LIGO LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T050184-01-D

Advanced LIGO

26 Sep 2005

Test Mass Optical Surface Deformation due to Gravity

Dennis Coyne

Distribution of this document: LIGO Scientific Collaboration

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd.

Pasadena, CA 91125

Phone (626) 395-2129 Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

P.O. Box 1970 Mail Stop S9-02 Richland WA 99352

> Phone 509-372-8106 Fax 509-372-8137

Massachusetts Institute of Technology LIGO Project – NW17-161

175 Albany St

Cambridge, MA 02139

Phone (617) 253-4824 Fax (617) 253-7014

E-mail: info@ligo.mit.edu

P.O. Box 940

Livingston, LA 70754 Phone 225-686-3100

Fax 225-686-7189

http://www.ligo.caltech.edu/

1 Introduction

The gravitational load (body force) on the Input and End Test Masses (ITM, ETM) are supported in the Advanced LIGO suspensions by "ears" bonded to flats on sides of these optics. The stress field created by the gravitational load and the resulting ear bond reaction forces will cause a deformation of the optic. We are concerned with the deformation of the optical surfaces, which are polished in a horizontal orientation.

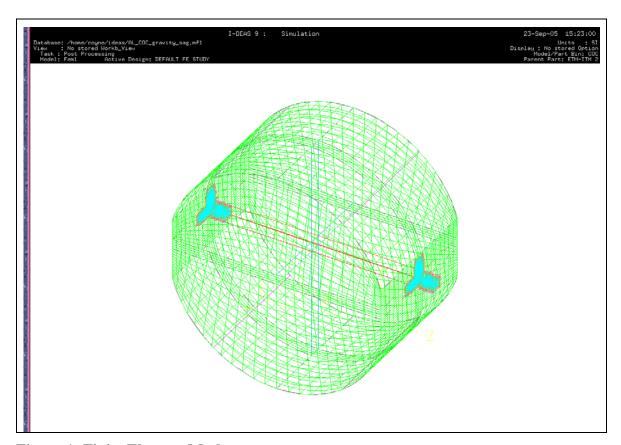
2 Model

The fused silica ITM and ETM dimensions¹ are 340 mm diameter by 200 mm thick with 95 mm long flats on each side (nominally 40 kg mass). A three-dimensional finite element model, created with the I-DEAS version-9 software, depicted in Figure 1, represented this geometry. The bevels and the wedge angle of the optics were not included in this model. The ear, which is bonded to the optic and welded to the fused silica fibers (or ribbons), was not modeled either. The bond area was restrained from motion and served to provide a reaction to the gravitational load. The dimensions of the two bond areas were taken² to be 18 mm wide by 15 mm high. These bond areas should be placed centered front-to-back, between the two optical faces, but below the horizontal center-plane of the optic, such that the bending flexure point of the fiber/ribbon is slightly above the optic center of mass (by a distance d4 in the suspension design parameter terminology³). The vertical placement depends upon the details of the ear design and the desired value of d4. The latest quadruple ITM/ETM suspension design parameter set⁴ has a d4 value of 1 mm. The bond areas (surface areas with nodal restraints) in the finite element model were placed with the lower edge tangent to the centerline and so are about 20 mm too high compared to the intended design. I doubt that this will affect the magnitude of the results very much; however the deformation pattern might shift relative to the center of the optic⁵.

It was found that the asymmetry of free (automatic) meshing caused significant quasi-rigid body pitch and roll deformations. A mapped mesh ensured a purely vertical quasi-rigid-body global motion in response to a vertical gravity vector.

¹ H. Armandula, G. Billingsley, G. Harry, B. Kells, "Core Optics Components: Conceptual Design Document", <u>LIGO-T000098-02</u>. Also LIGO RODA M050397-00 in review.

² I could not readily find formal documentation on the planned dimensions/geometry of the ITM/ETM ears. I took the dimensions from Matthieu Musso's study as representative. Musso's shows a design which improves upon the original GEO ear geometry:


M. Musso, "Test Masses Suspensions Modeling", E030392-00.

³ M. Perreur-Lloyd, "Pendulum Parameter Descriptions and Naming Conventions", <u>LIGO-T040072-01</u>, 20 Jul 2004.

