Comparison of uniform versus taper channel section beam models RAL 2007 T.Hayler LIGO-T070164-00-K

1. Comparing a workbench model with a beam model to validate the approach.

Figure 1. Workbench model of uniform channel section beam, first frequency 14.4Hz

Figure 2. Workbench model of uniform channel section beam, second frequency 39.9Hz

Figure 3. Workbench model of uniform channel section beam, third frequency 89.6Hz

Mode	Uniform	Uniform channel	Mode shape the
	channel beam	workbench model	same for both
	model 12.6kg	16.5kg	models
1	16.1	14.4	Bending in x
2	41.8	39.9	Torsion
3	98.2	89.6	Panting in x
4	107.7	136.3	
5	110.4	164.6	
6	142.1	263.1	
7	145.4	284.3	
8	155.0	310	
9	156.7	335.8	
10	157.2	345.6	

Table 1. Uniform versus taper channel section beam

Table 2. Uniform versus taper channel section beam. The models have an additional 10Kg on each of the bottom corners of the frame, making the total additional mass 20kg.

Mode	Uniform	Uniform channel	Mode shape the
	channel beam	workbench model	same for both
	model 12.6kg	16.5kg	models
1	6.2	6.2	Bending in x
2	13.4	15.3	Torsion
3	77.2	74.1	Panting in x
4	80.1	79.6	Bending in z
5	109.8	107.1	
6	111.2	228.4	
7	117.8	252.5	
8	154.9	269.2	
9	156.5	291.9	
10	157.2	304.4	

Conclusion

Table one does show some discrepancy between the workbench and beam models, this is due to the self weight of the structures, the workbench model has features in the frame for mechanical fasteners and extra material in rounds etc.

With the addition of extra mass at the bottom of the frames the self weight of the frame becomes less significant. Table two shows that the beam model is very representative of the workbench model.

2. Taper beam model

SCALE : 1:1 TYPE : PART NAME : TAPER_BEAM SIZE : A3

Dimensions Case 1 A = 3mmB = 6mmC = 40mmD = 52mm

Table 3. Taper channel section beam with no additional mass.

Mode	Taper Beam	Mode shape
	model, case 1	
	13.2kg	
1	17.0	Bending in x
2	44.6	Torsion
3	97.0	Panting in x
4	107.5	
5	110.3	
6	134.7	
7	141.8	
8	147.1	
9	160.2	
10	161.2	

Mode	Taper Beam	Mode shape
	model, case 1,	
	13.2kg	
1	6.3	Bending in x
2	13.3	Torsion
3	77.4	Bending in z
4	79.8	Panting in x
5	109.6	
6	111.4	
7	119.9	
8	141.8	
9	144.6	
10	160.7	

Table 4. Taper channel section beam with the addition of 10Kg on each of the bottom corners of the frame, making the total additional mass 20kg.

2.1 Taper beam model in folding mirror design

Mode	Uniform channel	Taper channel beam	Mode shape the
	beam model in	model in folding	same for both
	folding mirror design	mirror design	models
	71kg	70.4kg	
1	99.3	99.6	Bending in z
2	105.3	105.7	
3	110.0	110.0	
4	110.3	110.3	
5	110.6	110.6	
6	110.8	110.8	
7	115.4	115.4	
8	116.0	116.9	
9	133.0	131.5	
10	150.5	139.8	

2.2 Big taper beam model in folding mirror design

Mode	Uniform channel	Big taper channel	Mode shape the
	beam model in	beam model in	same for both
	folding mirror design	folding mirror design	models
	71kg	71.5kg	
1	99.3	102.7	Bending in z
2	105.3	107.16	
3	110.0	110.0	
4	110.3	110.6	
5	110.6	110.7	
6	110.8	110.9	
7	115.4	117.7	
8	116.0	122.0	
9	133.0	136.6	
10	150.5	141.6	

Conclusion

The taper beam, or at least this design of taper, does not seem to improve the frequency.