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THE OPTIMAL FILTER PROCEDURE

Adrian C. Melissinos

January 27, 2006

1. A measure of the stochastic background

We start by expanding the metric perturbation hαβ(t, ~x) in plane waves [1]

hαβ(t, ~x) =
∑

A

∫ ∞

−∞
df

∫
dΩ̂h̃A(f, Ω̂)e2πif(t−Ω̂·~x/c)eA

αβ(Ω̂) (1)

with α, β = 1, 2 since we are in the TT gauge. For an isotropic, unpolarized and

stationary background it holds that the ensemble average of the Fourier amplitudes

is completely uncorrelated

< h̃∗A(f, Ω̂)h̃A′(f
′, Ω̂′) >= δ2(Ω̂, Ω̂′)δAA′δ(f − f ′)|h0(f)|2 (2)

and

< h̃A(f, Ω̂) >= 0 (3)

The “power”, at frequency, |h0(f)|2 is expressed in units of (strain)2/Hz. In contrast

hαβ(t, ~x) has dimension of (strain); and h̃A(f, Ω̂) has dimensions of strain/Hz.

We are interested in the (frequency spectrum of the) energy density of the gravi-

tational radiation [2]

ρG =
c2

32πG
< ḣαβ(t, ~x)ḣαβ(t, ~x) > (4)

To evaluate Eq.(4) we use the plane wave expansion given by Eq.(1), take the time

derivative and carry out the sums over A,A′ (factor of 4) and the integrations over

dΩ̂, dΩ̂′ (factor of 4π) taking account of Eq.(2). We also integrate over df ′ and reduce

the range of the df integration from ∞ → +∞ to 0 → +∞ (factor to 2, also note

that |h0(f)|2 = |h0(−f)|2) to obtain

ρG =
c2

G
4π2

∫ ∞

0
dff 2|h0(f)|2 (5)

But by definition
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ρG =
∫ ∞

0
df

dρG

df
=

∫ ∞

0
df

1

|f |
dρG

d(lnf)
(6)

Thus we can relate |h0(f)|2 to

1

ρc

dρG

d(lnf)
= Ω(f), (7)

or

|h0(f)|2 = ρc
G

c24π2

1

|f |3 Ω(f) (8)

where ρc is the closure density of the universe defined through

ρc =
3c2H2

0

8πG
(9)

with H0 the present-day value of the Hubble constant. Thus we can write

|h0(f)|2 =
3

32π3
H2

0

1

|f |3 Ω(f) (10)

Finally, we wish to connect the power spectrum |h0(f)|2 to the mean square fluc-

tuations of the strain in the time domain. For a pair of Fourier conjugate variables

Parseval’s theorem states

∫ ∞

−∞
|h(t)|2dt2 =

∫ ∞

−∞
|h̃(f)|2df (11)

The mean square fluctuations are related to the power spectrum since

< |h(t)|2 >=
1

T

∫ T/2

−T/2
|h(t)|2dt =

1

T

∫ ∞

−∞
|h̃(f)|2df = 2

∫ ∞

0
|h0(f)|2df (12)

In the present case of the stochastic background, the detection efficiency (antenna

pattern) of the interferometer depends on Ω̂. Averaging over all angles and polariza-

tions introduces a factor of 8π/5 (see Eq.(3.17 of [1]). Thus the mean value of the

detected strain squared is given by

< |hd(t)|2 >=
16π

5

∫ ∞

0
|h0(f)|2df (13)
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2. Detecting a stochastic background by cross-correlation

It is assumed that the gravitational strain h(f) is much smaller than the noise

n1,2(f) in the two detectors (assumed to be co-located and co-aligned) that are being

correlated

s1(t) = n1(t) + h(t)

s2(t) = n2(t) + h(t) (14)

It then follows that the mean square gravitational strain

1

T

∫ T/2

−T/2
dt < s1(t)s2(t) > = < h2(t) > ≡ < S > (15)

We designate this mean square signal by < S > and call it the “statistic”. In

obtaining Eq.(15) we set the terms < n1(t)n2(t) >,< n1(t)h(t) > and < n2(t)h(t) >

equal to zero.

We can also calculate the variance of < S >

σ2
<S> = < S2 > − < S >2 ' < S2 > (16)

where the last step follows because < S > is much smaller than < S2 > which is

dominated by the noise in the detectors.

σ2
<S> =

1

T 2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′ < s1(t)s2(t)s1(t

′)s2(t)
′)) >

=
1

T 2

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′ < n1(t)n1(t

′) >< n2(t)n2(t
′) > (17)

but by definition

< n(t)n(t′) > =
1

2

∫ ∞

−∞
dfe2πif(t−t′)P (f) (18)

where P (f) is the one-sided power spectral density (of the noise) in the detector.

