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1. In tro duction

The �rst version of waveburst algorithm, described in [1] and [2], was implemented in
LAL and LDAS and usedfor the S2 burst analysis[3], [4].

For the S3 [5] and S4 [6] analysisthe samealgorithm was implemented in a C++
library called Wavelet Analysis Tool (WAT) which is part of the DMT package. The
pipeline itself is implemented as a ROOT [7] script and the ROOT jobs ran under
Condor.

For the S4 run [6],[8], we upgraded the algorithm to perform analysis at several
time-frequencyresolutions [9], which made it more sensitive to a wider classof burst
signals.

For the S5 run [10] further upgradesare made: the Symlet 60 wavelet is replaced
by Meyer 1024 wavelet and the linear predictor error (LPE) �lter is used for data
conditioning. The Meyer 1024wavelet has much longer �lter (1024coe�cien ts) which
signi�cantly reduce spectral leakage between wavelet layers. The LPE �lter removes
signi�cant fraction of energy from power lines and violin modes. It improves the
detection e�ciency for burst signals in the vicinit y of these lines. Both modi�cations
also improve the detection e�ciency at low frequencies(64-100Hz).

Since the S4 waveburst version of waveburst is described in detailes in [9] , in
this document we only describe the di�erence betweenS5 and S4 versionsrather then
presenting the whole algorithm from the beginning. However, to make clear what part
of the pipeline is modi�ed, we list below its main stages:

� Apply wavelet transformation to GW channel from each detector to obtain time-
frequencyscalogramsof data with a certain time-frequencyresolution;

� Apply data conditioning: whitening, variabilit y corrections,etc;

� Select10%of loudest (black) pixels in each detector;

� Compute rank of sdelectedpixels;

� Comparescalogramsfor each pair of detectorsand selectonly thosepixels that are
in time-frequencycoincidence(within somewindow) in all detectors;

� Do clustering of the remaining pixels separatelyin each detector;

� Compute properties of clusters (time: central, start, stop, duration; frequency:
central, minimum, maximum, bandwidth; hrss,SNR, etc) in each detector;

� Usenon-parametric signi�cance (gs) of a multidetector trigger to selectcandidate
GW events.

� Apply amplitude cut which requires that hrss of a trigger detected in H1 is no
more than twice di�erent from hrss of the coincident trigger reconstructedin the
H2 detector.

We typically set the geometricsigni�cance threshold so that the background rate
at the end of the waveburst pipeline is about 20�H z. The background is estimatedby
running the pipeline on time shifted data ( we use100 time lags shifting the LLO and
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LHO detector with respect to each other). After that the r-staistics cut [11] and vetoes
[12] are applied to reducethe rate down to about 0:1�H z.

2. Mey er wavelet

The bandwidth of wavelet layersdependson the wavelet decomposition depth. A single
wavelet decomposition step devidesan input time seriesX (t) into two wavelet series
X a(t) (low-pass�ltering) and X d(t) (high-pass�ltering). The sampling rate of X (t) is
twice larger then one for the wavelet series. The X a(t) represents the low frequency
sub-band(approximation layer) and the X d(t) represents the high frequencysub-band
(detaileslayer) of the original time series.It canbeseenby zeroingeither X a(t) or X d(t)
data and then applying the inversewavelet transformation which producestime series
Ya(t) (X d = 0) or Yd(t) (X a = 0). In casewhen X (t) is white gaussiannoiseand the
Haar wavelet is applied, the corresponding power spectra of Ya(t) and Yd(t) are shown
in Figure 1.

Figure 1. Power spectra Ya (t) (black) and Yd(t) (red) for Haar wavelet.

Onecanseethat there is a signi�cant spectral leakagebetweenthe frequencybands,
which makesHaar a poor wavelet for time-frequencyanalysis.

Applying the wavelet decomposition steps, formaly we can devide data into sub-
bands with a desirable frequency resolution. This is the transformation frequency
resolution(TR). It shouldbe distinguishedfrom the waveletfrequencyresolution(WR),
which is de�ned by spectral leakagebetweenwavelet sub-bands(seeFigure 1). In turn
the spectral leakagedependson the length of the wavelet �lter.
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Figure 2 shows the spectral leakagefrom the approximation wavelet layer for Haar,
Symlet_16 and Symlet_60 (where 16 and 60 denote the number of the wavelet �lter
coe�cien ts). As one can see, the longer is the �lter impulse response, the lower is
the spectral leakagebetweenthe wavelet sub-bands.For example,also seethe PSD of
approximation signal after 2 wavelet decomposition steps(Figure 3).

