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Abstract

This technical document investigates how to find the unknown signal
parameters, h0, ι, ψ, and Φ0, using the method given in Jaranowski, Królak
and Schutz (JKS), and extends this method to nonstationary noise. Algebraic
expressions for these parameters in terms of the basis amplitudes Ai are
found. It is shown how to compute estimates of the Ai’s in the frequency
domain using Short Fourier Transforms of the data (SFTs) and how the
LALDemod function in the LAL library could be used for this purpose.

I. Introduction

A data analysis method for detecting continuous gravitational waves from
rotating neutron stars is given by Jaranowski, Królak and Schutz (JKS)
[1]. In this technical note we focus on the special case of waves from the
quadrupole moment of a triaxial ellipsoid spinning about a principal axis.
This note assumes the reader is somewhat familiar with the definition of the
quantities given in JKS.

Section II reviews how to find the unknown signal parameters, h0, ι, ψ,
and Φ0, using the method given in JKS. In Section III we find algebraic ex-
pressions for these parameters in terms of the basis amplitudes Ai. Note that
JKS shows how to estimate the basis amplitudes from the data by maximiz-
ing the likelihood function, for the case of stationary noise. In Section IV we
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investigates how to generalize the results to the case of nonstationary noise,
and how to compute estimates of the parameters in the frequency domain,
using Short Fourier Transforms of the data (SFTs). It is shown that the
LALDemod function in the LAL library could be used for this purpose.

II. JKS Parameter Estimation

Following JKS, the gravitational-wave strain for a triaxial ellipsoid mea-
sured is given by

h(t) = F+h+ + F×h×, (1)

F+ = sin ζ(a(t) cos 2ψ + b(t) sin 2ψ, (2)

F× = sin ζ(b(t) cos 2ψ − a(t) sin 2ψ, (3)

h+ =
1

2
h0(1 + cos2 ι) cos[2Φ0 + 2Φ(t)], (4)

h× = h0 cos ι sin[2Φ0 + 2Φ(t)]. (5)

The strain can be written as

h2(t) =
4

∑

i=1

Aihi, (6)

where

h1 = a(t) cos[2Φ(t)], h2 = b(t) cos[2Φ(t)], (7)

h3 = a(t) sin[2Φ(t)], h4 = b(t) sin[2Φ(t)]. (8)

Comparing Eq. (1) and Eq. (6) one arrives at JKS Eqs. (32)-(35):

A1 = h0 sin ζ
[

1

2
(1 + cos2 ι) cos 2ψ cos 2Φ0 − cos ι sin 2ψ sin 2Φ0

]

, (9)

A2 = h0 sin ζ
[

1

2
(1 + cos2 ι) sin 2ψ cos 2Φ0 + cos ι cos 2ψ sin 2Φ0

]

, (10)

A3 = h0 sin ζ
[

−1

2
(1 + cos2 ι) cos 2ψ sin 2Φ0 − cos ι sin 2ψ cos 2Φ0

]

,(11)

A4 = h0 sin ζ
[

−1

2
(1 + cos2 ι) sin 2ψ sin 2Φ0 + cos ι cos 2ψ cos 2Φ0

]

.(12)
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The log likelihood function can be written in the time domain as

ln Λ =
∑

j

(

xjhj

σ2
j

− 1

2

xjhj

σ2
j

)

, (13)

where j is a time index. JKS, for the case the σj ’s are constant, find estimates
for the Ai ’s by maximizing the likelihood function. The result is

A1 = 2
B(x||h1)− C(x||h2)

D
, (14)

A2 = 2
A(x||h2)− C(x||h1)

D
, (15)

A3 = 2
B(x||h3)− C(x||h4)

D
, (16)

A4 = 2
A(x||h4)− C(x||h3)

D
, (17)

This is JKS Eq. (52) with 1i → i. In the discrete case the inner product can
be written as

(x||y) =
1

NT

NT−1
∑

j=0

xjyj . (18)

Note that A = (a||a), B = (b||b), C = (a||b), and D = AB − C2, and that
JKS make a series of approximations [see their Eqs. (48)-(49)] that should
be valid for properly sampled data summed over many cycles.

