1+v_{f}\right)\left(1-2 v_{f}\right)}
\end{align*}
$$

IV. SPECTRAL DENSITY

Now we can calculate the spectral density of brownian noise in coating using (23):

$$
\begin{align*}
W_{d i s s}^{f} & =\frac{\omega \phi d}{2} \times \frac{1}{Y_{f}\left(1-v_{f}\right)}\left(1-\frac{v_{f} Y_{f}}{Y_{s}}\right) \times \int P^{2} d \vec{r}=\frac{\omega \phi d}{2} \times \frac{F_{0}^{2}}{2 \pi r_{0}^{2}} \times \frac{1}{Y_{f}\left(1-v_{f}\right)}\left(1-\frac{v_{f} Y_{f}}{Y_{s}}\right) \tag{25}\\
S_{\bar{X}}^{f}(\omega) & =\frac{2 k_{B} T \phi d}{\pi r_{0}^{2} \omega} \times \frac{1}{Y_{f}\left(1-v_{f}\right)}\left(1-\frac{\nu_{f} Y_{f}}{Y_{s}}\right) \tag{26}
\end{align*}
$$

V. CONCLUSION

So we prove that spectral density of Brownian (structural) fluctuations in coating is proportional to $\sim r_{0}^{-2}$.
The key question is the following: does the expression (23) is valid for arbitrary axial distribution of pressure or not? It seems that answer is 'yes'.

One can assume, for example, that mesa beam pressure distribution can be presented as sum (integral) of gaussian distributions. If this assumption is valid then one can easy scale the formula (26) for mesa beam by substitution

$$
\int P_{\text {gauss }}^{2}(r) d \vec{r} \Rightarrow \int P_{\text {mesa beam }}^{2}(r) d \vec{r}
$$

APPENDIX A: AUXILIARY INTEGRALS

Here we calculate auxiliary integrals:

$$
\begin{aligned}
\mathrm{G}_{0} & =\frac{1}{\pi \mathrm{r}_{0}^{2}} \int_{-\infty}^{\infty} e^{\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}} \frac{1}{r} d x^{\prime} d y^{\prime} \\
\mathrm{G}_{1} & =\frac{1}{\pi r_{0}^{2}} \int_{-\infty}^{\infty} e^{\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}} \frac{z}{r^{3}} d x^{\prime} d y^{\prime} \\
\mathrm{G}_{2} & =\frac{1}{\pi \mathrm{r}_{0}^{2}} \int_{-\infty}^{\infty} e^{\left(x^{\prime 2}+y^{\prime 2}\right) / r_{0}^{2}} \frac{z^{3}}{r^{5}} d x^{\prime} d y^{\prime} \\
r & =\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}}
\end{aligned}
$$

Integral G_{0}

$$
\begin{aligned}
G_{0} & =\int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} \int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{0}^{2} / 4} e^{i k_{x}\left(x^{\prime}-x\right)+i k_{y}\left(y^{\prime}-y\right)} e^{i k_{x} x+i k_{y} y} \frac{1}{r}= \\
& =\int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{0}^{2} / 4} e^{i k_{x} x+i k_{y} y} \times G \\
G & =\int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{i k_{x}\left(x^{\prime}-x\right)+i k_{y}\left(y^{\prime}-y\right)} \frac{1}{\sqrt{\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}\right.}}
\end{aligned}
$$

We can take integral G over $d x^{\prime} d y^{\prime}$ using notation $k_{\perp}=\sqrt{k_{y}^{2}+k_{z}^{2}}$ (see also formula 2.5.24.1 in [8] and formula 2.12.4.28 in [9])

$$
\begin{aligned}
G & =\int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} e^{i k_{x}\left(x^{\prime}-x\right)+i k_{y}\left(y^{\prime}-y\right)} \frac{1}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}}}= \\
& =\int_{0}^{\infty} r^{\prime} d r^{\prime} \int_{0}^{2 \pi} d \phi e^{\left.i k_{\perp} r^{\prime} \cos \phi\right)} \frac{1}{\sqrt{z^{2}+r^{\prime 2}}}=\int_{0}^{\infty} r^{\prime} d r^{\prime} 2 \pi \frac{J_{0}\left(k_{\perp} r^{\prime}\right)}{\sqrt{z^{2}+{r^{\prime 2}}^{2}}}=\frac{2 \pi}{k_{\perp}} e^{-k_{\perp} z}
\end{aligned}
$$

where $\mathrm{J}_{0}(x)$ is Bessel function of zero order.
Substituting G into (A1) we have:

$$
\begin{align*}
G_{0} & =\int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{0}^{2} / 4} e^{i k_{x} x+i k_{y} y} \times \frac{2 \pi}{k_{\perp}} e^{-k_{\perp} z}=\int_{0}^{\infty} \int_{0}^{2 \pi} \frac{k_{\perp} d k_{\perp} d \phi}{2 \pi} e^{-k_{\perp}^{2} r_{0}^{2} / 4} e^{i k_{\perp} r \cos \phi} \times \frac{1}{k_{\perp}} e^{-k_{\perp} z}= \\
& =\int_{0}^{\infty} d k_{\perp} e^{-k_{\perp}^{2} r_{0}^{2} / 4} J_{0}\left(k_{\perp} r\right) \times e^{-k_{\perp} z}, \quad \text { below we use formula 2.12.9 from [9]: } \\
\left.G_{0}\right|_{z=0} & =\frac{\sqrt{\pi}}{r_{0}} \exp \left(\frac{-r^{2}}{2 r_{0}^{2}}\right) I_{0}\left(\frac{-r^{2}}{2 r_{0}^{2}}\right), \quad r=\sqrt{x^{2}+y^{2}}, \tag{A1}
\end{align*}
$$

where $I_{0}(x)$ is modified Bessel function of zero order.