Figure 2. Comparison of spectral leakage for Haar and Symlet wavelets after one
decomposition step

In general,given a time serieswith samplingrate f and a wavelet with �lter length
N , the actual wavelet frequency resolution is WR � f =N . This is the reasonwhy
in the S4 analysis we used Symlet wavelet with the �lter length 60. But even in
casewhen Symlet_60 wavelet is applied to time serieswith f = 4096H z, the actual
wavelet frequencyresolution is WR � 64H z which is not adequatefor detection of long
and narrow-band GW signals like high Q sine-gaussiansignals. WaveBurst performs
analysis at di�erent TR resolutions with the best one of TR = 8H z. Obviously the
wavelet �lter length of 60 is not adequatefor this resolution and longer �lters should
be used. Unfortunatelly there is no known Symlets with �lter length greater then
� 64. Long Symlet �lters can be calculated in principle with the algorithm suggested
by Daubechie, but we did not seeany referencesto long Daubechies/Symlet �lters so
far. The calculation of long �lters involves the ratios of large numbers (like factorials)
and it is quite nontrivial computational task.

Sincelong Symlet �lters are not readily available, we suggestto useMeyer �lters
instead,which canbeeasilycalculatedfor �lter length < 1000.Another small advantage
of the Meyer �lter is that it is perfectly symmetric (linear phasehighpassand lowpass
�lters). For referenceon Meyer waveletssee[13]
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Figure 3. Comparison of spectral leakage for Haar and Symlet wavelets after two
decomposition steps

The following �gures show the frequencyresolutionand spectral leakagefor onestep
(Figure 4) and three step (Figure 5) Meyer_1024wavelet transformation in comparison
with the Haar and Symlet_60 wavelets. Obviously the Meyer_1024wavelet is much
better bandpass�lter then the Haar and Symlet_60 wavelets.

Note, the wavelet functions (Figure 6) for Meyer and Symlet_60 wavelet are very
similar. It is not surprising becauseany symmetric wavelet becomesa Shannonwavelet
in the limit of long �lters (N ! 1 ). A disadvantage of the Meyer �lters is that for
local support they have to be trancated. The result of this is that the Meyer wavelets
are "approximately" orthonormal. It meansthat the Parseval identit y is approximate
and the forward-inversewavelet transformation does not reproduce the original time
series"exactly" as for the Symlet wavelets. From the other side the Meyer �lters can
be constructed in such a way that the Parseval identit y holds with better then 0:01%
accuracy, which is more then adequatefor the analysis. The histogramsof the residual
signal (original X (t) - forward-inverseX (t)) are shown for Meyer_1024(Figure 7) and
for Symlet_60 (Figure 8) wavelets.

Figure 9 (seealsozoomedplot on Figure 10) demonstarteshow wavelet works asa
bandpass�lter. For this examplea white Gaussiannoise(sampling rate 4096H z) was
transformedwith 7-stepwavelet transformation, which correspondsto the TR = 16H z.
Then all wavelet layers except for the wavelet layer 33 representing frequency band
528� 544H z werezeroed and the inversetransformation wasapplied. Performing FFT
of the obtainedsignalwe expect to seea bandlimited spectra with power in 528� 544H z
band. The Haar wavelet exibits a signi�cant long-rangespectral leakage. The Haar �lter
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Figure 4. Comparison of spectral leakage for Haar, Symlet 60 and Meyer 1024
wavelets after one decomposition step

Figure 5. Comparison of spectral leakage for Haar, Symlet 60 and Meyer 1024
wavelets after three decomposition steps
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Figure 6. Wavelet functions for Symlet 60 and Meyer 1024wavelets

is too short and it is not a good tool for this task. The Symlet_60 doesnot have any
long-rangeleakage,but it hasa signi�cant leakageinto neighbor bins (within a window
de�ned by its WR � 64H z resolution). The Meyer_1024wavelet shows no signi�cant
leakage.

