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ABSTRACT 
 

In materials with temperature-dependent permittivity, the application of a 
dynamic electric field induces temperature gradients and thus irreversible heat flow, 
leading to dissipation of energy. When the applied electric field is the optical field of a 
laser beam in LIGO, the energy dissipated due to this phenomenon—which is known as 
the electrocaloric effect—can be related to thermorefractive noise, a particular type of 
thermal noise in the interferometer, by the fluctuation-dissipation theorem. By computing 
the amount of electrocaloric dissipation, then, it is possible to determine an analytic 
expression for thermorefractive noise in the LIGO optics, based on various known 
quantities and materials parameters. Such calculations may be performed in two distinct 
cases: the laser beam can be assumed to penetrate the bulk of the optic (as in the beam 
splitter), or it may be assumed to penetrate only the surface coating and then reflect back 
(as in the mirrors). This paper examines both situations assuming optics of infinite radius. 
Future research might extend the present analysis to more strictly realistic geometries, 
such as the case of optics with finite size. 
 
BACKGROUND 

 An interferometric gravitational-wave detector such as LIGO must compete with 
a variety of noise sources in its search for gravitational waves. One major source of noise 
is the random thermal fluctuations which inevitably occur when materials are not at 
absolute zero. In fact, thermal noise is one of the fundamental limitations on the 
sensitivity of interferometric gravitational-wave detectors. 

 One particular type of thermal noise is thermorefractive noise, which arises from 
thermal fluctuations of the refractive index in the detector optics. When a laser beam 
passes through the bulk of an optic in LIGO, such as the beam splitter or an input test 
mass, it “sees” some index of refraction n. Correspondingly, when the laser penetrates the 
reflective surface coating of a mirror, it sees two alternating indices of refraction n1 and 
n2, since the reflective coating is comprised of alternating layers of two different 
materials. In either case, the indices of refraction have some temperature dependence. So 
any thermal fluctuations in the material lead to fluctuations in the indices of refraction, 
which amount to fluctuations of optical thickness. This introduces phase noise into the 
laser beam. 

 Thermorefractive noise is a reasonably well-understood phenomenon, and 
expressions for the amount of thermorefractive noise in the LIGO optics have been 
derived previously1, 2. At least one aspect, however, remains unexplored. The 
fluctuation-dissipation theorem3 reveals that whenever a mechanism for energy 
dissipation is present in a system, some source of noise will also be present. In other 
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words, a dissipative system must include some fluctuating quantity, and vice versa. This 
provides motivation to search for a relationship between thermorefractive noise and a 
corresponding mechanism for dissipation. 

 That dissipation mechanism has been identified as the electrocaloric effect. Like 
thermorefractive noise, the electrocaloric effect requires a material whose permittivity 
(and thus index of refraction) depends on temperature. In such a material, the application 
of a dynamic electric field induces local temperature gradients. This leads to dissipation 
because heat flows irreversibly down these gradients—hence the term “electrocaloric 
dissipation.” This effect is present in the LIGO optics due to the interaction between the 
laser optical electric fields and the materials in the LIGO optics. Of course, 
thermorefractive noise arises as a result of a similar interaction. 

 From these considerations, it is reasonable to expect that an expression for 
thermorefractive noise could be calculated in a given optical setup by first calculating the 
electrocaloric dissipation and then applying the fluctuation-dissipation theorem. This is 
the strategy employed below; the results are in basic agreement with the previous result 
derived using purely thermodynamic considerations. 

METHODS 

 The electrocaloric effect is a source of heat and may therefore be included in the 
heat equation as a source term  entropy considerations (see Appendix), we find that 
the source te
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where θad is the local adiabatic temperature change due to the electrocaloric effect, T0 is 
the mean temperature, ε’ is the temperature derivative of the permittivity, CV is the 
volumetric heat capacity, and E is the applied electric field. In LIGO, a sideband electric 
field is added on to the “carrier” optical field of the laser beam. Both the optical field and 
t and have Gaussian profiles, which means that the fields may be mathematically 
repres ed as follows: 
he sideb
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where Es0 << Ec0 and Ω << ω. Here k is the wave number, not the thermal conductivity, 
and w is the laser beam waist. We have used cylindrical coordinates; the z-axis is 
perpendicular to the surface of the optic. 
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In acoustic beating, two waves of slightly different frequencies are added together. At 
any given point, the amplitude of the resultant wave varies periodically in time at the beat 
frequency ωbeat = |ω1-ω2|, where ω1 and ω2 are the frequencies of the contributing waves. 
A completely analogous electrical effect occurs here. The beat frequency is Ω and the 
square of the “beat amplitude” is E2 = |E|2 = EE*, where E* is the complex conjugate of 
E = Ecarrier + Esideband. This beat frequency is the only important frequency in the problem; 
the oscillation at frequency ω is so rapid that the material in the optic cannot possibly 
respond to it. On the other hand, the material can keep up with the much smaller beat 
frequency Ω, so the source term in the heat equation for the optic depends on Ω. 
 