Namely P (f) is defined through

< n2(t) >=
∫ ∞

0
P (f)df (19)
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Inserting Eq.(18) into Eq.(17) and carrying out the integrations over dt yields

δ2(f − f ′). One of the δ-functions is integrated over df ′ and the other one is replaced

by T , the length of the integration interval that generated it. Thus

σ2
<S> =

1

4T

∫ ∞

0
dfP1(f)P2(f) (20)

By using Eq.(13) in Eq.(15) the expected value of the statistic is

< S >=
8π

5

∫ ∞

−∞
df |h0(f)|2 (21)

The statistic < S > was defined by Eq.(15) in terms of strain in the time domain.

We wish to obtain an equivalent expression for < S > in terms of the measured

amplitude spectral densities h(f): (namely the measured strain per
√

Hz). We do this

by using the equivalent of Eq.(1) without the dependence on angle and polarization

h(t) =
∫ ∞

−∞
dfh̃(f)e2πift ≡

√
T

∫ ∞

−∞
dfh(f)e2πift (22)

Here T is the time interval used to generate h(f) from the time domain data. Recall

that |h(f)|2 = P (f).

It then follows that

< S > =
1

T

∫ T/2

−T/2
dt < h1(t)h2(t) >

=
∫ T/2

−T/2
dt

∫ ∞

−∞
df

∫ ∞

−∞
df ′ < h∗1(f)e−2πifth2(f

′)e2πif ′t >

=
∫ ∞

−∞
df < h∗1(f)h2(f) > (23)

where we also used the reality of h(t).

Eqs.(23) and (20) allow us to calculate from the data the statistic and its error.

In spite of the infinite range of the integrals, < S > will remain finite because |h0(f)|2
is bounded (see Eq.(10)) and the experimental cross correlation

< h∗1(f)h2(f) > (24)

is different from zero only for a finite frequency interval. In practice we limit the

frequency integrals in both Eq.(23) and Eq.(20) to the physically relevant range by

introducing an overlap function or an “optimal filter”.
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Nevertheless, Eqs.(23 and 20) show that as the range of the frequency integration

increases, the statistic < S > grows as ∆f while its standard derivation grows only

as
√

∆f , assuming that < h1(f)h2(f) > and P1(f)P2(f) are reasonably constant in

that range. We also see that while < S > is independent of the overall integration

time, σ<S> decreases as
√

T . Thus the signal to noise ration is proportional to

(
S

N

)

<S>
∝

√
T∆f (25)

Recall that the statistic < S > is related to |h0(f)|2 and therefore

(
S

N

)

<S>
'

√
T∆f

[ |h0|
nrms

]2

(26)

where nrms is the rms noise amplitude in the detectors.

We can call

|h0|2
(nrms)2

' |h0(f)|2
[P1(f)P2(f)]1/2

∣∣∣∣
averaged over the region of interest

(27)

the input (S/N)in ratio, and by our premises (S/N)in ¿ 1. In contrast, if one could

determine |h0(f)| using a single interferometer, the corresponding input (S/N) ratio

would be
√

(S/N)in À (S/N)in.

3. The Optimal filter

We can apply to Eq.(23) a “filter”, Q(f), in the frequency domain. The equation

for the statistic then takes the form

< S >=
∫ ∞

−∞
df < h∗1(f)h2(f) > Q(f) (28)

Of course, the filter must be normalized

∫ ∞

−∞
dfQ(f) = 1 (29)

The shape (spectrum) of the filter is dictated by the properties of the detector and

by the expected spectrum of the signal. A derivation of Eq.(28) and of Eq.(30) from

first principles is given in the Appendix.

The two co-located and co-aligned interferometers H1 and H2 record amplitude

spectral densities h1(f) and h2(f) respectively expressed in strain /
√

Hz.
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Q(f) is the normalized optimal filter which we choose as

Q(f) =
N

P1(f)P2(f)
N =

1∫∞
−∞ df/P1(f)P2(f)

(30)

so that Eq.(29) is satisfied. P1(f), P2(f) are the calibrated, noise dominated power

spectral densities of H1 and H2.

It follows from Eq.(20) that the variance of S is

σ2
S =< (S− < S >)2 > ' 1

4T

∫ ∞

−∞
dfP1(f)|Q(f)|2P2(f) (31)

with T is the length of the time record used to carry out the Fourier transform.

