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1. Intro duction

The rst version of waveburst algorithm, describked in [1] and [2], was implemerted in
LAL and LDAS and usedfor the S2 burst analysis[3], [4].

For the S3[5] and S4[6] analysisthe samealgorithm was implemerted in a C++
library called Wavelet Analysis Tool (WAT) which is part of the DMT padage. The
pipeline itself is implemerted as a ROOT [7] script and the ROOT jobs ran under
Condor.

For the S4 run [6],[8], we upgradedthe algorithm to perform analysisat seeral
time-frequencyresolutions[9], which made it more sensitive to a wider classof burst
signals.

For the S5run [10] further upgradesare made: the Symlet.60 wavelet is replaced
by Meyer 1024 wavelet and the linear predictor error (LPE) Iter is used for data
conditioning. The Meyer_1024wavelet has much longer Iter (1024 coe cien ts) which
signi cantly reduce spectral leakage between wavelet layers. The LPE lter removes
signi cant fraction of energy from power lines and violin modes. It improves the
detection e ciency for burst signalsin the vicinity of theselines. Both modi cations
alsoimprove the detection e ciency at low frequencieg64-100Hz).

Since the S4 waveburst version of waveburst is described in detailesin [9] , in
this documert we only descrike the di erence between S5 and S4 versionsrather then
presering the whole algorithm from the beginning. Howewer, to make clear what part
of the pipelineis modi ed, we list below its main stages:

Apply wavelet transformation to GW channel from ead detector to obtain time-
frequencyscalogramsof data with a certain time-frequencyresolution;

Apply data conditioning: whitening, variability corrections,etc;

Select10% of loudest (black) pixelsin ead detector;

Compute rank of sdelectedpixels;

Comparescalogramdor eat pair of detectorsand selectonly thosepixels that are
in time-frequencycoincidence(within somewindow) in all detectors;

Do clustering of the remaining pixels separatelyin ead detector;

Compute properties of clusters (time: certral, start, stop, duration; frequency:
certral, minimum, maximum, bandwidth; hrss, SNR, etc) in eat detector;

Use non-parametric signi cance (gs) of a multidetector trigger to selectcandidate
GW ewerts.

Apply amplitude cut which requiresthat hrss of a trigger detectedin H1 is no
more than twice di erent from hrss of the coinciden trigger reconstructedin the
H2 detector.

We typically setthe geometricsigni cance threshold sothat the badground rate
at the end of the waveburst pipeline is about 20H z. The badkground is estimated by
running the pipeline on time shifted data ( we use 100time lags shifting the LLO and
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LHO detector with respect to eat other). After that the r-staistics cut [11] and vetoes
[12] are applied to reducethe rate down to about 0:1H z.

2. Mey er wavelet

The bandwidth of wavelet layers dependson the wavelet decomposition depth. A single
wavelet decompsition step devidesan input time seriesX (t) into two wavelet series
Xa(t) (low-pass Itering) and X 4(t) (high-pass Itering). The samplingrate of X (t) is
twice larger then one for the wavelet series. The X ,(t) represets the low frequency
sub-band (approximation layer) and the X 4(t) represets the high frequencysub-band
(detaileslayer) of the original time series.It canbe seenby zeroingeither X 5(t) or X 4(t)
data and then applying the inversewavelet transformation which producestime series
Ya(t) (Xg = 0) or Yq(t) (Xa = 0). In casewhen X (t) is white gaussiannoiseand the
Haar wavelet is applied, the correspnding power spectra of Y,(t) and Yy4(t) are shavn
in Figure 1.
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Figure 1. Power spectra Ya(t) (black) and Yq4(t) (red) for Haar wavelet.

Onecanseethat thereis a signi cant spectral leakagebetweenthe frequencybands,
which makesHaar a poor wavelet for time-frequencyanalysis.

Applying the wavelet decompsition steps, formaly we can devide data into sub-
bands with a desirable frequency resolution. This is the transformation frequency
resolution(TR). It shouldbe distinguishedfrom the waveletfrequencyresolution(WR),
which is de ned by spectral leakage betweenwavelet sub-bands(seeFigure 1). In turn
the spectral leakagedependson the length of the wavelet lter.