Useof the Meyer_1024wavelet improvesthe WB performance.The WB whitening
is performed at WR=4Hz. A corresponding scalogramfor L1 detector and Symlet_60
transformation (Figure 11) shows a line at � 70H z which is in fact due to the spectral
leakagefrom nearby 60H z power line. The Meyer_1024wavelet localizesthe line energy
much better (Figure 12), which signi�cantly improvesthe WB sensitivity at 70H z.
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Figure 7. Meyer 1024forward-inverseresidual

Figure 8. Symlet 60 forward-inverseresidual
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Figure 9. Wavelet resolution 32 Hz for Haar, Symlet 60 and Meyer 1024wavelets

Figure 10. Wavelet resolution 32 Hz for Haar, Symlet 60 and Meyer 1024wavelets,
zoomed
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Figure 11. Scalogramwith a 70H z line using Symlet 60 wavelet

Figure 12. Scalogramwith a 70H z line using Meyer 1024wavelet

10



3. Linear Predictor Filter

During the S4 analysiswe started observingthat somedata artifacts (like power lines)
present a certain problem for the WB analysis. They were not a problem for S2 and
S3 runs, but during the S4 run the detector sensitivity was considerablyincreasedand
the power lines started to a�ect the analysis. Therefore for the S5 analysis we have
looked at di�erent options for the line/artifacts removal. One of the options is the
linear prediction error (LPE) �lter.

The linear prediction error �lters areusedto remove "predictable" components of a
givensignalx(t). They havebeenusedbeforein LIGO data analysis[14] in time domain.
In this casethe output of the LPE �lter is a whitened time seriesx0(t). Unfortunately
this approach can not be directly usedin the WB analysisbecause:

� construction of symmetric LPE �lters needsto be clari�ed,

� it interfereswith the WB parameterreconstruction,such asestimation of the noise
rms(f ) and signal hrss,

� there is alsoa questionhow LPE �lter a�ects the GW signal waveforms.

3.1. Symmetric �lters

For construction of symmetric LPE �lters we follow the approach described in [15] The
symmetric LPE �lters can be constructed from the backward and forward LPE �lters
by using classicalLevinsonalgorithm or the split lattice algorithm.

3.2. LPE �lter in waveletdomain

Sinceeach wavelet layer is a time series,rather then applying LPE �lter to a time series
x(t), one can perform a wavelet decomposition x(t) ! w(f ; t) �rst and then calculate
and apply LPE �lter F (f ) individually to each wavelet layer. A set of �lters F (f )
remove predictable components (like lines) in wavelet layers producing data w0(t). A
�ltered time seriesx0(t) can be reconstructedfrom w0(t). The examplePSD of �ltered
S4data is shown in Figure 13. As onecansee,whenapplied in wavelet domain the LPE
�lter removesdata artifacts but preservesthe power spectral density of the noise
o or.

3.3. E�e ct of LPE on the GW waveforms

Lets considera time seriesx(t) with GW signal h(t) in it: x(t) = n(t) + h(t), where
n(t) is the noise. The LPE �lter is constructed from an estimate of the autocorelation
function of the noisea(t) =

P
[x(t) � x(t � T)]. If the signal is quite strong (signal energy

is comparablewith the energyof the noise in the signal bandwidth) it will a�ect (or
even dominate) the estimation of a(t) and thereforewhen the corresponding LPE �lter
is applied it will partially remove the GW signal. It may a�ect the GW detection and
the estimation of the GW amplitude. This is de�nitely a problem for strong injections.
The signal cancelation also depends on the data length used for �lter training. For
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Figure 13. Power spectra of original (black) and LPE �ltered (red) noise

example,Figure 14 shows how the LPE �lter (the training length of 120sec)a�ects the
270H z sine-gaussianinjection with hr ss = 10� 21 (S4 data, L1 detector). The di�erence
of LP E(x(t) + h(t)) and LP E(x(t)) is responsible for residual signal away from the
injections (Figure 15).

To reducethe e�ect of the injectedsignalon the LP E(x(t)+ h(t)) �lter construction,
5% of loudest samples are removed from the data before training the �lter. See
corresponding injected signal (Figure 16) and residual signal (Figure 17).

Normalizedwavelet scalogramswithout LPE (Figure 18) and with LPE (Figure 19)
demonstratehow the LPE �lter is usedfor data conditioning. It removes most of the
line structure present on the TF plot due to power lines and violin modes.
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Figure 14. E�ect of LPF on 270 Hz sine-gaussian.Black curve is an injection. The
red curve is obtained asa di�erence betweenLPE �ltered data with injection x(t)+ h(t)
and LPE �ltered data without injection x(t). One can seethat the red curve has lower
amplitude, which means that the LPE �lter trained on data x(t) + h(t) cancelsout
someof the injected signal. The di�erence betweenLP E(x(t) + h(t)) and LP E(x(t))
is responsible for residual signal away from the injections.

