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1 Introduction and references

The primary topic is the violin mode resonances in the quad suspensions. This document touches
on several aspects of the interaction between the ETM and ITM suspensions and the rest of the
interferometer. A toy global control loop is included to evaluate violin mode damping. It is not
intended for other purposes such as development of whitening filters etc.
Reader beware: most of the graphs shown are from the MATLAB model, which assumes velocity
damping, and for round fibres. The information necessary to extrapolate from these results to
the case of ribbons with structural damping is given in the text.

Main references LIGO-T020205-01: description of the Mathematica suspension modelling
toolkit see also
http://www.ligo.caltech.edu/~mbarton/SUSmodels/asus4XLV5/index.html

LIGO-T040110-01-K: includes statements of OSEM noise requirements and introduction to hy-
brid damping.
Yinglei Huang, PhD thesis, Syracuse 1996: describes the physics of violin modes including fibre
stiffness.
Stefan Gossler, PhD thesis, Hannover, 2004: presents information that allows the passive of
violin mode damping to be evaluated.
The present document completes the work outlined in LIGO-T050108-00-K and effectively re-
places LIGO-T050107-01-K.

2 Model

The model employed here is the Mathematica Quad suspension model and toolkit by Barton.
A few parameters were changed to represent the latest quad suspension design. These changes,
and other aspects of model validation are discussed in section 3 below.
To assist control system design, a MATLAB/Simulink model was built around the state-space
matrices generated in, and then exported from the Mathematica toolkit. The Mathematica
toolkit allows state-space models to be exported with the damping changed to velocity damp-
ing. This change is required to allow straightforward use of MATLAB (structural damping is
imperfectly represented in numerical ‘LTI’ models). The state-space model was exported with
velocity damping set to match the calculated structural damping at the frequency of the first
violin mode. This frequency was chosen as that is the mode whose Q is most significant in any
assessment of stability (it can therefore be expected to be correct in this respect in the MATLAB
generated plots). The Qs of the higher modes are wrong in the MATLAB model.
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There were frequent numerical problems with the model and consistency checks were required,
more significantly in MATLAB.
The Mathematica model includes a comprehensive representation of the 4 pendulum stages,
including four fibres in the lowest stage each composed of 5 ‘beads’ connected by springs. The
fibres therefore have mass, and stiffness is also included at the end sections. The model represents
round fibres and the application of the results to ribbons is discussed in section 8. The model
was modified to produce about 1% spread in the frequencies of the violin modes among the 4
fibres. This was achieved by adjusting the mass of the top two beads on each fibre. The degree of
spread represents approximately the worst case for fibres that otherwise meet the requirements
presented at the monolithic suspension PDR (see T050215-00-K and related documents).
In a model with only 5 beads per wire the mode frequencies of the higher-order modes are not
expected to be correct. Results for higher modes should be viewed with some caution. Real
ribbons will have some taper and so their modes will be non-trivial to calculate in any case.

3 Model validation and adjustment

Version 3.2 of the Mathematica model was employed.
The following changes were made before recalculating the model. Parameter sl = 0.015 – the
value in the latest suspension models. The thermoelastic damping parameters taufibre and
deltafibre were set to the correct values for silica, as was phisilica. The Young’s modulus Y3 of
the final stage was set to the value for silica. Suspension d parameters for the last stage were set
to the correct value (1mm). The values of all of the material parameters used are those from
bench, as distributed with the Mathematica model.
With these changes the damping at the test mass (TM) as a function of frequency was found
to match that predicted by other models and the resulting suspension thermal noise prediction
matches that from bench with the equivalent parameters, over the important frequency range.
Given that the modes of the system appear at the correct frequencies, and the damping is correct
as a function of frequency, it seems very likely that the modes will also have the correct Q and
other properties.
The model simulates round fibres. The results are useful as they allow a direct comparison with
many previous experiments and Huang’s thesis. As is shown below the match is very good and
it is probably adequate to use the (simply calculated) dilution factor to model the change from
fibres to ribbons.
The Q values resulting from the violin modes (of order 109, for the first mode, up to ∼ 2 ×
1010 for the highest mode) are as expected, based on results of other models, and they are all
above the experimental lower limits for comparable test systems (Cagnoli, Heptonstall, personal
communications). The model does not contradict any prior knowledge of which we are aware.
The Mathematica warning LinearSolve::luc was frequently encountered during Q calculation
and graph plotting. The graphs were smooth and the errors are thought to be minor.
Towards the end of the work the mass of top two beads on each fibre was adjusted to produce a
spread in violin mode frequency. This was done by inserting multiplicative factors (0.99 etc.) to
the mass definition in the ‘kinetic’ matrix. The consequences of this change were not validated
in detail.

