LIGO-T050164-00-R

Royal Reinecke Eric Black LIGO

Progress Report for August 1, 2005

Work completed in the past month

This month I experienced a significant setback as the materials I needed for my original project did not arrive. However, I also found myself with the opportunity to be in the position of lead researcher, coming up with something new to study. During the course of my previous work I noted an interesting thermal self-locking phenomena, so I decided to study this. Thus my progress slowed for a while, but has now picked up again as I have once again found an area of focus.

Process of work so far

Currently I have been studying the amplitude of oscillations in reflected power as a function of sweep frequency. I have also measured the error signal as a function of sweep frequency for different laser powers. In addition I noted the minimum and maximum reflected power, and the power at which thermal locking occurs for various laser powers. Thus I could find the minimum power needed for my particular cavity to induce self-locking.

In general, my observations can be explained by theoretical models. Measurements of reflected power signal amplitude at different sweep frequencies indicate thermal locking is indeed occurring, just as a camera on the TEM_{00} mode shows it to hold steadily locked. Also, thermal self-locking is more readily apparent at higher powers, and the laser locks for a much longer length of time at these powers. As predicted, thermal self-locking cannot occur below a certain power threshold. Amplitude of error signal decreases as sweep frequency decreases which makes sense because it is easier for the system to keep up with lower frequencies.

Problems encountered

At first I was varying the power of the laser by changing a current. However, this leads to strange behavior of the laser. So I installed two half wave plates. Then I could change the power by changing the angle of one of the half wave plates. I used a bolometer to create a calibration curve such that I could know what power corresponded to a given angle of the first half-wave plate. Also I was using a sweep amplitude that was wider than resonance, so I narrowed that down.

Changing research goals

Originally I planned to measure the thermal coefficients for mirrors with new silica-tantala coatings containing a secret special dopant. Unfortunately the mirror I needed did not arrive. Instead, a mirror arrived with the silica-tantala coating on a fused silica substrate rather than a sapphire substrate. Thus coating thermal noise cannot be measured because it is too similar in both the coating and the substrate.

During the course of my research, I noted a thermal self-locking phenomena, and so I decided to study this instead. Now I am focusing on more fully understanding thermal self-locking by fitting experimental data to theory. I also hope to more fully developing my mathematical model in order to better understand the stability of this locking.

Interaction with mentor

I see my mentor every day. When I am unclear on a concept, he will always explain and work through it with me. Each Tuesday we have a group lunch. Then on Thursdays, we all meet to discuss our progress, and some members of the group give presentations.