Case 1: The laser penetrates the bulk of an optic, as in the beam splitter or the input test 
masses. 
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where χ is the thermal diffusivity and θ is the overall steady-state temperature change in 
the m the optic as a fun me. In order to accomplish this, 
we begin by writing the source term nsion: 
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Note that the source term is not z-dependent. This is a consequence of assuming that 
c/Ω >> d, where c is the speed of light and d is the thickness of the optic. 
 
We also expand the solution: 
 H6LHLq r , t =à
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¥
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We use the zero-order Bessel function because this is the standard solution to the heat 
equation in cylindrical coordinates when dependence on φ, the angular polar coordinate, 
and z both drop out. This is an adaptation of the standard technique of eigenfunction 
expansion. There is an arbitrary phase shift δ(γ) in equation (6) because the solution is 
expected to be out of phase with the source term. 
 
We now insert the expansions (5) and (6) into the heat equation (4). Bringing the 
derivatives inside the integrals, equating th ence relations 
between different Bessel f  J1 and J2, gives 
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after cancellation of the remaining J0(γr) in each term. Note that β = χγ2/Ω. 
 
We proceed by expanding the trigonometric functions on the right-hand side using the 
angle-sum identities. Since only sin(Ωt) appears on the LHS, and all the time dependence 
on the RHS is taken care of by cos(Ωt) and sin(Ωt), it must be the case that the sum of the 
cos(Ωt) terms on the RHS is zero. After simplifying, we conclude that 
 
(8)  cot(δ(γ))=-β
 
since b(γ) ≠ 0. Equating all the sin(Ωt) terms in like manner and using expressions for 
sin( cos(δ(γ)) derived from (8) gives δ(γ)) and 
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after expanding and simplifying sin(Ωt + δ(γ)). This gives us a particular solution. The 
homogenous solutions are the solutions to the homogenous equation corresponding to (4) 
and therefore decay exponentially in time. Since we assume that a steady state has 
already been reached (the driving term has been present for all time), the homogenous 
solutions have already decayed away and the particular solution is the general solution. 
 
We have now determined the temperature distribution throughout the optic and are 
theref e dissipatio  per un  per 
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w  have performed the Taylor expansion ε(T) = ε + ε’θ. Integrating over the entire 
volum f the finite-thickness, infinite-  o iv l dissipation of  
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We may then apply the fluctuation-dissipation theorem, 
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where kB is Boltzmann’s constant and SB D(Ω) is the spectral density of the electric 
displacement D = εE. (The electric displacement D and the electric field E are, in this 
case, randomly fluctuating quantities rather than the stable quantities introduced at the 
beginning of this paper.) The quantity Ebeat = Es0e cos(Ωt), the component of the 
applied electric field which oscillates at the beat frequency. 
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We translate this result to phase noise of the laser: 
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our desired quantification of thermorefractive noise. Note that we have inserted (12) into 
the expression for SD(Ω) and used the parameter β = (1/n)(dn/dT) = (ε’)/(2ε). We have 
also used χ = k/(Cρ), where k is the thermal conductivity, C is the heat capacity per unit 
mass, and ρ is the density. A Jacobi-Anger expansion may be used to justify the 
conversion between phase noise and electric-field noise in (14). The integral in (14) may 
be evaluated in terms of hypergeometric functions; if, on the other hand, we operate in 
t cy/adiabatic regime (Ω >> χ/whe high-frequen

es 
2), the power spectral density of the phase 

becom
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This differs by a factor of 24 from the previous result obtained by Braginsky and 
Vyatchanin1, though the fact that the materials parameters and constants all agree 
completely with the previous result is noteworthy. The Braginsky and Vyatchanin result 
holds only in the adiabatic limit (however, see derivation in Appendix C.2 of their paper), 
while equation (14) is valid in general, in both the adiabatic and isothermal limits. Both 
analyses fail if c/Ω ~ d. 
 
Case 2: The laser penetrates only the reflective surface coating of a mirror. 
 