⁴ N. Robertson, et. al., "Parameters for current ETM/ITM main chain noise prototype design", <u>LIGO-T040214-01</u>, 12 Nov 2004.

⁵ The model can be revised and the analysis rerun, of course.

The ITM and ETM are actually pitched relative to the local gravity vector in order to align to the long Fabry-Perot optical cavities⁶. This nominal pitch angle is varies from -0.619 mrad to +0.326 mrad. In the analysis reported here only a vertical gravity vector is considered.

Figure 1: Finite Element Mesh

The mesh consists of 13,440 parabolic, brick elements and 59,041 nodes.

3 Calculated Stress & Deformation Field

The stress contours (Figures 2, 3 and 4) show that only the region immediately adjacent to the bond area has significant stress, as expected. The penetration depth of the stress field is on the order of the bond area width, h, which also seems reasonable. One might expect then that the peak transverse displacement due to Poisson's effect would be approximately

$$\delta_T = \frac{vmg}{4hE} = 13 \ nm$$

where v = 0.17, Poisson's ratio for fused silica; $E = 7.0 \times 10^{10}$, Young's modulus for fused silica; h = 0.018 m is the bond area width; h = 40 kg is the optic mass and h = 9.8 m/s². The finite element

⁶ W. Althouse, L. Jones, A. Lazzarini, "Determination of Global and Local Coordinate Axes for the LIGOSites", <u>LIGO-T980044-10</u>, 07 Feb 2001.

LIGO-T050184-01

analysis indicates a peak transverse (normal to the optic face) deformation of \pm 4 nm, or 8 nm total (as shown in Figures 4 and 5).

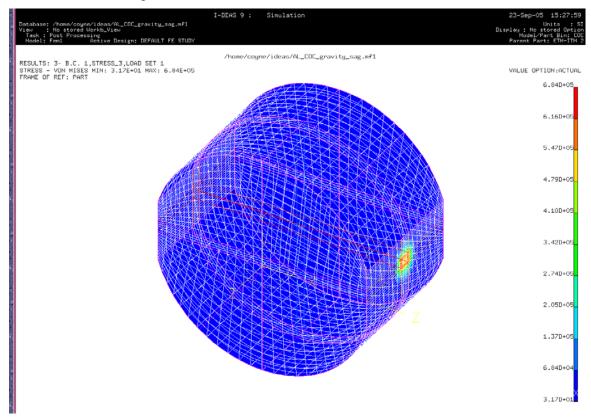


Figure 2: Stress Contours (Von Mises stress, linear scale)

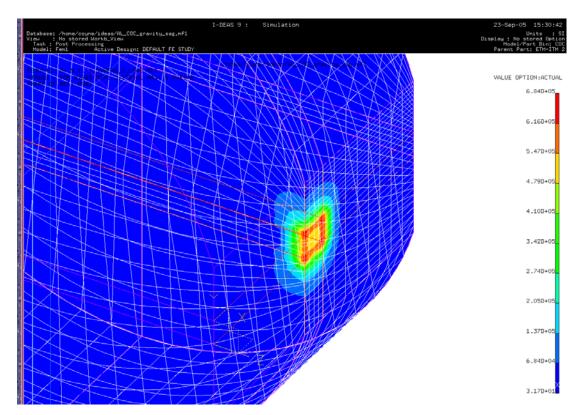


Figure 3: Close-up and cut-away of the stress contours (Von Mises stress, linear scale)

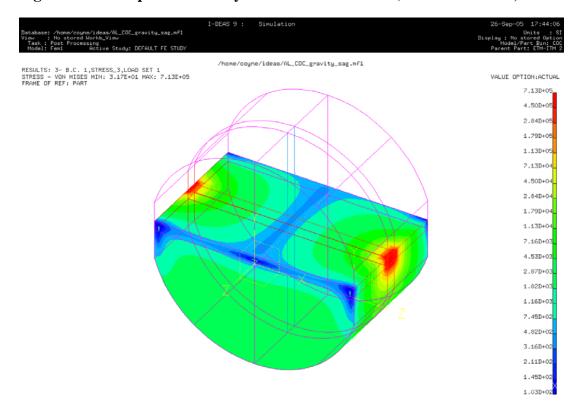


Figure 4: Stress contours for cut-away of lower half of optic (Von Mises stress, log scale)