4 Initial results – violin mode transfer functions, round fibres

Transfer functions from force applied at the penultimate mass (PM) or test mass, in the lon-
gitudinal direction (x in the model), to the x displacement of the beads on the fibres and to
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displacement of the PM and TM were calculated. By comparing the magnitudes of these near
resonance it was possible to assess the effect of fibre stiffness. The observed ratio of fibre to mass
motion was compared to the a model neglecting stiffness (which we call a ‘reaction’ model). The
effect of the fibre stiffness was seen to enhance the motion of the mirror by about 50 times.
In the reaction model the effective mass of the fibre falls off with increasing mode number,
whereas in the stiff-fibre model the stiffness of the end of the fibre should exaggerate the ampli-
tude of the higher modes as seen at the masses. The Mathematica model was employed to find
peak mode-height as a function of frequency. This was done by plotting the PM to TM transfer
function near each resonance. The results were obtained using the ‘findQ’ utility function sup-
plied in the toolkit. (Tip: this often works better if the initial guess for Q is slightly too high.)
The slope of the resulting graph, which was straight on a log-log plot, was close to 1/f−3.5. Since
the underlying PM-TM transfer function falls off as 1/f4, the progressively higher order modes
are actually being enhanced by a larger factor at higher frequency. This can be understood as
a result of the increasingly steeper gradient near the ends of the fibre in higher order modes.
The stiffness of the end section leads to increased coupling to the mass for a given amplitude
of excitation. With a 5-bead wire it is hard to be sure how well the model represents reality in
this respect.
The same calculation repeated in MATLAB gives a steeper slope (near 1/f4, but not constant),
due to the incorrect damping model, and numerical errors. It is only correct at 450 Hz where
the results agree quite well. It is important to remember that the higher order violin
modes are significantly higher than indicated in the MATLAB results given below.
Note also that closed-loop MATLAB plots do not necessarily show the peaks of the modes, even
though the frequency vector was made to include all pole frequencies in the open-loop system.
The MATLAB and Mathematica results are compared in figure 1.

5 The MATLAB/Simulink model

This section is mainly of interest to someone who wants to use the model (i.e. very likely nobody).
The model was constructed using MATLAB R14 SP3, which has only trivial changes from R14.
The state-space system exported from Mathematica consists of the A matrix (with damping set
to be correct at 450 Hz, as explained above), together with a B matrix representing 70 inputs.
The inputs are the 6 support point coordinates, plus forces on each of the remaining 64 degrees
of freedom (6× 4 for the masses plus 2× 20 for the beads – the latter being constrained to move
in x-y planes). The C matrix provides 64 outputs in the same order as the inputs on the B
matrix. The D matrix is the null matrix of the correct size.
A two-level Simulink diagram was made to assist investigation of the x-direction transfer func-
tions. The inner part (figure 2) includes 5 degrees of freedom eddy-current damping (ECD) –
i.e. excluding longitudinal, and the same 5 degrees of freedom of local control applied at the top
mass. The dampers were set up approximately as described in T040110-01. This was to ensure
reasonably correct behaviour of the longitudinal controllers. Nothing was learned beyond that
stated in the previous document, and work still needs to be done in this area. The inner diagram
also includes termination of the unused i/o etc. Its main purpose is to hide all this detail in
normal use.
The outer diagram (figure 3) enables wiring of local and global control blocks, eddy current
damping (ECD) and violin mode damping (passive or active). The simulations reported here
were all of longitudinal transfer functions and their associated poles and zeros. The outer
diagram also includes a representation of a filtered seismic noise spectrum, for use in evaluating
feedback forces (approximated from the curves in the SEI conceptual design document).
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Figure 1: Plots of peak (violin mode) PM-TM transfer function amplitude for the 5 modes
in each model. Only valid at resonance – 449.04, 867.22, 1225.94, 1500.86 and 1673.50 Hz.
Note that the Mathematica results were checked for stability against small perturbations. The
MATLAB curve is included only to show that the MATLAB results underestimate the peak
values. This is likely to be both because the damping model in MATLAB is simplified and due
to numerical imprecision. The violin modes are degenerate among the 4 fibres in these results.