Thus, Eqs. (14)-(17) gives us the estimates of the basis elements from the
data and Eqs. (9)-(12) gives us four equations for the unknown parameters
h0, ι, ψ, and Φ0. (Note that sin ζ is not unknown, but the known angle
between the arms of the interferometer.)

III. Algebraically Inverting Eqs. (9)-(12)

In this section we algebraically invert Eqs. (9)-(12) [JKS Eqs. (32)-
(35)] to give the unknown parameters {pi} = {h0, ι, ψ, Φ0} in terms of
the Ai ’s. There are several ways to do this (for example as worked out
in Anah Mourant’s SURF project at LIGO Hanford Observatory in 2003;
mentored by Gregory Mendell). The treatment presented here is the most
straight forward, and is due to Yousuke Itoh and Xavier Siemens.
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We define two auxiliary variables.

A2
s ≡

4
∑

i=0

A2
i =

1

4
h2

0(1 + 6µ2 + µ4) sin2 ζ (19)

Da ≡ A1A4 − A2A3 =
1

2
h2

0µ(1 + µ2) sin2 ζ, (20)

where µ = cos ι. It is straight forward to show that

A2
s + 2Da =

1

4
h2

0 sin2 ζ(1 + µ)4, (21)

A2
s − 2Da =

1

4
h2

0 sin2 ζ(1− µ)4. (22)

For real h0 and µ, and since −1 ≤ µ ≤ 1, only the positive real 4th-root of
Eqs. (21) and (22) applies, and thus h0 is given by

h0 sin ζ =
1

2

[

(A2
s − 2Da)

1

4 + (A2
s + 2Da)

1

4

]2
. (23)

Note that A2
s − 2Da = (A1 − A4)

2 + (A2 + A3)
2 ≥ 0 and A2

s + 2Da =
(A1 + A4)

2 + (A2 − A3)
2 ≥ 0. Note that these inequalities are satisfied

independently of the emission mechanisms. Thus, we always obtain a non-
imaginary h0 sin ζ for any {Ai}.

Given h0, we define the third auxiliary variable.

r ≡ A2
s

h2
0 sin2 ζ

=
4

[(1− t)
1

4 + (1 + t)
1

4 ]4
≥ 0. (24)

where t ≡ 2Da/A
2
s. Note that −1 ≤ t ≤ 1. r = r(t) is a symmetric function

of t and the map from t to r is one to one from 0 ≤ t ≤ 1 to 1/4 ≤ r ≤ 2.
In other words, for any {Ai}, we have 1/4 ≤ r ≤ 2. Again we note that this
inequality is satisfied independently of the emission mechanisms.

Given r, we solve Eq. (19) for µ. There are four solutions;

µunphysical
± = ±

√

−3− 2
√

2 + r (25)

µ± = ±
√

−3 + 2
√

2 + r (26)

The first two solutions are obviously unphysical. The other two are physically
possible solution only when

1

4
≤ r ≤ 2. (27)
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In this case, 0 ≤ µ+ ≤ 1 and −1 ≤ µ− ≤ 0. This is fulfilled for any {Ai}, as
mentioned above. Thus, we always obtain at least two physical solutions for
µ. The degeneracy of the map from t to r corresponds to these two possible
solutions of µ and it can be broken by taking the sign of t into account.
Namely, if Da is positive, one should take positive solution (µ+), and if DA

is negative, one should take negative solution (µ−).
Now we construct the fourth auxiliary variable β

β ≡ 1 + µ2

2µ
(28)