• At this point we can make some simplifying assumptions:

1. Because P1(f) is so much smaller in the fsr region than everywhere else,

(i.e. the filter peaks) we restrict the integration to ± 200 Hz around the

fsr.

2. In this region h(f0) can be assumed constant. It follows then from Eqs.(21,

23 and 28) that

< S >= |h(f0)|2
∫ ∞

−∞
Q(f)df = |h(f0)|2 (32)

• Since in our code we use counts (uncalibrated data) we must carefully dis-

tinguish between calibrated data (in strain/
√

Hz) and uncalibrated data (in

counts/
√

Hz. We designate the uncalibrated data by an overbar, where

h(f) = h(f)R(f) (33)

R1(f), R2(f) are the complex response functions for H1 and H2. They can be

expressed as

R(f) =
1

H(f)C(0)
(34)

Here H1(f), H2(f) are the dimensionless complex transfer functions for H1 and

H2 normalized to unity at f = 0. Note that at 37.52 kHz (the fsr for H1 but
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not for H2) they differ by a factor of ∼ 140; C1(0) and C2(0) are the sensing

functions, evaluated at f = 0 and for S4 they are given by

C1 = 2.46× 1021

(35)

C2 = 1.17× 1021

• We can now express Eqs.(29,30) in uncalibrated data

1/N =
∫

df
1

psd1 psd2

1

|R1|2|R2|2

=
∫

df
1

psd1 psd2
(C1C2)

2|H1(f)|2|H2(f)|2

= (C1C2)
2

∫
df
|respcc(f)|2
psd1 psd2

(36)

We introduced the expected response of the cross correlation defined through

respcc(f) = H1∗(f)H2(f) (37)

Similarly it follows that

Q(f) = (C1C2)
2N |respcc(f)|2

psd1 psd2
(38)

Next we express the statistic in uncalibrated data

< S > =
∫

df < h
∗
1(f)h2(f) > Q(f)R∗

1(f)R2(f)

= (C1C2)
2N

∫
df < cc(f) >

|respcc(f)|2
psd1 psd2

1

C1C2H∗
1 (f)H2(f)

= C1C2N
∫

df < cc(f) >
respcc(f)∗

psd1 psd2
(39)

where we used the notation

< cc(f) >=< h
∗
1(f)h2(f) > (40)
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for the measured (uncalibrated) cross-correlation in (counts)2/Hz.

Finally introducing the normalization (Eq.36) into Eq.(39) we have

< S >=

∫
df < cc > (respcc)∗/(psd1 psd2)∫

df |respcc|2/(psd1psd2)
· 1

C1C2

(41)

Only the real part of Eq.(41) can be different from zero, as can be seen from

Eq.(32). However since the phase of < cc > depends on IFO tuning we evaluate

both the real and imaginary part. Further

σS =
1

[∫
df |respcc|2/psd1 psd2

]1/2

1

2
√

T
· 1

C1C2

(42)

From Eqs.(41,42) we see that the output of our code must be multiplied by

1/C1C2 = 3.47× 10−43 (43)

to yield < S > and σ<S> in units of (strain)2/Hz.

• We can also “fit” the uncalibrated data either without or with an optimal filter.

For the cross-correlations, and using the optimal filter of Eq.(30) or Eq.(38), we

proceed as follows

|h(f0)|2Q(f) = N < h
∗
1(f)h2(f) >

psd1 pds2

|respcc(f)|2
H∗

1 (f)H2(f)
C1C2

or

|h(f0)|2(C1C2)N |respcc(f)|2
psd1 psd2

= N < cc(f) >

psd1 psd2
(respcc)∗C1C2

or

|h(f0)|2|respcc(f)|2 =< cc(f) > (respcc)∗
1

C1C2

(44)

That is, if we fit

< cc(f) > (respcc)∗ (45)
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for the component that behaves spectrally as |respcc(f)|2, we obtain |h(f0)|2C1C2.

Again only the real part of Eq.(44) should return a good fit if the phases have

been properly adjusted.

The above result should be equivalent to that obtained from calculating the

statistic < S > by integration. As discussed below, numerically the two meth-

ods agree.