The diagram holds a number of LTI objects (blocks), these are generated by running a script
(generate simulink) before opening the model. The script also defines a useful frequency vector
that includes all of the open loop poles of the system as points (to help to show peaks on graphs
correctly).
The results were obtained using the new ‘Control and Estimation Tools Manager’ to linearise
the system and pass the result to the LTIviewer.
The LTI blocks contain poles and zeros defined by a number of s-plane convenience functions.
Since these are mentioned at various places in the text below, they are stated here for the inter-
ested reader. The lowpass and highpass (freq, gain) are obvious. The ‘transdif’ and ‘transint’
functions are simple real zero pole and real pole zero pairs (parameters are: start freq., stop
freq., gain below first freq.). The other functions used: ‘sculte’ and ‘transintqd’, both produce
a pair of complex poles and zeros (freq. poles, q poles, freq. zeros, q zeros, gain), but with
different scaling of the gain. Frequencies are in hertz.
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Figure 2: The inner block of the simulink diagram.
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6 Violin mode damping

There are several approaches to violin mode damping. These are discussed along with relevant
results from the model and elsewhere.

6.1 Goals and requirements

The primary driver, as concluded in T050108-00-K, is settling time after a disturbance. The
maximum decay time-constant should be much less than an hour to allow recovery from even
violent disturbance within a few hours. This implies a Q ¿ 107, so a reasonable goal is Q ∼ 106.
This is much lower than is required for reliable global control (see section 7). Note that if an
active solution to violin mode damping is chosen, it may be desirable to make it ‘adapt’ to
the mode amplitude. In this way the damping time can be minimised for a given noise level
in science mode. For the purpose of evaluation, the target Q is taken to be ≈ 106, although
a solution that just failed to meet this goal may still be considered acceptable if it has other
merits (i.e. the requirement is not yet clear).
In general, additional damping leads to increased noise – either thermal or electronic for passive
or active methods, respectively. The noise must be low enough to meet the ‘factor of 10’
requirement on technical noise. In addition noise could increase the violin mode amplitude
above the thermal level (which we believe to be acceptable with respect to ADC range, etc.).
The goal is, of course, to obtain a similar or lower level of excitation of the violin mode in
science mode compared to the undamped case, and to achieve this in the shortest time after a
disturbance.
The mechanisms and materials involved must be light enough to be supported by the suspension
and/or its support structure, and not too complex to house in vacuum.

6.2 Passive methods

Two passive methods are considered. First is direct application of a damping compound (like
the amorphous Teflon employed in GEO 600) to the ribbons. Second is the addition of tuned
dampers on the PM.
Taking the latter first, this is theoretically possible, but practically very difficult. To obtain rea-
sonable coupling requires rather high Q tuned dampers (at least 105). It is probably too difficult
to maintain these in a suitably tuned condition (against temperature drifts etc.). Also about 12
such dampers would be required to cover the modes up to around 1.2 kHz (per suspension). The
advantage of this method would be simplicity of wiring, and avoidance of risk to the ribbons.
Going back to the GEO 600 method, the main disadvantages are potential vacuum incompat-
ibility, potentially excessive vertical-mode damping (see below), and possibly reduced rate of
success in ribbon production. The vacuum compatibility issue has been looked at (monolithic
review and referenced documents), and the increased failure rate was not significant in GEO
(probably a few % of fibres were lost at the coating stage). That leaves the vertical damping
to be evaluated. This method would require development of a semi-automated process to assist
application of the desired distribution of damping material on to ribbons.
The advantages are that essentially all modes are damped at least to some extent (not true with
the active systems), and simplicity of design/interfacing (no cables etc.)