The heating due to the electrocaloric effect is now a step function in z. Expanding the z-
d r cosine series gives aependence in a Fourie  source term of 
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At this point, we may solve the heat equation directly for θ(r,z,t) simultaneously using an 
integral expansion in r and an infinite-sum expansion in z. The phase shift δ in the 
argument of the time-dependent sin(Ωt + δ) (see equation (6) for comparison) will now 
be dependent on both n, the counter 
integration in the r-expansion: 

in the infinite sum, and on γ, the parameter of 
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(This expansion is not the most general expansion, as it explicitly satisfies the boundary 
condition that , 0, t)/∂z = 0.) S g the heat equation by
a sed in Case 1 yields the solution 

∂θ(r olvin  a method completely 
nalogous to that u

 H18Lq Hr , z , tL= -
T0

CV
 
w 2

2
 e' Ec0 Es0 à

0

¥ 1

1 +b2
 
a

2 d
 g e - w

2 g2 8 J0 Hg rL@bsin HWtL- cos HWtLD+
ã
n=1

¥
1

1 +Hb+ bnL2  
g

n p
e- w

2  g2‘8 sin Jn p a

d
N J0 Hg rL@Hb+ bnL sin HWtL- cos HWtLD cos Jn p

d
 zN dg

,
 
where a is the thickness of the coating and βn = (χ/Ω)(nπ/d)2; but this is somewhat 
intractable, and the corresponding expression for dissipation is even messier. We have 
been treating the mirror as finite in the z-direction (with thickness d). An expression 
analogous to (18), but cleaner, may be derived if we instead model the mirror as semi-
inf  < ∞). Using a Fourier integral expansion in z rather than a Fourier 
s e obtain 

inite in z (0 ≤ z
eries expansion, w
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where Ω a h ing phase spe ity is βα = χα2/ nd βγ = χγ2/Ω. T e correspond ctral dens
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It is conceivable that this double integral could be straightforwardly evaluated if the right 
substitution and/or approximation were made. However, at present we do not have a 
suggestion as to what this might be, though it is likely that the adiabatic approximation 
(Ω >> χ/w2) would once again be useful. 
 
Since the above results are mathematically awkward, we might employ a different 
strategy in solving the heat equation. We first drop the r-dependence by setting r = 0 in 
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(16) and solve the heat equation for the r-independent solution θ(z,t), again modeling the 
m g the infinite-summation 
expansion 

irror as having a finite thickness d in the z-direction. Makin
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we find (again using a process which is completely analogous to that employed in Case 
1) that 
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If we instead m del the mirror as semi-infiniteo  in z, the analogous expression is 
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where again β = χγ2/Ω. 
 
Using (22) or (23), we can set up an approximate boundary condition for the r-dependent 
problem. We can then solve the homogeneous heat equation subject to this boundary 
condition, and the result should approximate the exact solution (18) or (19). The details 
of this calculation are omitted. 
 
This completes the present fluctuation-dissipation-theorem analysis of thermorefractive 
noise. The calculations performed here, especially that in Case 1, give a nice check of 
previous results using an entirely different approach. Future research might make use of 
this strategy as an alternative method of deriving expressions for thermorefractive noise. 
Specifically, different geometries and finite mirrors might be considered for greater 
realism, and the calculations suggested in the above paragraph should be carried out. 
Also, it will be necessary to determine precisely why the result (15) above differs by a 
factor of 24 from the Braginsky & Vyatchanin1 result. A subtle error involving the 
assumption that exactly one sideband is present may be to blame. Finally, future research 
might extend this paper’s surface-coating analysis to account for the fact that the surface 
coatings are composed of alternating layers of two materials with different 
permittivities/indices of refraction. The result could then be compared to that of 
Braginsky, Gorodetsky, and Vyatchanin2, who explicitly take this into consideration by 
including two indices of refraction, n1 and n2, in their derivation of an expression for 
thermorefractive noise in the surface coatings. 
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APPENDIX 
 
The f emperature-dependent permittivity ε(T) in the 
p ec  E is 

ree energy of a material with t
resence of an applied el tric field
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where F nergy in th e of an applied electric field. The 
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where ε’ is the temperature derivative of the permittivity and S0(T) = -∂F0/∂T. If we 
assume that the time scale of the electrocaloric effect and the local temperature changes it 
induces is small compared to other time scales in our analysis—such as that of heat 
flow—we may assume that the electrocaloric creation of temperature gradients is an 
adiabatic process. The entropy then remains constant, and we may write S(T) = S(T0) for 
a aloric temperature change from Tn electroc

0, this bec
0 to T. Defining the entropy zero point to be 
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where CV is the volumetric heat capacity and θad = T – T0. Differentiation with respect to 
time yields equation (1). 
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