Figure 2 showns the spectral leakagefrom the appraximation wavelet layer for Haar,
Symlet_16 and Symlet_60 (where 16 and 60 denote the number of the wavelet lIter
coe cients). As one can see,the longer is the lIter impulse response, the lower is
the spectral leakage betweenthe wavelet sub-bands. For example,also seethe PSD of
approximation signal after 2 wavelet decompsition steps(Figure 3).
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Figure 2. Comparison of spectral leakage for Haar and Symlet wavelets after one
decomposition step

In general,given a time serieswith samplingrate f and a wavelet with Iter length
N, the actual wavelet frequencyresolutionis WR  f=N. This is the reasonwhy
in the S4 analysis we used Symlet wavelet with the Iter length 60. But ewen in
casewhen Symlet_60 wavelet is applied to time serieswith f = 40964 z, the actual
wavelet frequencyresolutionis WR  64H z which is not adequatefor detection of long
and narrow-band GW signalslike high Q sine-gaussiarsignals. WaveBurst performs
analysisat di erent TR resolutionswith the best oneof TR = 8Hz. Obviously the
wavelet Iter length of 60 is not adequatefor this resolution and longer Iters should
be used. Unfortunatelly there is no known Symlets with Iter length greater then

64. Long Symlet Iters can be calculatedin principle with the algorithm suggested
by Daubedie, but we did not seeany referencedo long Daubedies/Symlet Iters so
far. The calculation of long lIters involvesthe ratios of large numbers (lik e factorials)
and it is quite nontrivial computational task.

Sincelong Symlet lters are not readily available, we suggestto use Meyer lters
instead, which canbe easilycalculatedfor Iter length < 1000. Another small advantage
of the Meyer Iter is that it is perfectly symmetric (linear phasehighpassand lowpass
Iters). For referenceon Meyer wavelets see[13]
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Figure 3. Comparison of spectral leakage for Haar and Symlet wavelets after two
decomposition steps

The following gures shaw the frequencyresolutionand spectral leakagefor onestep
(Figure 4) and three step (Figure 5) Meyer_1024wavelet transformation in comparison
with the Haar and Symlet_60 wavelets. Obviously the Meyer_1024wavelet is much
better bandpasslter then the Haar and Symlet_60 wavelets.

Note, the wavelet functions (Figure 6) for Meyer and Symlet_60 wavelet are very
similar. It is not surprising becauseany symmetric wavelet becomesa Shannonwavelet
in the limit of long Iters (N ! 1 ). A disadwantage of the Meyer lters is that for
local support they have to be trancated. The result of this is that the Meyer wavelets
are "approximately” orthonormal. It meansthat the Parsewl identity is approximate
and the forward-inverse wavelet transformation does not reproduce the original time
series"exactly” asfor the Symlet wavelets. From the other side the Meyer Iters can
be constructedin sud a way that the Parsewal idertity holds with better then 0:01%
accuracy which is more then adequatefor the analysis. The histogramsof the residual
signal (original X (t) - forward-inverseX (t)) are shavn for Meyer_1024(Figure 7) and
for Symlet_60 (Figure 8) wavelets.

Figure 9 (seealsozoomedplot on Figure 10) demonstarteshow wavelet works asa
bandpass Iter. For this examplea white Gaussiannoise (sampling rate 4096+ z) was
transformedwith 7-stepwavelet transformation, which correspndsto the TR = 16H z.
Then all wavelet layers except for the wavelet layer 33 represeting frequency band
528 544 z were zerced and the inversetransformation was applied. Performing FFT
of the obtained signalwe expect to seea bandlimited spectrawith powerin 528 544Hz
band. The Haar wavelet exibits a signi cant long-rangespectral leakage. The Haar lIter
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Figure 4. Comparison of spectral leakage for Haar, Symlet.60 and Meyer_1024
wavelets after one decomposition step
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Figure 5. Comparison of spectral leakage for Haar, Symlet 60 and Meyer_1024
wavelets after three decomposition steps
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wavelet functions: black-Symlet60, green-Meyer1024
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Figure 6. Wavelet functions for Symlet_.60 and Meyer_1024 wavelets

is too short and it is not a good tool for this task. The Symlet_60 doesnot have any
long-rangeleakage,but it hasa signi cant leakageinto neighbor bins (within a window
de ned by its WR  64H z resolution). The Meyer_1024wavelet shons no signi cant
lealkage.