6.2.1 Passive ribbon damping: desired damping vs. undesired damping

Teflon coating has been suggested as a solution to limit the Q of the violin modes of the sus-
pension ribbons in Advanced LIGO. Although the experience from in GEO 600 was positive,
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the parameters and the performance of Advanced LIGO are quite different, so much so that
a dedicated study is necessary. The results from GEO 600 are found in Stefan Gossler’s PhD
thesis, where they are analysed in detail. We have checked these results and applied them to
the Advanced LIGO case.
From the GEO 600 tests the imaginary part of the Youngs modulus of Teflon was obtained. The
result is: ETΦT = 3×108 Pa. Here we use E for Young’s modulus and Φ for loss angle, subscript
T for Teflon. From this figure it is possible to work out the loss angle of the vertical bounce
mode of the last stage of the suspension. The total spring constant of a fibre or ribbon coated
with Teflon is given by the following relation:

kt =
1

1
k1

+ 1
k2+kc

,

where

k1 =
ES

L− x
(1)

k2 =
ES

x
(2)

kc =
ETST

x
, (3)

are the spring constants of uncoated silica fibre, coated silica fibre and Teflon, respectively.
Further, for our case, E = 7 × 1010 Pa, the cross-section S = 1.28 × 10−7 m2, the fibre length
L = 0.6m, of which length x is coated with a coating of cross section S = 2.4× 10−7 m2, i.e. a
layer thickness of about 100µm all round the fibre or ribbon.
This results in a loss angle associated with the spring kt of ≈ 1.3× 10−3 if a 100 mm length of
the ribbon is coated. This produces about 300 times the tolerable thermal noise around 10Hz,
and about 30 times the tolerable noise at around 100Hz. The detail is shown in figure 4 where
it should be remembered that the added noise should be, for example, ≤ 10−20 m/

√
Hz at 10 Hz.

Now, we concentrate our interest on the damping performance. Assuming a total coating length
of 100 mm distributed as 80mm across the middle of the fibre and 20 mm across the point at a
quarter of the total fibre length, the dilution factor is given by the following graph at frequencies
ranging from 100 Hz to 1600 Hz (figure 5).
The first three modes are at frequencies of 493 Hz, 985 Hz and 1477 Hz 1 The effect of the addi-
tional mass of the coating has not been taken into account on the mode frequency calculation.
The numbers on the y-axis have to be multiplied by Et/E = 3× 108/7× 1010 ≈ 0.0043 to have
the actual Φ of the suspension in the longitudinal direction. For the first violin mode, the value
of the loss angle is 1/Q ≈ 2.2e− 8. This value corresponds to a decay time of about 8 hours.
Although the effect on the vertical bouncing mode was seen to be huge, making the overall
thermal noise figure over 10 times higher than the target value, the damping effect is completely
inadequate.
There are, of course, some degrees of freedom to explore, like the thickness of the coating. The
damping effect depends more strongly on the coating thickness than does the loss angle of the
vertical mode. Again, the 100µm thickness coating is already considered to be quite thick. Even
a thickness increase of 10 times, rather unfeasible, does not produce a much better result.
The reason why the passive damping is much harder in Advanced LIGO than in GEO600 is
because the elastic energy density stored in the LIGO fibre is very much higher. The tolerance
for damping of the bounce mode is also very much smaller.

1These differ from the frequencies given by the approximate numerical model as presented elsewhere in this
document.

8 20-12-2005 LIGO-T050267-00-K



1 .E-24

1 .E-23

1 .E-22

1 .E-21

1 .E-20

1 .E-19

1 .E-18

1 .E-17

1 .E-16

1 .E-15

1 .E-14

1 .E+ 00 1 .E+ 01 1 .E+ 02 1 .E+ 03

Fr equency    [ Hz ]

d
is

p
la

c
e

m
e

n
t 

  
[m

/
s

q
rt

(H
z

)]

Figure 4: Thermal noise arising from Teflon coating applied to 10 cm (upper, red curve) and
1 cm (middle, blue curve) of the ITM and ETM suspensions, compared to the total thermal
noise without any added damping (lowest, magneta curve). The additional thermal noise is seen
to be far beyond what is acceptable.

6.2.2 Conclusion on passive damping

Due to the properties of the ribbons, and especially the very high tension upon them, passive
damping does not reduce the damping time sufficiently (i.e. to less than of order days) without
also introducing unacceptable amounts of thermal noise in the bounce mode.