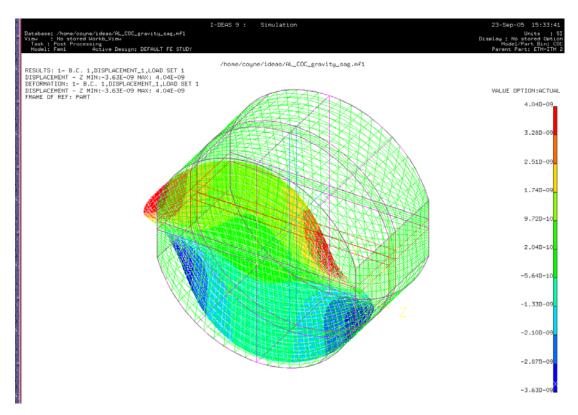


Figure 5: Front Surface Normal Displacement

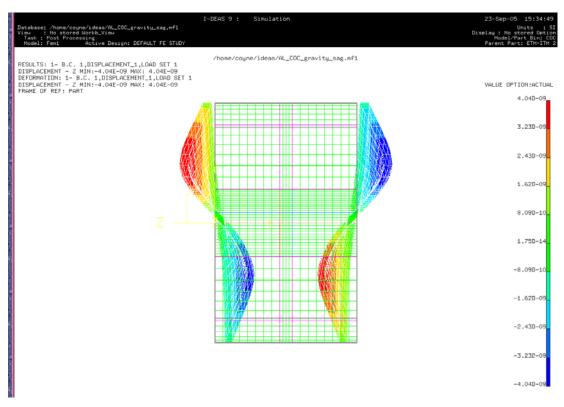


Figure 6: Front & Rear Surface Normal Deformation

4 Comparison to optical surface figure requirements

The draft polishing specifications⁷ call for a sagitta over the central 215 mm diameter of 2862 nm with a surface error of no more than 0.75 nm rms over the central 120 mm diameter. As can be seen from the vertical and horizontal centerline profiles (Figures 6 and 7), the predicted deformation due to gravity loading is ~1.2 nm p-v over the central 120 mm diameter. However, much of this deformation is local tilt (pitch).

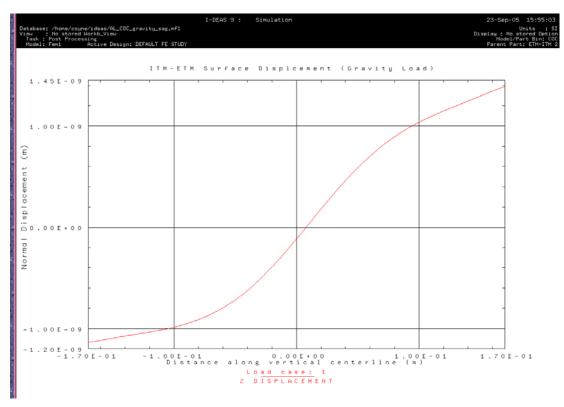


Figure 7: Front Surface Normal Deformation Along the vertical centerline

⁷ Current specification parameters are listed here: <u>spectable.html</u> Also see Tables 1 and 2 of H. Armandula, et. al., COC CDD, <u>LIGO-T000098-02</u>, 20 Jun 2004.

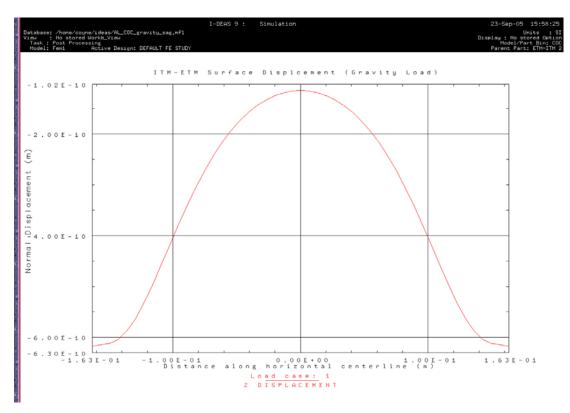


Figure 8: Front Surface Normal Deformation along the horizontal centerline

The results of the finite element model have been exported for use in further optical analysis, as described in the appendix.

