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Effect of sampling on frequency domain analysis 
 
David P. Norwood 
 
We review the well-known effects of digital sampling on the frequency domain analysis 
of an analog signal, with emphasis on the effects upon our measurements.  This 
discussion follows the notation of Gaskill1. 
The signal to be sampled is assumed to be a harmonically varying signal, damped in a 
way that can be characterized by a time constant, τ.  That is, we assume the original 
analog signal is of the form: 
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(Note that the frequency f0 includes any shift due to the assumed damping).  This signal is 
sampled N = 1400 times at a time interval of tS = 0.3 s, resulting in a total sampling time 
of N·tS = 420 s.  As we will see, it is significant that this is much larger than the damping 
time, τ = 35-40 s.  The sampled data can be written formally as: 
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where f(t) is from Eq (1) and S(t) is a sampling function, that we write as: 
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That is, the sampling function is a train of N Dirac delta functions, separated by the 
sampling time, tS.  Using the so-called “rectangle” function, defined as: 
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we can rewrite the sampling function as: 
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(where we’ve defined the “comb” function, again following Gaskill).  This will simplify 
some of the following discussion [I hope…].  The frequency domain analysis then 
                                                 
1 J. D. Gaskill, Linear Systems, Fourier Transforms and Optics, Wiley, New York, 1978 
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proceeds by performing a Fourier transform upon the sampled function of Eq. (2).  
Formally, this is given by: 
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where “*” denotes the convolution operation, and the script F denotes the Fourier 
transform operations.  We have used the convolution theorem, which holds that the 
Fourier transform of a product of functions is the convolution of the transform of each 
function.  This transform will give a peak whose location and width are determined, 
obviously, by f0 and τ, but also by tS and N, as we shall discuss.  It is useful to break the 
discussion into two parts, one related to broadening and one related to the location of the 
peak. 

Broadening 
Only the exponential decay and the “rectangle” function contribute to broadening (the 
transform of the cosine and the comb result in Dirac delta functions, as we discuss later).  
We can then define a broadening function by: 
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If we do the transform explicitly, we have: 
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The amplitude of FB(f) is given by: 
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and the phase by: 
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These expressions seem forbidding, but the essential point can be seen if we consider two 
limits: NtS >>τ, the condition that the signal is sampled for a time long compared to the 
decay time (i.e., that it decays significantly during the acquisition of the data), and 
NtS<<τ, the condition that the signal is sampled for a time short compared to the decay 
time (i.e., that it does not decay significantly during the acquisition of the data).  In the 
first case, the amplitude and phase take the form: 
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and in the latter case: 
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That these are the expected forms can be seen most easily by returning to Eq. 8 and 
taking the limit that (NtS) →∞ to get Eq. (11) and τ→∞ to get Eq. (12).  From Eq. (11), 
we see that the width of the transformed signal is of order 1/τ.  That is, if the time during 
which data is sampled is large compared to the damping time, then the width of the 
transformed data will be given by the damping time.  Conversely, Eq. (12) shows that in 
the event that the total sampling time is short compared to the damping time, then the 
width is given by the inverse of the total sampling time, 1/NtS.  In general, the width of 
the transformed data will be reflected by the function of Eq. (9) and will be of order 
(1/τ + 1/NtS).  In our measurements, τPEND = 35 sec and τPITCH = 40 sec, while NtS is 420 
sec, and so we are in the regime described by Eq. (11). 

Aliasing 
The other two functions in FSAMP(f) (Eq. (6)) determine the location (in frequency space) 
of the function given by Eq. (8).  That is, Eq. (8) determines the shape of the oscillator 
peak and the remainder: 
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determines the location.  Performing the transforms, this becomes: 
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And performing the convolution, we have: 
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Using this, the transform of the sampled data is given by: 
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That is, the transformed data consists of repeated versions of the broadened function from 
Eq. (8), centered at f0+n/tS and –(f0-n/tS).  There are several conclusions to be drawn.  
Suppose that the frequency f0 satisfies 0<f0<1/(2tS) (this is the Nyquist condition).  Then 
clearly f0 satisfies (2n)/(2tS)<f0+n/tS<(2n+1)/(2tS).  That is, the first term in Eq. (16) 
ensures that every other interval (-1/tS to –1/2tS, 0 to 1/2tS, 1/tS to 3/2tS, and so on) 
includes a copy of the peak corresponding to f0.  Further, since (2n-1)/(2tS) < n/tS – f0 < 
n/tS, the second term in Eq. (16) ensures that there is a copy in the remaining intervals (-
3/2tS to –1/tS, -1/2tS to 0, 1/2tS to 1/tS, and so on).  Therefore, only the interval f = 0 to 
1/2tS need be considered and there will be precisely one copy of the function FB(f) in that 
interval (from the first term in Eq. (16) with n = 0).  However, suppose that the frequency 
f0 satisfies 1/2tS < f0 < 1/tS.  This is a condition of undersampling, in which the sampling 
rate is too short to faithfully reproduce the sampled signal.  It is again the case that every 
interval n/tS to (n+1/2)/tS contains the same information.  But in this case, the peak that 
appears in the interval 0 to 1/2tS is from the second term in Eq. (16) and occurs at the 
frequency f = 1/tS – f0. Referring to Figure: 
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We see a peak at 1.05 Hz, which is the natural pendular motion of the pendulum and a 
peak at ~0.15 Hz.  The 0.15 Hz peak is an alias of the pitch at 3.18 Hz : (3.33 Hz – 3.18 
Hz) = 0.15 Hz.   

Multiple Oscillations Simultaneously 
Now suppose that we have more than one oscillation in the signal to be sampled.  
Equation (1) then becomes: 

( ) ( )







>⋅

<
=

∑
=

− 02cos

00

1
tetfA

t
tf M

j

t
jj

jτπ   (17) 

The sampling function is as given in Eq. (5) and the sampled data is still given formally 
by Eq. (2).  The Fourier transform of the sampled data is then: 
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That is, the transformed sample data will consist of M peaks that show the same 
properties as discussed above for the single peak.  Each peak will be broadened in the 
same way as discussed before, either by the damping represented by τj or by the sampling 
time, Nts.  Also, each peak location will be determined by the oscillation frequency and 
the sampling rate, 1/ts, again as discussed previously.  Any aliasing will occur for each 
peak independently, depending upon the frequency of that peak, fj, and the Nyquist 
sampling rate, 1/(2 ts).  Note that there are no peaks corresponding to the sum or 
difference of any of the oscillation frequencies, as might be thought at first.  But this is 
expected for a linear process like a Fourier transform. 
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