6.3 Active methods

Two active methods are considered. The first employs direct sensing at the ribbons, with
feedback to the PM, the second has sensing at the PM, with co-located feedback. (The third
possibility involving feedback to the ribbons does not seem to bring any significant advantage
except, perhaps, unconditional stability for very high order modes – modes that we are unlikely
to need to damp in any case. The disadvantage of actuators acting on the ribbon is the lack of
a conveniently located, quiet platform from which to mount them.)
Taking the latter method first, this has the disadvantage of requiring a sensor which is ∼ 105

times better than direct sensing of the ribbons. It is also likely to be hard to make this method
stable when the modes of the four ribbons are spread too widely. Consider that the modes may
be spread by up to 1% in frequency. There is no point in the loop where the signals for the
4 ribbons become naturally separated for individual filtering, so a filter would need to be very
complicated.
Direct sensing of the ribbons has the advantages of moderate sensing noise requirements and
simplicity of loop design. The disadvantages are that 4 sensors are needed for each suspension
and not all modes can be damped. The sensing should be near the top of the ribbon, perhaps
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Figure 5: Effect of chosen distribution of Teflon expressed as the dilution factor as a function of
frequency.

20% of the way down to allow damping at least 4 modes per ribbon - this is seen to be possible
in the ‘5 bead’ model.
To estimate the required sensor performance, we assume that the desired Q ∼ 106. There are
two ways in which sensor noise could limit system performance. First the residual rms motion
of the ribbon could lead to ADC-range problems. To evaluate this we note that the motion will
be dominated by the component within the resonance bandwidth. For the first mode that is
∼ 4× 10−4 Hz, when damped to the desired Q.
It is very likely that any practical filter has lower Q than the (damped) violin mode, and sensor
noise will tend to drive the system at frequencies just outside the bandwidth of the mode. The
advantage of 4 separate sensors is that each can be equipped with filters to damp one set of
modes (those for one ribbon). The individual filters can be of much higher Q. The limit to
the filter Q is probably set by thermal drift of the violin mode frequencies and so is probably
of order 105 (thermal change in Young’s modulus being the main effect). The sensor noise can,
therefore, be suppressed by a factor of up to ∼ 105 outside a band about ∼ 4× 10−3 Hz around
the fundamental violin mode (for example).
The MATLAB model was used to test the effect of sensor noise in the circumstance described
above. First with simple Q = 100 filters covering each band of violin modes (as a very crude
first step). In this case there is filtering of at least 170 dB (to the TM) except in a narrow band
around the violin modes. To ensure that the resulting TM displacement noise does not exceed
8 × 10−22m

√
Hz the sensor noise should not exceed ∼ 3 × 10−12m

√
Hz. In that case the violin

mode amplitude is about 10−13m rms on the ribbons and ∼ 10−18m rms on the TM, this does
not seem to be a problem.
The situation can be further improved by implementing separate higher Q filters for each ribbon.
Increasing the filter Q to ∼ 104 allows the servo gain to be reduced by another 40 dB outside the
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narrow bands of the filters. The sensor could then be about 100 times noisier, when the violin
modes would still be below their free (thermal noise) level observed at the TM. Clearly though,
maximum flexibility would be obtained by using the best possible sensor.
A sensing range of about 1 mm in two dimensions will be required to cover all possible suspension
alignments within the structure. It would be wise to specify a design where the minimum
clearance to the ribbon is about 1 mm.
There are two technologies appropriate to this sensing application: optical sensing and capacitive
(electrostatic) sensing. A sensor design study will be required if the active solution is pursued.
A low Q bead feedback loop covering the first 3 modes of all 4 ribbons with non-degenerate
mode frequencies is defined by

ag = 0; bg = 0; cg = 0; dg = 1; [a,b,c,d] =
transintqd(449,1e2,449,6,1);
[ag,bg,cg,dg]=series(ag,bg,cg,dg,a,b,c,d); [a,b,c,d] =
transintqd(867,1e2,867,3,1);
[ag,bg,cg,dg]=series(ag,bg,cg,dg,a,b,c,d); [a,b,c,d] =
transintqd(1226,1e2,1226,2,1);
[ag,bg,cg,dg]=series(ag,bg,cg,dg,a,b,c,d);
bead = ss(ag,bg,cg,dg);

(In examples below all the ‘series’ commands are omitted for clarity.) Note that overall phase
lead is generated in a separate filter shown in the model diagram (see figure 3).
A high-Q bead feedback loop covering the first 4 modes of one ribbon is defined by the series
connection of

ag = 0; bg = 0; cg = 0; dg = 1e-5;
[a,b,c,d] = transintqd(449.037,1e5,449.037,14,1);
[a,b,c,d] = transintqd(867.218,1e5,867.218,3,1);
[a,b,c,d] = transintqd(1225.941,1e5,1225.941,1.4,1);
[a,b,c,d] = transintqd(1500.864,1e5,1500.864,1,1);

Both of these work, the latter with much better sensing noise rejection as explained above.
Clearly it would be a little more effort to determine the values for the poles in the latter filters.
The former loop was implemented for the results presented in the following sections. The
resulting violin mode Qs are clustered around 106 as is indicated in figure 6.