With β in hand, we may compute ψ and Φ0. A little subtlety here is that
a set of shifts {ψ → ψ + π/2, Φ0 → Φ0 + π/2} taken simultaneously gives
the same values of {Ai}. Needless to say that ψ → ψ + π or Φ0 → Φ0 + π
gives the same values of {Ai}. Thus we seek ψ and Φ0 in the ranges of
−π/2 ≤ ψ ≤ π/2 and −π/2 ≤ Φ0 ≤ π/2. Using Eqs. (9)-(12) one can show:

A1 cos 2ψ + A2 sin 2ψ =
1

2
(1 + µ2)h0 sin ζ cos 2Φ0, (29)

A4 cos 2ψ − A3 sin 2ψ = µh0 sin ζ cos 2Φ0, (30)

A1 cos 2Φ0 − A3 sin 2Φ0 =
1

2
(1 + µ2)h0 sin ζ cos 2ψ, (31)

A4 cos 2Φ0 + A2 sin 2Φ0 = µh0 sin ζ cos 2ψ, (32)

Thus, eliminating cos 2Φ0 from Eqs. (29) and (30), and eliminating cos 2ψ
from Eqs. (31) and (32), we obtain the following equations1 for the final two
parameters:

ψ̃ =
1

2
tan−1

(

βA4 − A1

βA3 + A2

)

, (33)

Φ̃0 =
1

2
tan−1

(

A1 − βA4

A3 + βA2

)

. (34)

Note that there are always physically acceptable solutions of ψ̃ and Φ̃0 for
any {Ai}. We reconstruct A1 from {h0, µ, ψ̃, Φ̃0} which we have computed
from {Ai}. We write Ar

1 as the so reconstructed A1. Then look at the sign
of A1 · Ar

1. If A1 · Ar
1 ≥ 0, then we set ψ = ψ̃ and Φ0 = Φ̃0. If A1 · Ar

1 < 0,

1Note that in the real implementation in the C code, one may use “atan”, not “atan2”.
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then we set ψ = ψ̃ and if Φ̃0 > 0 then Φ0 = Φ̃0 − π/2 else if Φ̃0 < 0 then
Φ0 = Φ̃0 + π/2. By construction, −π/2 ≤ ψ ≤ π/2 and −π/2 ≤ Φ0 ≤ π/2.

It is clear from the arguments given above that for any {−∞ < Ai <
∞}4

i=1, we always obtain physically acceptable {pi}, where 0 ≤ h0 ≤ ∞,
−1 ≤ µ ≤ 1, −π/2 ≤ Φ0 ≤ π/2, and −π/2 ≤ ψ ≤ π/2. Obviously, given
{pi} in the ranges specified just above, one can compute {−∞ < Ai < ∞}.
Thus, the map between {Ai} and {pi} in the ranges 0 ≤ h0 ≤ ∞, −1 ≤ µ ≤ 1,
−π/2 ≤ Φ0 ≤ π/2, and −π/2 ≤ ψ ≤ π/2 is onto.

The next question is if the map between {pi} = and {Ai} one to one?
By construction, it is clear that the map is one to one apart from a few

exceptions discussed below.
The Jacobian J of the transformation is

J ≡
∣

∣

∣

∣

∣

∂Ai

∂pj

∣

∣

∣

∣

∣

=
1

2
h3

0 sin4 ζ(1− µ2) (35)

Thus, the transformation can be reversed (one to one) except for µ = ±1 or
h0 = 0. The situation here is thus similar to the coordinate transformation
between the 4 dimensional Cartesian coordinate and 4 dimensional spherical
coordinate.

The coordinate singularity h0 = 0 or µ = ±1 corresponds to Ai = 0 or
A1 = ±A4, A2 = ±A3 respectively. It is clear that in either case we can not
determine {pi} because we do not have enough independent variables. In
other words, if Ai = 0, then we can take h0 = 0 and any ψ, Φ0, µ we prefer.
If A1 = ±A4, A2 = ±A3, then we can determine h0, µ = ±1, and ψ ± Φ0

uniquely but we can not determine ψ and Φ0 independently. But note that
we can still reconstruct {Ai}.