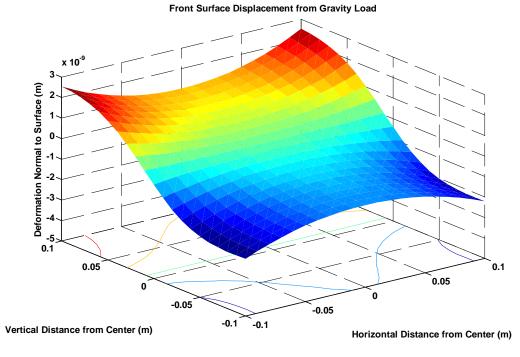


Figure 9: Interpolated optic surface deformation map

The irregular finite element nodal grid was interpolated to a regularly spaced grid for Zernike fitting in Matlab.

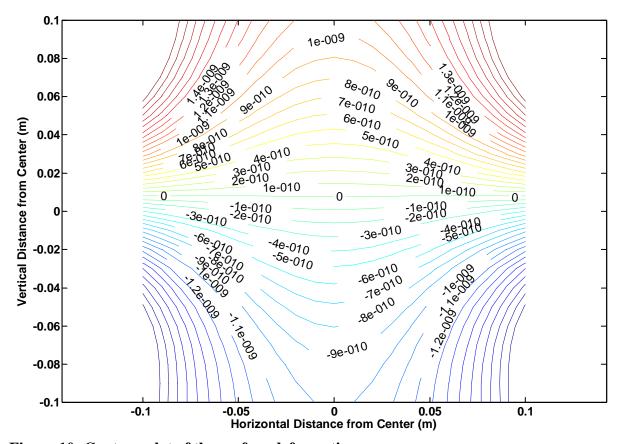


Figure 10: Contour plot of the surface deformation

Using Matlab to fit the surface deformation to Zernike aberration functions yields the following Zernike fits (nm):

```
Z1, piston
                        -0.11455
Z2, yaw
                       -6.1246e-007
Z3, pitch
                      = 0.90346
Z4, focus
                      = 0.0010491
Z5, astigmatism (0)
                      = -0.082277
Z6, astigmatism (45) = 8.7543e-008
                      = 2.897e - 008
Z7, x-Coma
Z8, y-Coma
                      = 0.019566
                      = 0.0012452
Z9, spherical
```

The rms of the surface deformation, in the central 120 mm diameter, is 0.468 nm (1.555 nm p-v). However, after removing piston, tip & tilt, the rms is only 0.071 nm (and 0.420 nm p-v). Since this predicted value is small compared to the total allowable figure error (0.75 nm rms), the gravity induced surface deformation is not a problem.

5 Appendix: Surface Deformation Map from the FEA

The Matlab m-files for reading the finite element results from I-DEAS in the Universal File Format (UFF), described in T050125-00⁸, were extended for this analysis, to handle static results. The readuff.m file is included in the T050184-01.zip file associated with this memo. Also included in the zip file is the Matlab m-file, importFEAnodal.m, used to call uffread.m and create the interpolated grid plots and perform the Zernike fit. importFEAnodal.m is listed below.

The results for the stress, strain and deformation fields (at all nodal points) are embedded in the associated universal file. From this file, with suitable extensions to readuff.m, one could calculate the birefringence as well.