Useof the Meyer_1024wavelet improvesthe WB performance.The WB whitening
is performed at WR=4HzA correspnding scalogramfor L1 detector and Symlet_60
transformation (Figure 11) shavs a line at  70H z which is in fact due to the spectral
leakagefrom nearby 60H z power line. The Meyer_1024wavelet localizesthe line energy
much better (Figure 12), which signi cantly improvesthe WB sensitivity at 70H z.
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Figure 9. Wavelet resolution 32 Hz for Haar, Symlet_60 and Meyer_1024 wavelets
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Figure 11. Scalogramwith a 70H z line using Symlet_60 wavelet
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3. Linear Predictor Filter

During the S4 analysiswe started observingthat somedata artifacts (like power lines)
presen a certain problem for the WB analysis. They were not a problem for S2 and
S3runs, but during the S4run the detector sensitivity was considerablyincreasedand
the power lines started to a ect the analysis. Therefore for the S5 analysiswe have
looked at dierent options for the line/artifacts removal. One of the options is the
linear prediction error (LPE) lter.

The linear prediction error Iters are usedto remove "predictable” componerts of a
givensignalx(t). They have beenusedbeforein LIGO data analysis[14] in time domain.
In this casethe output of the LPE Iter is a whitened time seriesxt). Unfortunately
this approad can not be directly usedin the WB analysisbecause:

construction of symmetric LPE Iters needsto be clari ed,

it interfereswith the WB parameterreconstruction, suc asestimation of the noise
rms(f ) and signal hrss,

there is alsoa questionhow LPE lter a ects the GW signal waveforms.

3.1. Symmetric lters

For construction of symmetric LPE Iters we follow the approad descritedin [15 The
symmetric LPE Iters can be constructed from the badkward and forward LPE Iters
by using classicalLevinsonalgorithm or the split lattice algorithm.

3.2. LPE lter in waveletdomain

Sinceead wavelet layer is a time series,rather then applying LPE Iter to atime series
x(t), one can perform a wavelet decompsition x(t) ! w(f;t) rst and then calculate
and apply LPE lter F(f) individually to ead wavelet layer. A set of Iters F(f)
remove predictable componerts (like lines) in wavelet layers producing data w{t). A
ltered time seriesx{t) can be reconstructedfrom wYt). The examplePSD of Itered
S4data is shavn in Figure 13. As onecansee whenappliedin wavelet domainthe LPE
Iter removesdata artifacts but presenesthe power spectral density of the noise o or.

3.3. E ect of LPE on the GW waveforms

Lets considera time seriesx(t) with GW signal h(t) in it: x(t) = n(t) + h(t), where
n(t) is the noise. The LPE IDlter is constructed from an estimate of the autocorelation
function of the noisea(t) =  [x(t) x(t T)]. If the signalis quite strong (signal energy
is comparablewith the energy of the noisein the signal bandwidth) it will a ect (or
even dominate) the estimation of a(t) and thereforewhenthe correspnding LPE Iter

is applied it will partially remove the GW signal. It may a ect the GW detection and
the estimation of the GW amplitude. This is de nitely a problem for strong injections.
The signal cancelation also depends on the data length used for Iter training. For
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Figure 13. Power spectra of original (black) and LPE Itered (red) noise

example,Figure 14 shovs how the LPE lter (the training length of 120sec)a ects the
270H z sine-gaussiarnnjection with hrss= 10 2! (S4data, L1 detector). The di erence
of LP E(x(t) + h(t)) and LP E(x(t)) is responsible for residual signal away from the
injections (Figure 15).

Toreducethe e ect of the injected signalonthe LP E (x(t)+ h(t)) Iter construction,
5% of loudest samplesare removed from the data before training the Iter. See
correspnding injected signal (Figure 16) and residual signal (Figure 17).