IV. Nonstationary Noise

For nonstationary noise we can no longer treat the σj ’s as constant in
Eq. (13) for the likelihood. However, if we assume that the noise is stationary
during short segments of the data we can divide the total data set of NT

samples into M segments, each with N samples.

ln Λ =
M−1
∑

α=0

1

σ2
α

N−1
∑

n=0

(

xαnhαn −
1

2
hαnhαn

)

, (36)
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Here we assume that we can replace σαn with σα If we substitute Eq. (6) for
h and assume that the detector response amplitude, a and b are roughly con-
stant during each segment so that aαn → aα and bαn → bα then maximizing
the likelihood in Eq. (36) gives

A1 = 2
B̄

(

x
σ
||h21

σ

)

− C̄
(

x
σ
||h22

σ

)

D̄
, (37)

A2 = 2
Ā

(

x
σ
||h22

σ

)

− C̄
(

x
σ
||h21

σ

)

D̄
, (38)

A3 = 2
B̄

(

x
σ
||h23

σ

)

− C̄
(

x
σ
||h24

σ

)

D̄
, (39)

A4 = 2
Ā

(

x
σ
||h24

σ

)

− C̄
(

x
σ
||h23

σ

)

D̄
, (40)

where

Ā =
1

M

M−1
∑

α=0

aαaα

σ2
α

, (41)

B̄ =
1

M

M−1
∑

α=0

bαbα

σ2
α

, (42)

C̄ =
1

M

M−1
∑

α=0

aαbα

σ2
α

, (43)

D̄ = ĀB̄ − C̄2. (44)

(45)

We now introduce SFTs in the usual way

xαn =
1

N

N−1
∑

k=0

x̃αke
2πink/N , (46)

where x̃ are the SFTs (just FFTs of the short segments of the data). Now
define Fa and Fb as in JKS (but normalized with the σ’s) and rewrite these
in terms of SFTs and the Dirichlet kernel

Fa =
NT−1
∑

j=0

xjaj

σ2
j

eiΦj∆t =
M−1
∑

α=0

aα

σ2
α

Qα

∑

k

x̃αkPαk, (47)
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Fb =
NT−1
∑

j=0

xjbj

σ2
j

eiΦj∆t =
M−1
∑

α=0

bα

σ2
α

Qα

∑

k

x̃αkPαk. (48)

Note that in practice the sum over k is taken only a narrow band of
frequencies centered where Pαk is peaked. We are assuming that the noise
is roughly stationary during one SFT; if we further assume that the noise is
roughly white in the narrow band around the peak in Pαk then we can make
the replacement

2∆tσ2
α ↔ Sα, (49)

where Sα is the one-sided power spectral density of the noise in the narrow
band.

F̄a =
M−1
∑

α=0

(

aα

σα

)

Qα

∑

k

(

∆tx̃αk/
√

TSFT√
Sα

)

Pαk, (50)

F̄b =
M−1
∑

α=0

(

bα

σα

)

Qα

∑

k

(

∆tx̃αk/
√

TSFT√
Sα

)

Pαk, (51)

Note that the LALDemod function in the LAL library can easily com-
pute F̄a and F̄b as long as the inputs are the normalized detector response
amplitudes, aα/σα and bα/σα, and normalized SFTs. The estimates of the
basis amplitudes are then:

A1 =
2
√

2N

MND̄

[

B̄Re(F̄a)− C̄Re(F̄b)
]

, (52)

A2 =
2
√

2N

MND̄

[

ĀRe(F̄b)− C̄Re(F̄a)
]

, (53)

A3 =
2
√

2N

MND̄

[

B̄Im(F̄a)− C̄Im(F̄b)
]

, (54)

A4 =
2
√

2N

MND̄

[

ĀIm(F̄b)− C̄Im(F̄a)
]

, (55)

(56)

These can be used to estimate the unknown parameters, h0, ι, ψ, and Φ0, as
described in the last section.
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