Figure 15. Residual signal
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Figure 16. Injected signal with 5% of strongest samplesremoved for the LPE �lter
construction.

Figure 17. Residual signal with 5% of strongest samplesremoved for the LPE �lter
construction
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Figure 18. Normalized wavelet scalogrambefore the LPE �lter is applied.

Figure 19. Normalized wavelet scalogramafter the LPE �lter is applied.
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4. Impro vements to whitening pro cedure

Whitening procedure was modi�ed for more robust handling of non-standard time
intervals. In the S4 waveburst version we observed someboundary artifacts (excess
of triggers at the beginning or end of a job) in the presenceof power line instabilities
on a few segments, which duration was not divisible by 60 seconds. The corrections
introduced in S5 version removed those artifacts. Also we introduced sliding window
for the estimation of the detector noise. It considerablyreducedthe boundary artifacts
(for comparison,seeFigures30 and 31).

5. Bug in the rank calculation

The rank statistic is calculated in the rSigni�cance() function. The algorithm is
described in [9]. Given a data segment x(t), the pixel rank is calculatedwith a running
window T (5sec):

|Ts|
****|*******xxxx*******|** *** **** **** **** *** **** **** **** **** **

<- window T ->

Rank is assignedto all pixels in the window, but only rank of pixels in the middle
of the window (marked xxx) is saved. The length of the xxx section is equal to the
window sliding step Ts. Sliding the window by Ts one can rank all pixels in the data
set x. In this way each pixel is always ranked against neighbour pixels.

The S4 implementation of the algorithm is a little bit di�erent from what is
described above and what wasintended- the ranked pixelsare locatednot in the middle
of the window, but in the beginning:

|Ts|
****|xxxx**************|** *** **** **** **** *** **** **** **** **** **

<- window T ->

This bug is responsiblefor inconsistent wavelet scalogramsfor strong injections. Namely,
the highestrank canbeassignedto relatively weakpixelson the edgesof injected signal.
However, the correct picture would be when the highest runk is assignedto a pixel in
the center of the injected signal. Figures20and 21 show wavelet rank scalogramsbefore
and after bug �x.

6. Mo di�cations to the pro duction script

The WB script wasmodi�ed to avoid multiple calculation of the rank statistic for each
time lag. Before the whitened TF serieswere shifted and then the rank statistic was
calculated. Now the rank statistic is produced �rst and then the rank TF seriesare
shifted in time. This modi�cation reducedthe WB run time by factor of 3.
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Figure 20. Incorrect rank assignment for long sine-gaussianinjections.

Figure 21. Rank assignment for long sine-gaussianinjections after the bug �x.
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7. Comparison of S4 and S5 waveburst version results on the �rst few
mon ths of S5 run

Figures 22 and 23 show comparablesensitivities for most of the frequenciesfor both
searches at about the same background rate. Notice signi�cant improvement in
sensitivity for 70 Hz sine-gaussiandue to better data conditioning (LPE) and longer
wavelet �lter.

Frequencyreconstruction is somewhatbetter in the S5version(Figure 24) then in
the S4version(Figure 25). Time reconstruction(Figures26and 27) is improved aswell.

The hrss reconstruction is better for the S5 version (Figure 28) then for the S4
version (Figure 29) becauselessenergy leaksoutside of the detection band for signals
with frequenciescloseto the detectionband boundaries(70 and 2000Hz sine-gaussians).
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Figure 22. E�ciency for S5version of waveburst, SG1 S5,gc = 2:1, background rate
18�H z.

Figure 23. E�ciency for S4version of waveburst, SG1 S5,gc = 2:0, background rate
19�H z.
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Figure 24. Frequencyreconstruction, S5 waveburst version, SG1 S5.

Figure 25. Frequencyreconstruction, S4 waveburst version, SG1 S5.
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Figure 26. Time reconstruction, S5 waveburst version, SG1 S5.

Figure 27. Time reconstruction, S4 waveburst version, SG1 S5.
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Figure 28. hrss reconstruction, S5 waveburst version, SG1 S5.

Figure 29. hrss reconstruction, S4 waveburst version, SG1 S5.
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Figure 30. Boundary artifact, S4 waveburst version.

Figure 31. No more boundary artifact in S5 waveburst version.
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