
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T070182-00-R LIGO Aug 7th, 2007

Line Monitor Web Interface Reference
Kiel Howe

Distribution of this document:
LIGO Science Collaboration

This is an internal working note
of the LIGO Project.

California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW17-161

175 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory
P.O. Box 940

Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

This material is based upon work supported by the US National Science Foundation under
Cooperative Agreement No. PHY0107417.

http://www.ligo.caltech.edu/

LIGO LIGO-T070182-00-R

Acknowledgements

I worked on this project as a Virgo-LIGO 2007 summer exchange student. Thanks to my supervisor
Michele Punturo, as well as to Irene Fiori and Gabriele Vajente for their guidance, feedback, and
help. Thanks also to Riccardo DeSalvo and Francesco Fidecaro for all their work organizing this
amazing experience.

Table of Contents

Introduction .. 1

Existing Tools ... 1

Database Development ... 2

Interface Development ... 2

Component Integration ... 3

Conclusions .. 4

APPENDIX A – Web Interface Users Guide ... 5

APPENDIX B – Common Maintenance and Troubleshooting 8

APPENDIX C – Web Interface Detailed Development Reference 11

APPENDIX D – Database Benchmarking ... 14

LIGO LIGO-T070182-00-R

Introduction

In the attempt to reach design sensitivity, one of the primary activities of the Virgo Noise Group is
identifying and eliminating persistent peaks in the Virgo dark fringe spectrum, or lines as they appear
in spectrograms and other plots. Some lines have obvious explanations, like the 50hz and harmonics
lines due to the power mains, but many require careful investigation and experimentation to explain.
To this end, Virgo scientists have created many useful tools, including programs to calculate
coherences and automatically pick out peaks, and databases to keep track of known lines and lock
events. The goal of the Line Monitor Web Interface is to unify these tools in one application.

Existing Tools

Coherence is a mathematical operation in the frequency domain that establishes relationships
between different signals. This summer another Virgo summer student, John Draskovic, created a C
program to automatically compute coherences between the dark fringe channel and all environmental
channels on a lock-by-lock basis.

LineMonitor is a C program that runs on-line, taking Fast Fourier Transforms of the dark fringe
channel, and identifying peaks in each time window. The frequency and amplitude of each peak is
stored, as well as the sound to noise ratio (SNR), which is the ratio of the amplitude to a computed
background. Graphs of this information with respect to time can be useful to see drift in frequency
and SNR, which can be related to time-dependent variables like temperature change. They can also
make apparent sudden jumps that can result from events like control adjustments or earthquakes.
These graphs are especially useful since Virgo Science Run One (VSR1) has started making longer
periods of continuous science mode data available for analysis. Unfortunately, there was no simple
way of accessing the information produced by the existing version of LineMonitor, as it wrote frames
incompatible with the standard Virgo analysis software, DataDisplay. The data produced by
LineMonitor is also useful for persistence calculations, which are a mathematical measure of how
often a line is present in a given time range.

The known lines database is a web application using a MySQL database that allows documentation
and logging of investigations of lines by their frequency, as well as cataloging of characteristics like
drift. Most usefully, this database contains entries for all lines which have been cataloged so far.

The locks database is another MySQL database that contains information about the operation mode
of the detector. This information was also available from a web application, but required
cumbersome cutting and pasting into forms and configuration files. Easy use of this data is important
because most calculations with other tools are only useful for science mode data.

1

LIGO LIGO-T070182-00-R

Database Development

The backbone of the application is the data produced by LineMonitor. However, as mentioned earlier,
the existing version did not store data in a usable form. So, it was decided to store the LineMonitor
data in a MySQL database.

Storing the data in a database provides several advantages over storing in frames or another flat file.
As far as frames are concerned, reading a relatively small channel over a long time range will always
be much slower than a single-channel database. This is because frame data is grouped in sequential
storage by its gps time, not by its channel. This translates into lots of slow seeking over irrelevant
data from other channels. For a plain flat file, separate copies for different users and delays between
updates would be necessary to handle concurrent reading and writing; this is something the database
does very effectively behind the scenes.