Normalizedwavelet scalogramswithout LPE (Figure 18) and with LPE (Figure 19)
demonstratehow the LPE Iter is usedfor data conditioning. It removes most of the
line structure presem on the TF plot dueto power lines and violin modes.
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4. Impro vements to whitening pro cedure

Whitening procedure was modi ed for more robust handling of non-standard time

intervals. In the S4 waveburst version we obsened some boundary artifacts (excess
of triggers at the beginning or end of a job) in the presenceof power line instabilities

on a few segmets, which duration was not divisible by 60 seconds. The corrections
introduced in S5 version removed those artifacts. Also we introduced sliding window

for the estimation of the detector noise. It considerablyreducedthe boundary artifacts

(for comparison,seeFigures 30 and 31).

5. Bug in the rank calculation

The rank statistic is calculated in the rSigni cance() function. The algorithm is
descriked in [9]. Given a data segmen x(t), the pixel rank is calculatedwith a running
window T (5sec):

| Ts|

****l*******xxxx*******|** *kk kkkk khkkk kkhkk khkk kkkk kkhkkk kkkk kkkk k%

<-  windowT ->

Rank is assignedto all pixelsin the window, but only rank of pixels in the middle
of the window (marked xxx) is saved. The length of the xxx sectionis equal to the
window sliding step Ts. Sliding the window by Ts one canrank all pixels in the data
setx. In this way ead pixel is always ranked against neighbour pixels.

The S4 implemertation of the algorithm is a little bit dierent from what is
described above and what wasintended- the ranked pixels arelocated not in the middle
of the window, but in the beginning:

|Ts|

****|XXXX**************|** kkk kkkk kkkk kkkk kkk kkkk kkkk kkkk kkkk k%

<- window T ->

This bugis responsiblefor inconsisten wavelet scalogramdor strong injections. Namely,
the highestrank canbe assignedo relatively weak pixels on the edgesof injected signal.
Howe\er, the correct picture would be when the highest runk is assignedto a pixel in
the certer of the injected signal. Figures20and 21 shav wavelet rank scalogramsefore
and after bug x.

6. Mo dications to the production script

The WB script wasmodi ed to avoid multiple calculation of the rank statistic for eat
time lag. Beforethe whitened TF serieswere shifted and then the rank statistic was
calculated. Now the rank statistic is produced rst and then the rank TF seriesare
shifted in time. This modi cation reducedthe WB run time by factor of 3.
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Figure 20. Incorrect rank assignmen for long sine-gaussianinjections.

Figure 21. Rank assignmer for long sine-gaussianinjections after the bug x.
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7. Comparison of S4 and S5 waveburst version results on the rst few
months of S5 run

Figures 22 and 23 shov comparablesensitivities for most of the frequenciesfor both
searbes at about the same badkground rate. Notice signi cant improvemert in
sensitivity for 70 Hz sine-gaussiardue to better data conditioning (LPE) and longer
wavelet lter.

Frequencyreconstructionis somewhatbetter in the S5version (Figure 24) then in
the S4version(Figure 25). Time reconstruction(Figures 26 and 27) is improved aswell.

The hrss reconstruction is better for the S5 version (Figure 28) then for the S4
version (Figure 29) becausedessenergyleaks outside of the detection band for signals
with frequenciesloseto the detectionband boundaries(70 and 2000Hz sine-gaussians).
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Figure 22. E ciency for S5versionof waveburst, SG1S5,gc = 2:1, badckground rate
18H z.

Figure 23. Eciency for S4versionof waveburst, SG1S5,gc = 2:0, badkground rate
19H z.
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Figure 24. Frequencyreconstruction, S5waveburst version, SG1.S5.

Figure 25. Frequencyreconstruction, S4 waveburst version, SG1.S5.
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Figure 26. Time reconstruction, S5waveburst version, SG1.S5.

Figure 27. Time reconstruction, S4 waveburst version, SG1.S5.
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Figure 28. hrssreconstruction, S5waveburst version, SG1.S5.

Figure 29. hrssreconstruction, S4 waveburst version, SG1.S5.
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Figure 30. Boundary artifact, S4 waveburst version.

Figure 31. No more boundary artifact in S5waveburst version.
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