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1. Physical configuration 

 
Here the Parametric Instability (PI) “R” value is calculated for an arbitrary TM acoustic 
mode {m}vibration distorting the net electromagnetic field within a single (Adv LIGO) 
arm cavity. The arm cavity is held on exact {00} mode resonance, with no perturbations 
present other than the acoustic mode vibration and the finite TM mirror diameter. The 
cavity is pumped with a perfectly matched {00}field which maintains a steady state field 
strength E0 (at frequency ω0: a tacit “carrier” factor   0i te ω−  is understood to have been 
removed from all field amplitudes) of this mode within the cavity. The particular acoustic 
mode {m} (specific to only one TM) oscillates at fixed frequency ωm. All other acoustic 
modes and the perturbation fields they generate have no influence on the dynamics of 
{m}. This is based on the assumption that for every other mode {m’}, m m mω ω δ′ − . 

An incipient acoustic mode amplitude ( )mu x (x being the coordinate within the TM bulk) 
is excited (perhaps thermally, but in any case vanishingly small ……). Whether this 
amplitude will coherently grow or not depends on the balance of 1. the dissipation rate D 
of the internal energy of {m}, and 2. the rate of work,W , done on the mode {m} via its 
[mirror surface] coupling to the net cavity field E

&

tot. This work is typically positive for a 
Stokes Doppler component of the cavity field, Ebk mi te ω  , allowing the possibility of 
unstable growth of {m} if /

t
R W D≡ >& 1 [4]. 

                                          
Calculations of the acoustic frequencies, wm, and modal shapes, um(x), and hence Dm are 
entirely the results of independent (∀ {m}) FEA simulations of the Adv LIGO TM. Only 
the calculation of  Wm involves an optical cavity (FFT) simulation.  
 
An important distinction (and simplification) from the analysis in [1,2,3] is that we 
assume that the parametric feedback on {m} has no significant effect on ωm. Therefore 
ωm is merely an ab initio constant parameter. More exactly, the problem is one of 
coupled oscillators (the mode {m} and a sum over cavity modes which sufficiently 
approximates Etot), so that ωm will be shifted. However it may be shown that any relevant 
shift is mδ≤ (~ 10-7 ωm). 
 
 



2. Derivation 
 
First D, the dissipation of the acoustic mode {m}. We regard {m} as a classic SHO with 
dissipation parameterized as Qm such that 
 
                                                  /Um m stored mD Qω=                                                     1 
 
We can also define a “width” / 2m m Qmδ ω= . A FEA simulation of the TM mode {m} 
gives u(x), ωm, and Ustored via 
 

                                                  
22M ( )

U
2 v

m
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d

d

ω
= ∫

∫
u x v

                                           2 

 
 
Next, using the TM surface distortion also obtained from the FEA, we calculate 
the field scattered (“reflected”) from this TM: 

u ( )z sx

 

                                      0
u ( )exp 4 z s

Scatt mE E i Cosπ
λ

tω⎧ ⎫= ⎨ ⎬
⎩ ⎭

x                                      3 

 
 
Since, for the purposes of this threshold calculation, u ( ) /z s λx  can be considered 
arbitrarily small it will be consistent to only retain and consider field components to first 
order in ~ u ( ) /z s λx . In particular, the total cavity field, Etot, into the TM surface can be 
reduced to three [Fourier] components: 
                     
                                               0

m

back back

i t i ts as
totE E E e E e mω ω−≈ + +                                      4 

 
where  via (3). E/

0bk

s asE i∝ E tot may then be used to calculate the radiation pressure on the 
TM surface: 
 
                                                  2( ) 2 ( ) /s tot sE cη=x xP                      5 
 
Where η is a constant (depending on units) which relates radiation pressure to the 
magnitude of the Poynting vector (which will cancel in the sequel). The factor two 
represents the doubling of pressure due to the nearly perfectly reflecting surface. In this 
situation we approximate “2”=1+RTM. The only terms in (5) which will lead to time 
average work on {m} will be ones at frequency ωm, and of quadrature ~Sinωmt (in phase 
with the velocity of {m}, consistent with (3)). With E0 taken as pure real, such terms will 
then be /Im

bk

s asE⎡ ⎤∝ ⎣ ⎦ : 
 
                   

