LIGO-T050243-00-D

JPL ANALYTICAL CHEMISTRY LABORATORYQ171Analytical Chemistry and Materials Development Group 3531				
То:	Helena Armandula	10/17/2005		
From:	Mark S. Anderson			
Subject: Analysis	LIGO Aluminum Part Processed in New Oven: Molecular Contamination			

Purpose

An aluminum part was sampled using solvent wipes. This was to determine the level and identity of molecular (oily) contamination on the surface after processing in a new oven.

Method

The analytical swabs consisted of extracted fiber-free lens tissue using dichloromethane solvent. The areas sampled were ~300 square centimeters. The low volatility residue was analyzed using Diffuse Reflectance/ Fourier Transform Infrared (DRIFT/FTIR) spectroscopy. FTIR provides chemical functional group information for quantitative analysis and qualitative identification of materials. The analysis followed the ACL-120 procedure that complies with Mil-STD-1246C Notice 3 and is sensitive to the most stringent level (A/100).

Results and Discussion

The hardware surface is very clean. The tap holes could be cleaned further. A common mixture of compounds was removed from the surfaces and tap holes.

Sample Location	Chemical Functional	~Amount,
	Group	
Side 1 Area 1	AHC, Ester, Silicone	0.04 micrograms/cm^2
	AHC, Ester, Silicone	0.03 micrograms/cm^2
Side 1 Area 2		
Side 2 Area 1	AHC, Ester, Silicone	0.06 micrograms/cm ²
Side 2 Area 2	AHC, Ester, Silicone	0.06 micrograms/cm ²
Side 1 Tap Hole	AHC	12 micrograms total
Side 1 hole untapped	AHC	10 micrograms total
Side 2 Tap Hole	AHC	2 micrograms total
Side 2 hole untapped	AHC	6 micrograms total
Control Swab	-	No oily residue detected <0.1
		micrograms

A 1.0 microgram per square centimeter level is a 10-nanometer average film thickness (density of 1.0).

AHC = Aliphatic hydrocarbon, common lubricant Esters are from plasticizers and are a component of fingerprints Silicone= polydimetylsiloxane

То:	Helena Armandula	10/28/2005
From:	Mark S. Anderson	
Subject:	LIGO Parts: Molecular Contamination Analysis	

Q179

Purpose

Part surfaces were swab-sampled and submitted for chemical analysis. This was to determine the level and identity of molecular (oily) contamination on the surface. In addition, an "All Foil" UHV rated foil was similarly tested for residue.

Method

The analytical swabs consisted of extracted fiber-free lens tissue using dichloromethane solvent. The low volatility residue was analyzed using Diffuse Reflectance/ Fourier Transform Infrared (DRIFT/FTIR) spectroscopy. FTIR provides chemical functional group information for quantitative analysis and qualitative identification of materials. The analysis followed the ACL-120 procedure that complies with Mil-STD-1246C Notice 3 and is sensitive to the most stringent level (A/100).

Results and Discussion

The parts were very clean in terms of oily residue. However, the swabs removed some dark insoluble material that gave it a contaminated appearance. The dark material was fine particles (likely metallic) and this common on machined parts.

Sample	Chemical Functional Group	~Amount,
Part1, 1A PN 50156	Mainly AHC	0.04 micrograms/cm ²
	AHC	~1.0 microgram total
Part 1, 1B Tapped Hole PN 50156		
Part 2, 1A, PN 50156	AHC	~0.04 micrograms/cm^2
Part 2, 1B Tapped Hole PN	AHC	2.7 micrograms total
50156		
Part 3, 1A, PN 50156	AHC	0.03 micrograms/cm ²
Part 3, 1B Tapped Hole PN	AHC	1.6 micrograms total
50156		
Part 4, 1A, PN 50156	AHC	~0.02 micrograms/cm^2
Part 4, 1B Tapped Hole PN	AHC	1.5 micrograms total
50156		
UHV Foil	Trace AHC, very clean	~0.005 micrograms/cm^2

The "All foil" UHV foil was very clean and is a remarkable product.

A 1.0 microgram per square centimeter level is a 10-nanometer average film thickness (density of 1.0).

AHC = Aliphatic hydrocarbon, common lubricant