Additionally, using a MySQL database allows seamless integration with the existing known line and
locks databases. Powerful SQL queries can be written to join data from all three of these tables. There
was also already an existing MySQL testing deployment at Virgo because of these other databases.

Modifying the LineMonitor program to write to the database was trivial. However, tuning the
database's performance, with one quarter of a gigabyte of data being written for each week of VSR1
data, proved to be difficult. At one point during development, queries that were expected to take a
couple of minutes were taking five times as long, making the application very unacceptably slow.

By benchmarking several different indexing methods and storage engines, it was possible to find a
solution that provided good performance and scalability. By replicating the currently available VSR1
data, acceptable performance was projected out to one half of a year of data. Although the database
was not tested with more than that much data, analysis of the benchmark results suggests that
performance will not suffer. An in depth description of the benchmarking methodology, results and
conclusions is available in Appendix D.

Interface Development

PHP running on an Apache web server was chosen as the platform for the main interface. This
platform was appealing from both the user and development points of view.

For the user, there is very little learning curve, because the application behaves just like any familiar
web page. For example, when the page is bookmarked, it will come up with the exact same settings
and view as before, and to save a graph, one just right clicks and selects “save as.” In addition, the
user need not worry about resource use, which is split between the web server and the database
server.

2

LIGO LIGO-T070182-00-R

From the development standpoint, PHP has very simple bindings to MySQL, and HTML forms are
very intuitive to design. Also, because I was developing on an intranet server, I was able to regularly
make the newest stable version of the application available to members of the noise group. The
feedback from these stable releases was helpful in directing the development of the application at all
stages.

Some drawbacks to this development platform did become evident as the project progressed. For one,
because PHP can not pass large amounts of data across page loads, each request required a complete
reload of data from the MySQL server, even if it was on the same data range as before. The
significant performance hit of this was overcome in the interface by creating quick in-memory
caching tables on the MySQL server. This is an effective solution, but makes some simple parts of
the code much more complicated. PHP also has a weaker object model and poorer debugging tools
when compared to many compiled languages. In retrospect, developing the GUI as a Java applet
would have provided similar advantages to those of PHP, without so many disadvantages.

For a detailed reference to the web interface code, see Appendix C, which includes class diagrams
and flow charts.

Component Integration

The web interface allows the user to select LineMonitor data to view by specifying a frequency
range, a time range, and a minimum SNR. Any data from LineMonitor can be graphed on either the x
or y axis. Graphing is done using a simple free PHP chart library. The graphing was designed to be as
informative and quick as possible. This makes the interface useful for visualizing data, but not
producing high quality graphs. This decision was made that rather than try to duplicate the features of
the many available graphing suites, it would be better to simply provide a link to download the
selected data in the portable tab separated value format, for importing into a graphing program.

Although it is called LineMonitor, the data provided by LineMonitor does not say anything about
which peak belongs to which line. So, line identification in the interface is implemented in two
different ways. First of all, the user can manually list frequency ranges which represent lines. Or, the
interface can automatically identify lines with a minimum persistence at a desired resolution. The
algorithm works by recursively dividing the frequency range into two overlapping ranges, and
calculating persistences for each range. If a range has the desired persistence, it is further divided,
otherwise it is thrown out. This is repeated until the desired resolution has been reached, at which
point any range with the desired persistence is returned. The algorithm is effective in most cases
except lines that are wider than the desired resolution, and lines that drift more than the desired
resolution.

3

LIGO LIGO-T070182-00-R

The interface calculates persistence with a simple method. It is merely the number of distinct times a
peak is present in the frequency range of the line divided by the maximum possible times based on
the time range being viewed and time resolution of the data.

When lines have been identified either automatically or manually, they can be matched with known
lines within a specified delta frequency. Basic information about found matches is provided in a
table, as well as links to the appropriate entry in the known lines database.

For coherence integration, I worked with the other summer student to adapt his program to write to
another MySQL database. For each line, the interface searches the coherence database within the
specified delta frequency and within the selected time range for the maximum coherence with each
channel. Matches are displayed in a table with links that allow the user to view the complete
coherence graph of any matched channel.