4. Injections

We injected signals in the frequency domain by adding a random signal to actual

data (or to simulated data) as follows and redefining

h1(f) = n1(f) + α · rn(f) ·H1(f) ·
(46)

h2(f) = n2(f) + α · rn(f) ·H2(f)·

Here n1,2(f) is the (uncalibrated) amplitude spectral density for detectors 1,2 in

strain/
√

Hz. Namely n1,2(f) are the properly normalized Fourier transforms of the

time series, such that

|n1,2(f)|2 = P 1,2(f) ≡ psd1, 2 (47)

The Fourier transforms were carried out over segments of length ∆t = 32 s or with

BW = 1/32 Hz.

rn(f) = r1(f) + ir2(f) (48)

where r1(f), r2(f) are vectors containing real random numbers, Gaussian distributed

with zero mean and unit standard deviation. The real parameter α defines the in-

jection strength. H1(f) and H2(f) are the complex transfer functions for the two

detectors normalized to unity at zero frequency as already discussed in connection

with Eq.(34).

The program calculates

h
∗
1(f)h2(f)
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for each 32 s segment. It then averages these values over three frames, or 24 segments

outputting

< h
∗
1(f)h2(f) >=< cc(f) > (49)

If the injected signals are much smaller than n1,2(f) and if the averaging is

adequate, we expect as shown in Eq.(15) that

< cc(f) >= α2〈|rn(f)|2〉H1∗(f)H2(f) (50)

Since

〈|rn(f)|2〉 = 〈|r1(f)|2 + |r2(f)|2〉 = 2

and using the notation of Eq.(37) we expect

< cc(f) >= 2α2respcc(f) (51)

When this result is introduced into the analysis program at Eq.(41) we find for the

statistic (setting C1 = C2 = 1)

< S > = 2α2 (52)

In this limit the standard deviation is independent of the injection as is obvious

from Eq.(42). This is not anymore true when the injections modify the values of the

pds’s.

For calibration purposes we note that

1/C1C2 = 3.5× 10−43

and therefore the injected power, (strain)2/Hz is

|h(f0)|2 = 7× 10−43α2/Hz

or

Ω(f0) = 6.8× 10−11α2|f0|3

The results that we have obtained are listed in the Table and shown in Fig.1. Both

the statistic < S > and the fitted values to the spectrum are given, as a function of

10



the parameter α2. The expected value (in the appropriate limit) is 2α2 as in Eq.(52).

The values of T, ∆f are

T = 768 s ∆f ' 130 Hz

so that
√

T∆f ' 30.
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Table 1 Results of injections using three

simulated data frames

α2 1 0.1 0.01 10−3 10−4

< S >= rstat 1.832 0.237 0.019 2.7× 10−3 2.7× 10−4

σ 0.010 0.003 0.001 0.4× 10−3 2.7× 10−4

fit 1.893 0.252 0.020 4.2× 10−3 0.6× 10−4

√
∆χ2 150 56 15 7.6 0.2

(S/N)∗in 100 10 1.0 0.1 0.01

(S/N)out 180 79 19 6.8 1

istat 0.014 −0.001 3× 10−4 4× 10−4 −0.4× 10−4

σ 0.010 0.003 0.001 4× 10−4 2.7× 10−4

fit 8× 10−4 −0.01 0.001 0.001 −1.5× 10−4

√
δχ2 0.06 2.5 0.8 2.0 0.5

Notes:

1. (S/N)in is calculated from Eq.(27) taking (nrms)
2 = 0.02. (S/N)out = < S >/σ

2. Only the last three entries satisfy the limit of small signal to noise input.

3. There may be a bug in the code (the injection or analysis part), but the results

seem convincing. Need to make longer runs with small (S/N)in.
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Appendix

Introducing the optimal filter in the evaluation of the statistic < S >

The filter is optimal in the sense that it maximizes the (S/N) ratio for the statistic.

We start from Eq.(3.52) of ref. [1].

< S > =
1

T

∫ ∞

−∞
df

∫ ∞

−∞
df ′δT (f − f ′) < h̃∗1(f)h̃2(f

′) > Q(f ′) (A1)

where h̃1(f), h̃2(f
′) and Q(f ′) are the Fourier transforms of h1(t), h2(t) and Q(t− t′)

and δT (f − f ′) is a finite approximation to the δ-function. Replacing

h̃1,2(f) =
√

Th1,2(f) and carrying out the integration over df ′ immediately leads to

Eq.(28).

Following the same steps as in section 2 leading to Eq.(31) we find

< S > =
8π

5

∫ ∞

−∞
df |h0(f)|2Q(f) (A2)

Similarly from the steps leading to Eq.(20) we find

σ2
<S> =

1

4T

∫ ∞

−∞
dfP1(f)P2(f)Q(f) (A3)

As shown in [1] the form of Q(f) that maximizes < S > /σ<S> is simply

Q(f) = N 1

P1(f)P2(f)
(A4)

This form is used in Eq.(30) of section 3.
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