0

2 2
02 Im ineffective termss as

tot bk bk mE E E E E Sin tω⎡ ⎤= + − +⎣ ⎦                     6 
 



Immediately at this stage the sign difference of work done by the Stokes component and 
by the anti-Stokes component emerges. Several special cases may make the factor 
Im s as

bk bkE E⎡ −⎣ ⎤⎦  vanish. One would be if uz(xs) is spatially uniform, so that /s as
bkE are 

resonant and thus relatively real [3]. Similarly it may appear that a piece is missing from 
the total radiation pressure: that due to Escatt- E0 . However, aside from the usual static 
pressure already accounted for by the factor 2 in (5), this field gives no dynamic 
contribution to (6): the perturbation is pure phase modulation. Physically this says that 
light reflecting off a mirror (not part of a cavity) will not alter the damping of any of the 
mirror’s mechanical modes. Therefore the active term in (6) exists only via circulating 
“back” fields due to the cavity. 
 
Work is done by the radiation pressure on {m} at rate: 
 

   2
z 0( ) u ( ) 4 Im u ( )s as

m m s s m m bk bk sW Sin t ds Sin t E E E ds
c z
ηω ω ω ω ⎡ ⎤= = −⎣ ⎦∫ ∫x x x& P           7    

 
 
 
Then combining (1,2,5,6,7) gives: 
 

               0 z
22

Im u ( ) v
/ 4

M ( ) vm

s as
bk bk sm

t

E E E ds dQW D
c d

η
ω
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∫

x

u x
&                                     8 

 
Then noting that P0 (cavity pump power) is 

2

0E dsη∫  gives 
 
            

                 00
2 22

0

V Im u ( )P/ 4
M ( ) vm

s as
bk bk sm

t

zE E E dQW D
c E ds dω

⎡ ⎤−⎣ ⎦= ∫ s

∫ ∫

x

u x
&                                       9 

 
Which is essentially the expression presented in LIGO-T060207-00 [6]: 

         
 

3. FFT implementation 
 
The expression (9) for R needs to be interpreted in terms of well defined arm cavity FFT 
(static) simulations. At first this appears paradoxical since the physical problem is 
dynamic, since Escatt consists of time dependent side bands of different frequency light in 
the cavity, which feed back on the TM in a time modulated way. However we see already 
in (9) that there are no explicitly time dependent quantities. This results from recognizing 
and formulating this problem of interest (threshold feedback) as a purely linear one 
which allows the time dependence of each Fourier component to be factored out. 
 



Aside from those quantities in (9) obtainable from TM FEA simulations, the only 
unknown ones are /s as

bkE . Each of /s as
bkE is the steady state field which would result from 

the excitation of a perfect, {00} resonant arm cavity with a field equal to the 
mωm component of Escatt (3). But this is exactly what our static FFT algorithms are 

designed to calculate. The implementation proceeds as follows: 
 

1. An FFT simulation is configured for an ideal (no distortions) Adv LIGO arm 
cavity. The input excitation field is 0E∝ , the ideal Adv LIGO Gaussian beam 
which matches into this cavity. This “baseline” simulation is performed to 
establish the precise numerical cavity resonant length L0. By FFT convention the 
relaxed field 0

bkE , of this simulation at the TM reflection surfaces are purely real. 
 
2. Next we perturb this ideal input excitation via a phase distortion upon 

transmission into the cavity. This is performed by a standard FFT transverse 
phase map: 

 

                                            
0

u ( )( ) 2 z s
sxϕ π π

λ
=

x  

 
      which causes the cavity to be excited by a wavefront of exactly the same 

distortion amplitude as the physical acoustic scattering,(3), would for each 
individual frequency component 

 
3. Now consider an FFT simulation for one of these frequency components, 0 mω ωm . 

One way to do this would be to specify a new wavelength ( )0 01 /mλ ω ω±  for the 
simulation (FFT knows only spatial quantities, e.g. λ) while maintaining the cavity 
length L0. Instead we choose to fix 0λ λ= for all simulations while microscopically 
changing the cavity length ( )0 0L L 1 /m 0ω ω→ ± . 

 
4. The result of the FFT simulation (with distorted input and L fixed at ( )0 0L 1 /mω ω± ) 

is a transverse map of the steady state cavity field at the longitudinal position of and 
into the distorting (input) TM. It is the sum ( )/ 0 '

0/s as

bk bkE E E+  where ' 0
0and bkE E E∝ . 