Conclusions

There were two main problems with the development process for this application. First the database
benchmarking should have been the one of the very first steps in the database design. Instead,
benchmarking interrupted interface development and then required changes to the interface code to
deal with the new tables. Secondly, more thought should have been put into the drawbacks of using
PHP for the interface. Using a more appropriate language like Java would have resulted in less
complicated code and easier debugging.

However, despite these two mistakes in development, the application has at least basic
implementations of all of the desired features, performs well, and is stable. Furthermore, the
application has been designed to be easily expanded, refined, and supported. The documentation
contained within the appendices will be useful in all of these activities.

4

LIGO LIGO-T070182-00-R

APPENDIX A: Web Interface Users Guide

(This users guide can also be accessed as the online help for the web interface)

Title Bar

The '+' button will expand the dialog, the '' button will shrink the
dialog to only the title, and the '?' button opens a window for the
help for that dialog.

Data Selection

Uses this dialog to specify the data you want to look at. The first
time you look at range of data, it will be read off the disk and
cached in memory, which can take one or two minutes. After that,
any data you look at within that range will load quickly from the
cache. If you select data outside of the range, the cache will be
cleared and reloaded with new data.

Min Freq and Max Freq

Specify the data range in hz you wish to look at. The database
contains data from 1 to 1000hz with a resolution of 0.01hz.

Start Time and Duration

Start Time is the first gps time you want to see data from.
Duration is how many seconds you want to see data for. You can
also use the locks dialog to automatically fill in these fields.

Min SNR

Only points with SNR greater than this value will be displayed.
Only points with an SNR > 4 are stored in the database. Changing
the min SNR does not require reloading the memory cache from
disk.

5

LIGO LIGO-T070182-00-R

Graph Settings

This dialog controls how the graph of the data selected with the
data selection dialog is displayed. The result is the graph window.

X Axis and Y Axis

These options control which field will be displayed on which axis.
Any combination is possible.

Img Width and Img Height

These control the actual size in pixels of the image generated.

View Graph

If you do not wish to generate graphs, unchecking this box will
slightly improve performance.

Table Settings

This dialog allows you to specify how to identify and present
information about individual lines. The result is displayed in the
table window.

Match with known lines and delta f

If you select this option, for each line in the table the known lines
database will be queried for matches within the specified delta f
(frequency in hz). These matches will be displayed in the table
window.

Match with coherence db

If you select this option, for each line in the table the coherence
database (which stores coherences between environmental
channels and the dark fringe which are above a certain threshold)
will be queried for matches during locks that are within the time
range you selected with the data selection dialog. For each
channel that has matches, the frequency and coherence of the
maximum value in the range will be displayed in the table
window. The name of the channel will be a link to open a window
to display the complete coherence plot for the selected lock and
channel.

Automatic Line Detection

When checked, the web interface will use a treesearch algorithm
to find lines with the desired detection resolution and minimum
persistency. This search is not 100% reliable and works best for

6

LIGO LIGO-T070182-00-R

lines that are not wider and do not drift more than the specified
resolution.

Manual Line Specification

When checked, the web interface will display entries in the table
for the lines you specify in a comma separates list of the form
"[min freq][max freq], ...". For example: "5556, 5959.5". Only
lines you specifed that are within (noninclusive) the selected data
will be in the table. I.E, if you have selected 5060hz, a line '50
51' will not be displayed, but '50.151' will.

Locks

The locks dialog displays a list of science mode locks in
chronological order. The locks dialog is minimized by default
because of its length, and must be opened by clicking the '+' link
next to the title.

Min duration

Only locks with a duration greater than this value in minutes will
be displayed in the list.

Use

Clicking the "use" link next to a lock will fill in the "Start Time"
and "duration" fields of the data selection dialog with the
approriate values for that lock.

Graph

The graph can be saved to your computer by rightclicking and
selecting "saveas".