6.3.1 Conclusion on active damping

7 Global control with violin mode damping

This section is intended to show that the violin modes, damped as above, create no great
challenge to global control design. The design presented here is by no means optimised, but
should be adequate to meet most requirements. The results replace those in T050107-00. 2

In all cases presented here at least 30 dB margin was included between the peak of a violin mode
and unity gain, to permit enhanced transmission with ribbons (23 dB) as predicted in section 8,
and at least 7 dB margin. As stated above, the simplified damping model and numerical errors
in MATLAB suggest that this margin should increase with mode-frequency (by a few dB per

2Although it was originally intended that other aspects of global control be discussed in this document, work
is underway within ISC to consider these other aspects. A separate document will follow to review the design of
the actuators. This will be written when ISC requirements are clarified.

11 20-12-2005 LIGO-T050267-00-K



Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

−12 −10 −8 −6 −4 −2 0

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
4

3.2e−074.6e−076.4e−079.5e−07

1.5e−06

3e−06

200

400

600

800

1e+03

1.2e+03

1.4e+03

1.6e+03

200

400

600

800

1e+03

1.2e+03

1.4e+03

1.6e+03

9e−082e−073.2e−074.6e−076.4e−079.5e−07

1.5e−06

3e−06

9e−082e−07

Figure 6: Poles associated with violin modes damped (blue, typical Q ∼ 106) and undamped
(green, typical Q ∼ 1010).

mode to be safe). It is observed that this is not particularly problematic as only the first couple
of modes play a part in servo design if low-pass filters are fitted as suggested.
In the TM and PM feedback paths the design employs a relatively simple, low-pass filter above
the 100 Hz target UGP (arbitrary choice, above the optical spring frequency, but in line with
other suggestions), and below the first set of ribbon modes. The filter offers a simple way to
kill all violin modes without the need for complex tuning. The phase shift at 100Hz is slightly
worse than the many notch filters otherwise required (30 degrees phase margin). The filtering
provided is much stronger than necessary and should even suffice if the violin mode damping
is turned off. A weaker filter could be used with slightly better phase margin at the UGP. A
similar arrangement suffices for PM feedback (here the crossover is set at 20Hz when the phase
margin is 30 degrees). 3

Performance of these paths is shown in figure 7, note that the violin modes are shown accurately
on the plot (their peak values are plotted).

3The modelling suggested that under some circumstances a little filtering was also needed in the UIM path,
but this seems incredible, perhaps numeric precision is stretched too far. Anyway it is trivial to add if really
needed.
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Figure 7: Open loop global control transfer function showing the effect of the 3 feedback paths
with the violin mode damping on. The UIM path is of poor design especially around 8 Hz. The
peaks of the violin modes are correctly shown to be negligible – their peak amplitudes are shown
on the graph but that barely modifies the underlying curve.

7.1 TM feedback

The presence of the violin modes affects the response of the TM to forces in the relevant frequency
range.
There is no difficulty arising from the spread of modes among the various fibres (although the
number of notches becomes large with 8 ribbons per interferometer – two ETMs).
It is, however, worth considering how many such modes require to be notched and whether
there could be a simpler approach. The simplest path seems to be to include a low-pass filter
between the unity gain frequency and the first violin mode. This filter reduces the phase margin,
but probably by an acceptable amount. Lower Q notches can then be employed at all relevant
modes. Either approach should work, a toy low-pass model is included.
The ‘globalt’ block is the series connection of the following:-

ag = 0; bg = 0; cg = 0; dg = -12e5;
[a,b,c,d] = transdif(30,190,1);
[a,b,c,d] = transdif(30,190,1);
[a,b,c,d] = transint(3,30,10);
[a,b,c,d] = sculte(270,0.7,447,20,1);
[a,b,c,d] = sculte(310,1.4,450,20,1);
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[a,b,c,d] = sculte(350,5,867,50,1);

As can be seen in figure 8, the notching may even allow stable operation with the (active) violin
mode damping turned off, as the necessary 30 dB margin is just available at the fundamental
mode.
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Figure 8: Open loop global control transfer function showing only the TM feedback with violin
mode damping off (green). When the damping is on the peaks are reduced by around 60 dB
(essentially invisible blue curve, but see figure 7 above).