-

⁸ D. Coyne, "Transforming Finite Element Eigensolutions to State Space Models", <u>LIGO-T050125-00</u>, 23 Jul 2005.

```
1
    % interpolateFEAresults.m
 2
   % Import Finite Element Analysis (FEA) nodal results
   % Import Universal File Format (UFF) or UNV file data from I-DEAS
 4 % 2005-09-24, D. Coyne
 5
   % Notes:
 6
   % 1) Using an extension of the UFF Read m-file, readuff.m, dated 9/24/2005
 7
   % 2) This version is written for the results of a specific ITM FEA;
 8
    %
         adaptation/generalization for another finite element model requires
 9
   %
         some editing.
10
11
    [UffDataSets,Info,errmsg] = readuff('ITM_gravity_sag.unv');
12
13
   if Info.nErrors ~= 0
14
        for ii=1:Info.nErrors
15
            disp(Info.errorMsgs{ii});
16
        end
17
    end
18
19
    % echo header information
20
    iHeader=find(Info.dsTypes==151);
21
    UffDataSets{iHeader}
22
23
    % echo units information
24 iUnits=find(Info.dsTypes==164);
25 UffDataSets{iUnits}
26
27
    % nodal information
    iNodal=find(Info.dsTypes==2411);
28
29
    UffDataSets{iNodal}
30
31 % permanent groups
32
    iGroups=find(Info.dsTypes==2452);
33 UffDataSets{iGroups}
34
    % in this case the dataset I want is the the 8th
35
   % labeled "front surface nodes"
    UffDataSets{iGroups}.groupName{8}
36
37
    frontSurfaceNodes = UffDataSets{iGroups}.entityTag{8};
38
    nFrontSuraceNodes = size(frontSurfaceNodes,2);
39
40
    % nodal analysis information
41
    iNodalResults=find(Info.dsTypes==2414);
42 UffDataSets{iNodalResults}
43
    % in this case the first dataset has the displacements
44
    % and is the one I want
    nNodalSets = length(iNodalResults);
45
46
47
    % node numbers
48
    nodeNumbers = UffDataSets{iNodalResults(1)}.nodeNum;
49
    nNodes = length(nodeNumbers);
```

```
50
51
   % extract front surface node group positions
52
   for i=1:nFrontSuraceNodes
53
       pos(i)=find(UffDataSets{iNodal}.nodeLabel==frontSurfaceNodes(i));
54
       frontSurfaceNodePositions(i,:)=[UffDataSets{iNodal}.x(pos(i)),UffDataSets{iNodal}. \( \)
    y(pos(i)),UffDataSets{iNodal}.z(pos(i))];
55
56
57
    % Plot Front Surface Nodal Pattern
58
    figure(1)
59
    plot3(frontSurfaceNodePositions(:,1),frontSurfaceNodePositions(:,2),frontSurfaceNodeP ✓
    ositions(:,3),'go')
60
    axis equal
61
    title('Surface Nodal Pattern')
62
    %print surface_nodes.ps -dpsc2
63
64
    % extract front surface node group deformation
65
   for i=1:nFrontSuraceNodes
66
       pos(i)=find(UffDataSets{iNodalResults(1)}.nodeNum==frontSurfaceNodes(i));
67
       frontSurfaceNodeDeform(i,:)=[UffDataSets{iNodalResults(1)}.r1(pos(i)),UffDataSets{ \(\mu\)
    iNodalResults(1) } .r2(pos(i)), UffDataSets{iNodalResults(1)} .r3(pos(i))];
68
69
70
    % Plot Front Surface Deformation Shape
71
    scale=0.05;
72
    figure(2)
73
    plot3(frontSurfaceNodePositions(:,1)+scale*frontSurfaceNodeDeform(:,1), ...
74
        frontSurfaceNodePositions(:,2)+scale*frontSurfaceNodeDeform(:,2), ...
75
        frontSurfaceNodePositions(:,3)+scale*frontSurfaceNodeDeform(:,3),'go')
76
    axis square
77
    grid on
78
    title('Surface Deformation')
79
    rotate3d on
80
81
    % Interpolate from nonuniform nodal grid to a uniform grid & plot
82
        ngrid=51;
83
        w = 0.20;
84
        dx = w/(ngrid-1);
85
        xi = -w/2:dx:w/2;
86
        yi=xi';
87
        [xi,yi,zi]=griddata(frontSurfaceNodePositions(:,1),frontSurfaceNodePositions(:,2) ✔
    ,frontSurfaceNodeDeform(:,3),xi,yi);
88