Download Raw Data

Click the link in this window to download the raw data in tab
separated value format. This format can be opened by most
graphing and analysis programs.

Table

This window displays identified lines and can also display known
line and coherence matching information.

7

LIGO LIGO-T070182-00-R

APPENDIX B: Common Maintenance and Troubleshooting

Complete Reinstall

In the event that a complete reinstall of the application is necessary, follow these steps:

1) Install an apache server with PHP5 installed as a module with GD2 support.

2) Install a MySQL 4.1 server with support for the InnoDB storage engine enabled.

3) Configure the servers in accordance with the section “Important Server Settings”

4) Create a database for the application to use.

5) Create a user for the application that has privileges to update, select, create, and drop in the
database.

6) Create the necessary tables using the SQL script
/virgoDev/LineMonitor/web/{version}/scripts/sql/createTables.sql

7) Update the database connection info in the configuration file for LineMonitor.exe and
configure it to process all old data that should be in the database.

8) Follow the instructions in “Running LineMonitor.exe On-line” to start the on-line process.

9) Copy the web interface directory /virgoDev/LineMonitor/web/{version}/ to the web servers
path

10) Follow the instructions in “Changing server connections for the web interface” to configure
the web interface for the new users.

11) CRON the script /virgoDev/LineMonitor/web/{version}/scripts/bash/removeOldImgs.sh to
run on a daily basis to clean the temporary images directory of the web server.

Migrating Tables

When migrating line monitor tables to a different server, the only tables that need be moved are
'LM_buffer_manager' and 'LM_points'. Any other tables prefixed with 'LM_' are temporary tables
that can be deleted.

Important Server Settings

● PHP5

○ Must have GD2 module.

○ Must have MySQL client module

8

LIGO LIGO-T070182-00-R

○ Problems may occur if session id URL writing is not enabled.

○ Session expiration time should be at least twenty minutes.

○ Should have a script memory limit reasonable for the amount of RAM on the machine to
prevent errors from taking down the whole system.

● MySQL

○ Heap table maximum size should be set to at least 16mb.

○ Connection timeout should be at least ten minutes to prevent LineMonitor.exe from
timing out.

○ InnoDB storage engine must be enabled.

Running LineMonitor.exe On-line

When starting or restarting LineMonitor.exe processing on-line data, it is important to follow these
steps to avoid gaps in the data and duplicate data:

1. Connect with the command line mysql client to the LineMonitor database and execute:

SELECT MAX(gpstime) FROM LM_points;

2. Start LineMonitor.exe On-line with the correct configuration file (presumably a modified
version of /virgoDev/LineMonitor/{version}/lm_default.cfg). Note the gpstime at which it
starts.

3. Run another process of LineMonitor.exe configured to process between the times noted in
step one and two.

Changing server connections for the web interface

The file containing server connection information for the web interface is found in the base directory
of the interface and is called “lmConnections.inc.php.” Change the necessary connection parameters
in this file.

Slow access and “Using Disk” messages

The web interface creates memory tables on the MySQL server to buffer data. If there is a
configuration or session error, or if the selected data range is too large, it may not be able to create
these tables. This will significantly slow performance, especially if automatic line detection is
enabled. If this error is occurring for reasonably sized queries , check settings with “Important
Server Settings”. Also try following the resolution for “Blank graphs / Empty tables”.

9

LIGO LIGO-T070182-00-R

Blank graphs / Empty tables

If a query that should have results comes up with a blank graph or an empty table, it probably
indicates something has gone awry with the caching system. Execute this command on the MySQL
command line client connected to the LineMonitor database to reset the buffer system:

DELETE FROM LM_buffer_manager;

Then, drop any tables prefixed by 'LM_MEMBUFFER_'.

Graph Images Not Found

Whichever user the apache process is running under needs read, write, and execute access to the
directory called tmpimg in the line monitor web interface root directory. Without this, it will not be
able to save graphs to image files for display.

10

LIGO LIGO-T070182-00-R

APPENDIX C: Web Interface – Detailed Development Reference

File Descriptions:

UML Diagrams

The class diagram describes completely the organization and relationships in the code. Different
packages correspond to different .inc.php files.