7.2 PM feedback

The presence of the violin modes has a strong effect on the PM feedback path, especially if its
crossover to TM feedback is above about 20 Hz. The main problem is the fundamental mode.
The need to have relatively strong phase lead at the crossover tends to ‘boost’ the violin mode
unless a low-pass filter is included and/or yet more notches which of course may be shared with
the TM path if that is desired.
The ‘globalp’ block is the series connection of the following:-

ag = 0; bg = 0; cg = 0; dg = -14e7;
[a,b,c,d] = transdif(4,40,1);
[a,b,c,d] = transint(0.1,20,200);
[a,b,c,d] = transintqd(2,10,2,1,1);
[a,b,c,d] = transdif(10,30,1);
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[a,b,c,d] = sculte(100,5,447,100,1);
[a,b,c,d] = sculte(150,10,451,100,1);
[a,b,c,d] = sculte(200,20,867,100,1);

7.3 UIM feedback

This loop requires to be improved, but plays little role in the study of violin modes.

8 From fibres to ribbons

The model represents round fibres, the actual suspensions should have ribbons, the main differ-
ence is a change in the stiffness of the end sections. This can produce a difference in the peak
transmissibility at the violin modes. Here are a few comments on the link with theory.
In the notation adopted by Huang, the energy of the nth mode of a fibre is

W ≈ π2mf2
1 (nAn)2,

where An is the amplitude of the mode, m the fibre mass f1 the fundamental frequency, and
the approximation neglects elastic energy in favour of the greater tension energy (larger by the
dilution factor).
The corresponding motion of the TM is predicted to be

AM

An
= nπ

√
EI

TL2
,

where AM is the TM motion, and the factor with the square root is half of the dilution factor.
The dilution factor is, in turn, the ratio of twice the bending length (

√
EI/T ) to the total

length L. Here Young’s modulus E is 7×1010N/m2 and tension T is about 100 N. For the round
fibres in the model I = πr4/4 ≈ 1.3 × 10−15m−4. For the ribbons the corresponding figure is
ab3/12 ≈ 10−16m4. Under the appropriate circumstances the ribbon modes stick up ≈ 23 dB
more than the fibre modes.
Here ‘appropriate circumstances’ means where the ‘driving force’ is applied to a mass, when the
ribbons take whatever energy they need without significantly affecting the motion of the mass.
Application of a driving force on to the ribbons themselves does not lead to any change from
the reaction model because the ribbons appear to be stiffer due to the tension (so are harder to
drive in the first place). As an example, the thermal noise force in fibres or ribbons, ideal or
otherwise, leads to – approximately – the same TM motion for both cases.
Thermal noise kinetic energy – 1

2kBT– in the violin mode, driving the two 40 kg masses at about
400Hz, leads to a TM motion of roughly 2×10−15 m rms. It should not be too hard to provide a
sensor able to reduce the amplitude at the violin modes, even below thermal noise, if the ribbons
are directly sensed.
For our parameters, the observed factor of ∼ 50 increase in the fundamental mode transmission
seen in Mathematica due to fibre stiffness compares very well to a prediction of about 63 times
from Huang’s result. The lack of equally good agreement for the higher modes is expected given
the limitations of the 5-bead model. In the worst case the higher modes would stick up a little
more than predicted here.
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9 Summary

Due to the high Q of the violin modes in the ITM and ETM quad suspensions, it will be necessary
to damp the modes to some extent to obtain sufficiently rapid recovery from an excitation. The
goal would be to damp the lower-frequency modes to Q ∼ 106. With this Q, or even much
higher, the effects on global control are quite mild, requiring only simple filtering to suppress
completely.
Active damping of the violin modes should work, but a design study for a sensor is required to
find the best approach. Passive damping does not seem to offer a practical solution for damping
of the most important, lower order modes.
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