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1 Analysis

Suppose we want to estimate the (complex) amplitude Ã of the component at a frequency
ω of a time series x(t). We evaluate this integral:

Ã =
1

T

∫ T

0

x(t)e−iωtdt (1)

We may write the time series x(t) as a sum of the component of interest Aeiωt and everything
else n(t).

x(t) = Aeiωt + n(t) (2)

The integral becomes:

Ã = A +

(

1

T

∫ T

0

n(t)e−iωtdt

)

(3)

Now suppose that the noise term n(t) is a random variable with Gaussian distribution with
zero mean. We can consider Ã to be a random variable estimating the value of A. Because
the integral over the noise has an expectation value of zero, the mean value of Ã corresponds
with the true value of A:

〈Ã〉 = A (4)

To quantify the variance of Ã I first transform to the discrete case, which is what we will be
implementing:

Ã = A +
1

N

N
∑

j=0

nje
−iωtj (5)

where nj = n(tj). The variance of Ã, which I will denote by D{Ã}, may now be written in
terms of the variance of n:

D{Ã} =
1

N2
D

{

N
∑

j=0

nje
−iωtj

}

(6)

If nj is a gaussian random variable characterized by (stationary) mean µ = 0 and variance
σ2 = D{n}, then this may be simplified:

D{Ã} =
1

N2
Nσ2 =

σ2

N
(7)

For sufficiently small signal to noise ratios (
√

|A|2/〈n2〉), we may simply estimate D{n} ≈
D{x}, i.e. use the approximation that the variance of the noise is equal to the variance of
the entire time series x.

2 Numerical Simulation

Two simulations were performed, each estimating the amplitude of a signal at a frequency
of 1144.3 Hz at an amplitude of

√
2 and phase of 45◦ in 64 seconds of complex time series
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Individual estimates
Mean estimate = 0.998803 + i 1.046767
 (Mag = 1.446833, Phase = 46.343217)
2.15 sigma
Expected measurement error

(a) Low SNR. Error is estimated accurately, as seen
by the coincidence of the predicted error (blue circle)
with the measured error (red ellipse). The amplitude
of the simulated signal (

√
2 at a phase of 45◦, or,

in cartesian coordinates, real and imaginary compo-
nents of unity) is also correctly recovered.
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Mean estimate = 0.999720 + i 1.000119
 (Mag = 1.414100, Phase = 45.011441)
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(b) High SNR simulation. Error is overestimated due
to breakdown of the small signal approximation.

Figure 1: Results of two numerical simulations of the described algorithm

sampled at 2048 Hz. The 64 second series was broken down into 256 segments and the
spectral component was estimated for each segment. The small signal approximation was
used: the variance of the noise was estimated from the variance of the entire time series.

In the first test the signal-to-noise ratio was 0.1 and both the amplitude and the error on the
amplitude estimate were accurately estimated. In the second test the signal-to-noise ratio
was 10. In this case, while the amplitude was accurately estimated, the error on the estimates
were not, owing to the breakdown of the small signal approximation. The estimates for both
simulations are displayed in the complex plane in Fig. 1.
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