The flow chart describes the order in which code executes and the general ways tasks are
accomplished when index.php is loaded.

The diagrams were created with the open source java software ArgoUML. Their raw files can be
found in the docs folder and they should be updated to reflect code changes.

11

This file contains class definitions for working with data.

This file contains class definitions for drawing graphs.

./chart This directory contains the include files and examples
for the Chart library used to produce graphs.

./help This directory contains help.html and help.css which
contain the users guide.

./index.php This file is the main workhorse. It includes other files,
draws the gui, and creates data sources.

./coherence.php This file draws a graph of coherence values for one
channel and lock and is linked to from index.php.

./lmDownload.php This file returns data in tab separated value format
for downloading and is linked to from index.php.

./lmCleanup.inc.php This file closes database connections and performs
other maintenance

./lmConnections.inc.php This file contains the connection strings for the
different databases used.

./lmData.inc.php

./lmGui.inc.php This file contains class definitions for defining the gui.

./lmLines.inc.php This file contains class definitions for identifying,
matching, and displaying line tables.

./lmOutputGraph.inc.php

./lmGui.js This file contains javascript functions used by the gui.

./lmStyle.css This file contains the style definitions that determine
the appearance and organization of the gui.

LIGO LIGO-T070182-00-R

Web Interface Class Diagram

12

LIGO LIGO-T070182-00-R

Web Interface Flow Chart

13

LIGO LIGO-T070182-00-R

APPENDIX D: Database Benchmarking

Purpose:

To determine the performance of several different indexes and storage engines against a range of
queries and while storing different amounts of data.

Test Variables:

Queries:

Queries were created that selected all fields with different frequency and time ranges based on this
matrix. The ranges were determined based on the expected min, max, and averages.

One Day (86400s) One Week (604800s) Two Weeks (1209600s)

2hz 01 05 09

200hz 02 06 10

500hz 03 07 11

2000hz 04 08 12

Data:

The tables were tested once with approximately 30 days of VSR1 data, and once with these 30 days
repeated with appropriately incremented IDs and gps times for a total of ½ year of data.

Indexes:

Indexes tested were:

● 01 - a primary key on pointID

● 02 - a natural primary key on (gpstime, freq) [no pointID field]

● 03 - a primary key on pointID and an index on (gpstime)

Storage Engines

The storage engines tested were:

● MyISAM – the defaut MySQL storage engine

● InnoDB

Tools Used

14

LIGO LIGO-T070182-00-R

The benchmarking software used was MySQL Super Smacker, combined with shell scripts to
generate queries and tables from combinations of the variables.

Results:

15

LIGO LIGO-T070182-00-R

Anomalies:

Tables 01_InnoDB and 03_InnoDB were not included in the results because initial attempts took
orders of magnitude longer with these tables than others.

Queries one, five, and nine were much slower than any others, especially considering they are the
smallest frequency ranges. Caching within the MySQL server was disabled for benchmarking, but it
is possible that some system or device cache was affecting the results. Because these queries are all at
the start of a new time range, they would not benefit as much as the others from this cache.

Conclusions:

The forerunners of the benchmarks are tables 02_InnoDB and 03_MyISAM. The general trend seems
to be that MyISAM performs better with only 30 days of data in the table and InnoDB better with ½ a
year. The explain statements on the queries show that InnoDB always performs a range scan on its
primary key, while MyISAM performs full table scans on the 30 day table and range scans on the
gpstime index. The performance difference makes sense because InnoDB stores data in order of the
primary key, and is therefore able to do quick range scans on the primary key. MyISAM, on the other
hand, is heavily optimized for full table scans or single index queries. Because of the way InnoDB
works, we expect its performance to stay constant for range scans no matter how much more data is
in the table. MyISAM, on the other hand, will only continue to get worse as each single index query
takes longer. Additionally, although it was too complicated to test in this setup InnoDB has the
advantage of row level locking vs. MyISAM's table locking, which should speed up queries when
LineMonitor.exe is writing to the table.

16