Integral G_{1} Using formula

$$
\frac{z}{r^{3}}=-\partial_{z}\left(\frac{1}{r}\right)
$$

we have:

$$
\begin{aligned}
G_{1} & =\int_{-\infty}^{\infty} d x^{\prime} d y^{\prime} \int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{o}^{2} / 4} e^{i k_{x}\left(x^{\prime}-x\right)+i k_{y}\left(y^{\prime}-y\right)} e^{i k_{x} x+i k_{y} y} \times \partial_{z}\left(\frac{-1}{r}\right)= \\
& =\int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{(2 \pi)^{2}} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{o}^{2} / 4} e^{i k_{x} x+i k_{y} y} \times(-1) \frac{\partial}{\partial z} G
\end{aligned}
$$

Finally we obtain

$$
\begin{equation*}
G_{1}=\int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{2 \pi} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{0}^{2} / 4} e^{i k_{x} x+i k_{y} y} e^{-k_{\perp} z},\left.\quad G_{1}\right|_{z=0}=\frac{2}{r_{0}^{2}} e^{\left(x^{2}+y^{2}\right) / r_{0}^{2}} \tag{A2}
\end{equation*}
$$

Integral G_{2}. Using formula:

$$
\frac{z^{3}}{r^{5}}=\frac{1}{3}\left(\frac{z \partial^{2}}{\partial z^{2}}-\frac{\partial}{\partial z}\right) \frac{1}{r}
$$

one can obtain

$$
\begin{align*}
G_{2} & =\int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{2 \pi} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{0}^{2} / 4} e^{i k_{x} x+i k_{y} y} \frac{1}{3 k_{\perp}}\left(\frac{z \partial^{2}}{\partial z^{2}}-\frac{\partial}{\partial z}\right) e^{-k_{\perp} z}= \tag{A3}\\
& =\frac{1}{3} \int_{-\infty}^{\infty} \frac{d k_{x} d k_{y}}{2 \pi} e^{-\left(k_{x}^{2}+k_{y}^{2}\right) r_{0}^{2} / 4} e^{i k_{x} x+i k_{y} y}\left(k_{\perp} z+1\right) e^{-k_{\perp} z}, \tag{A4}\\
\left.G_{2}\right|_{z=0} & =\frac{2}{3 r_{0}^{2}} e^{\left(x^{2}+y^{2}\right) / r_{0}^{2}} . \tag{A5}
\end{align*}
$$

APPENDIX B: CALCULATION OF u_{x}, u_{y}, u_{z},

Calculation of u_{z}. Using expression (A2) for auxiary integral G_{1} one can find that contribution of second term in figure brackets in (10) is zero in limit $z \rightarrow 0$. So we calculate the contribution of first term in figure brackets in (10) using expression for G_{0} (A1):

$$
\begin{equation*}
u_{z}(x, y, z)=\frac{\left(1-v_{s}^{2}\right) F_{0}}{\pi E_{s}} \times \frac{\sqrt{\pi}}{r_{0}} \exp \left(\frac{-r^{2}}{2 r_{0}^{2}}\right) I_{0}\left(\frac{-r^{2}}{2 r_{0}^{2}}\right), \quad r=\sqrt{x^{2}+y^{2}} \tag{B1}
\end{equation*}
$$

[1] M.M.Fejer, S.Rowan, G.Cagnol, D.R.M.Crooks, A.Gretarsson, G.M.Harry, J.Hough, S.D.Penn, P.H.Sneddon and S.P.Vyatchanin, Physical Review D 70, 083003 (2004).
[2] V.B.Braginsky, S.P.Vyatchanin, Physics Letters A 312, 244 (2003); arXive: cond-mat/0302617.
[3] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
[4] Yu. Levin, Phys. Rev. D 57, 659 (1998).
[5] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, third edition (Pergamon, Oxford, 1986).
[6] V. B. Braginsky, and S. P. Vyatchanin, accepted in Phys. Lett. A; cond-mat/0302617;
[7] V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 264, 1 (1999); cond-mat/9912139;
[8] A. P. Prudnikov, Yu. A. Brychkov and O. B. Marychev, Integrals and Sums. Moscow, Nauka, 1983.
[9] A. P. Prudnikov, Yu. A. Brychkov and O. B. Marychev, Integrals and Sums. Special Functions. Moscow, Nauka, 1983.