The proportionality constants are precisely, analytically related (tracing the 
undistorted cavity resonance curve, at least to first order in perturbation) to the 
cavity length change 0L /m 0ω ω± . Therefore the extraneous term '

0E  can be exactly 
removed from the map, and the properly normalized, for use in (9), 
term /s as

bkE extracted. 
 

5. The previous step is repeated to separately generate s
bkE and as

bkE , which are then 
inserted into Eqn. (9).  

 
 

4. Cavity mode reduction 
 



Once again, since the problem at hand is essentially linear, we can always decompose the 
excitation field Escatt (3) into a sum of cavity eigenmodes (of normalized transverse form 
ψj) and calculate a partial Rj which takes into account only the work done by each single 
modal component. We proceed to calculate /s as

bkE and thence Rj via (9) for such a single 
component. 
 
For each Fourier component of scattE : 
 

                                     /
0

0

u ( )2s as z s
scattE iπ

λ
≈

x E

j
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For brevity we follow only one modal component of this field (e.g. 0u ( )z s E ψ∝x ) giving 
 

                                   /
0

0

( )
{ } 2 u ( )js as

scatt j z s

x
E j i ds

ψ
π ψ ψ

λ
≈ ∫ xE                                    11 

 
where 0E ψ≡ 0E . Since this is a pure eigenmode the steady state expression for 

/ { }s as
bkE j is simply, 

 
                                                      12 / / /

0{ } { } [1 exp{ 2 L 2 }]/
G

s as s as s as j
bk scattE j E j r i k i ϑ= − +%

 
which now does explicitly differ, s/as, through ks/as. In this expression 

G

jϑ is the cavity 
Gouy phase for mode {j}, and is the effective RT reflectivity within the cavity for mode 
{j}. Recall now that

r%
0E and thusE are pure real, so that / { }s as

scattE j is pure imaginary, giving 
 

     /
0 /

0 0

( ) 1Im[ { }] 2 u ( ) Re
1 exp{ 2 L 2 }

G

js as
bk j z s s as j

x
E j ds

r i k i
ψ

π ψ ψ
λ ϑ

⎡ ⎤
= ⎢ ⎥

− +⎢ ⎥⎣ ⎦
∫ x

%
E        13 

 
For small RT phase deviations from resonant, ( )/

02 L
G

s as jk ϑ π+ < , to first order 

 

                      
( )2/ /

0 0

1 1Re
1 exp{ 2 L 2 } 2L 1 /G

s as j s as
j j

c
r i k i ϑ δ ω δ

⎡ ⎤ ⎛ ⎞
≈ ⎜ ⎟⎢ ⎥ ⎜ ⎟− +⎢ ⎥ − Δ⎝ ⎠⎣ ⎦%

           14 

 

where we define 
0

1
2L 1 1j

c r
r rδ

≡ ≈
− −
%

% %
, and ( )/ /

0 0L L
G

s as j s ask cϑ ω+ ≡ Δ / . 

Using (13) and (14) in (5,6,7) we arrive at the rate of work done on {m}by this individual 
modal component: 
 

( )
( ) ( )

2
2

0 z 2 2
0 0

1 1{ } 4 u ( )
1 / 1 /

m m j s s as
j j j

W j Sin t ds
c L
ηπ ω ω ψ ψ
λ δ ω δ ω δ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟− Δ − Δ⎝ ⎠

∫ x& E  



 
Which may be simplified using / 2j j Qjδ ω≡ , P0=

2

0 dsη ψ∫2E , and dividing by Dm 

 

        
( ) ( )

0
2 22

0

P 1 1{ } / 4
L M 1 / 1 /m

m j j
j mt s as

j j

Q Q
R W j D

cω ω δ ω δ

⎛ ⎞
⎜ ⎟= = Λ −
⎜ ⎟− Δ − Δ⎝ ⎠

&            15 

 

Where 
( )2

0 z

2

u ( )

( ) v

j sj
m

V d

d

ψ ψ
Λ ≡ ∫

∫

x

u x

s
 is the geometrical coupling factor of [1,2]. This is 

exactly the contribution of {j} in the R expression of LIGO-T060207 and [1,2]: 
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