        figure;
89
        surfc(xi,yi,zi)
90
        shading interp
91
        title(strcat('Front Surface Displacement from Gravity Load'))
92
        xlabel('Horizontal Distance from Center (m)');
93
        ylabel('Vertical Distance from Center (m)');
94
        zlabel('Deformation Normal to Surface (m)')
```

```
95
          rotate3d on
 96
 97
          figure;
 98
          v = -2e-9:0.1e-9:2e-9;
 99
          [C,h] = contour(xi,yi,zi,v);
100
          axis equal;
101
          clabel(C,h)
102
          xlabel('Horizontal Distance from Center (m)');
103
          ylabel('Vertical Distance from Center (m)');
104
105
     % least squares fit to Zernikes
106
          xf=reshape(xi,1,ngrid^2);
107
          yf=reshape(yi,1,ngrid^2);
108
          zf=reshape(zi,1,ngrid^2);
109
          rad = sqrt(xf.^2 + yf.^2);
110
          theta = atan2(yf, xf);
111
          % choose only points in the central region !!!!
112
          radiusCentral = 0.06;
113
          disp(['central region radius = ',num2str(radiusCentral,3),' (m)']);
114
          include=find(rad <= radiusCentral);</pre>
115
         radiusNormalize = min(radiusCentral, max(rad));
116
          r = rad(include)/radiusNormalize;
117
          t = theta(include);
118
          z = zi(include);
119
120
          % calculate the mean and rms in the central region
121
          zMean = mean(z);
122
          zPV = max(z) - min(z);
123
          zRms = norm(z)/sqrt(length(z));
124
         disp(['mean surface deformation in the central region = ',num2str(zMean,5),' (m)' ✓
     ])
125
          disp(['p-v surface deformation in the central region = ',num2str(zPV,5),' (m)'])
126
          disp(['rms surface deformation in the central region = ',num2str(zRms,5),' (m)'])
127
128
          % Zernike decomposition
129
         A = [ones(size(r)); r.*cos(t); r.*sin(t); -1+2*r.^2; r.^2.*cos(2*t); r.^2.*sin(2* \checkmark
     t); ...
130
                  (3*r.^2 - 2).*r.*cos(t); (3*r.^2 - 2).*r.*sin(t); 6*r.^4 - 6*r.^2 + 1]';
131
         Ainv = pinv(A);
132
          zernf = z*Ainv';
133
          disp('Zernike fits (nm):')
134
          disp(['Z1, piston
                                     = ',num2str(zernf(1)*1e9,5)])
135
          disp(['Z2, yaw
                                      = ',num2str(zernf(2)*1e9,5)])
136
          disp(['Z3, pitch
                                     = ',num2str(zernf(3)*1e9,5)])
137
          disp(['Z4, focus
                                     = ',num2str(zernf(4)*1e9,5)])
138
          disp(['Z5, astigmatism (0) = ',num2str(zernf(5)*1e9,5)])
139
          disp(['Z6, astigmatism (45) = ',num2str(zernf(6)*1e9,5)])
140
                                     = ',num2str(zernf(7)*1e9,5)])
          disp(['Z7, x-Coma
141
          disp(['Z8, y-Coma
                                     = ',num2str(zernf(8)*1e9,5)])
```

```
142
         disp(['Z9, spherical
                                     = ',num2str(zernf(9)*1e9,5)])
143
144
         % remove piston, tip, tilt
145
         zCorrected = z - zernf(1:3) * A(:,1:3)';
146
         zCorrectedMean = mean(zCorrected);
147
         zCorrectedPV = max(zCorrected) - min(zCorrected);
148
         zCorrectedRms = norm(zCorrected)/sqrt(length(zCorrected));
149
         disp(['mean (piston,tip & tilt removed) = ',num2str(zCorrectedMean,5),' (m)'])
150
         disp(['p-v (piston,tip & tilt removed) = ',num2str(zCorrectedPV,5),' (m)'])
151
         disp(['rms (piston,tip & tilt removed) = ',num2str(zCorrectedRms,5),' (m)'])
152
```