
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory /LIGO Scientific Collaboration

LIGO-T070191-00-R LIGO Aug 14th, 2007

Report: Coherence2.exe
John Draskovic

Distribution of this document:
LIGO Science Collaboration

This is an internal working note

of the LIGO Project.

California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129

Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW17-161

175 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory
P.O. Box 940

Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu

This material is based upon work supported by the US National Science Foundation under
Cooperative Agreement No. PHY-0107417

http://www.ligo.caltech.edu/

LIGO LIGO-T070191-00-R

CONTENTS

Abstract 3

VESF Gravitational Wave School 4

Background 5

Documentation of coherence2.c 8

Web Interface Applet 12

Remarks 13

2

LIGO LIGO-T070191-00-R

ABSTRACT

 As part of the ongoing collaboration between the VIRGO and LIGO projects,

undergraduate students from American and European universities are exchanged annually

for a Summer-term research program. Assigned to Dr. Francesco Fidecaro, of the Noise

Studies Group, I visited the primary VIRGO facility in Cascina, IT for a ten-week period from

28 May to 1 August 2007, participating in the 2nd Annual Virgo-Ego Scientific Forum (VESF)

Gravitational Wave School and working with digital signal processing (DSP) software. My

software work focused primarily on the implementation of a C-language code for computing

coherence data between the dark-fringe channel (the primary data stream from the

interferometer) and environmental channels corresponding to various microphones,

magnetometers, seismometers, and accelerometers. In addition, I collaborated with

another American student, Kiel Howe, on the creation of a data storage and access system

for LineMonitor, a C-language code currently in-use at VIRGO. Finally, these two tools were

integrated via a web-based php applet, providing researchers with a simple and powerful

tool for tracking noise signals.

3

LIGO LIGO-T070191-00-R

VESF GRAVITIATIONAL WAVE SCHOOL

 The program of the school was a daily series of lectures by professors and students

from various international universities, as well as VIRGO researchers and technicians.

Content of the lectures fell into three disciplines: gravitational theory and wave sources,

in-depth description of the VIRGO interferometer systems, and signal processing techniques

for gravitational wave signal identification.

4

LIGO LIGO-T070191-00-R

BACKGROUND

I: Overview

 VIRGO is an observatory which utilizes a combination of Michaelson-Morley and

Fabry-Perot interferometers to detect small (on the order of 10^-20 m) displacements

associated with the propagation of gravitational waves. Injection is provided by a small

source laser, which drives a larger slave laser to a power of roughly 20 watts. After passing

through a beam splitter, the laser light enters two Fabry-Perot cavities oriented at 90

degrees, the combination of which comprises the Michaelson-Morley apparatus.

Displacement of the terminal mirrors is measured by the movement of the first dark fringe

of the interference pattern registered by photo diodes in the detection bench. For the

purpose of energy conservation, as well as enhanced sensitivity, a power recycling mirror is

used. The mirror is positioned in front of the injection bench such that, in the event of no

signal, the laser light is reflected back into the arm cavities, rather than simply allowed to

leave the instrument. Use of the power recycling mirror boosts the laser power in the

instrument to the to the order of kilowatts.

II: Noise

 Given the large sensitivity necessary to detect the displacements associated with

gravitational wave activity, it is inevitable that an interferometric gravitational wave

detector will encounter noise in the dark fringe signal. At the most fundamental level, the

nature of photon behavior introduces noise due to quantum uncertainty. This “shot noise”

is a design consideration which limits the ultimate sensitivity of the detector in the high

frequency range. At the low frequency range, the sensitivity of the instrument is limited by

5

LIGO LIGO-T070191-00-R

a combination of seismic noise and thermal noise in the mirrors and optical benches. The

combination of these noise limitations creates a “sensitivity curve” in the detection

frequency spectrum-- an effective background against which the information-containing

signals may be measured.

 While noise is a design consideration regarding sensitivity, the signal contains other

unforeseen noises. Manifested as large peaks within the detection spectrum, these can be

associated with a variety of sources. A simple example is the peak found at 50 Hz-- the

cycling frequency of European AC power. The noise analysis group at VIRGO attempts to

study and understand such systematic sources of noise in the observatory. The goal is to

catalog as many sources as possible, such that these noises may be removed, either

physically or by way of analysis, thereby leaving a signal which may contain gravitational

wave information. Fourier analysis provides the tools for this pursuit, implemented by DSP

in the way of Fast Fourier Transforms (FFT's). The task is great, as FFT's of VIRGO data

produce data in a wide band from 0 to 10 000 Hz, given the photo diode sampling rate of 20

000 Hz. Noise peaks in the detection spectrum may migrate temporally on the order of

seconds or minutes, or more slowly, drifting in frequency over the course of months. When

viewed in a spectrogram of detector data, these noise peaks create visible lines against the

background of the detector.

III: Lines and LineMonitor

 LineMonitor is a DSP code currently in-use at VIRGO. Written in C, and utilizing the

frame-based data stream from the interferometer, it isolates signal peaks by computing

FFT's of the raw data stream, averaging the effective noise background, and identifying

6

LIGO LIGO-T070191-00-R

peaks found above this background. These peaks, which become lines in the time domain

as the code executes sequentially, are stored by the program in frames as well as an on-line

database which interfaces with a web-based php applet.

IV: Environmental Monitors

 Critical to noise analysis at VIRGO is environmental monitoring. Microphones,

seismometers, accelerometers, photo diode instruments, magnetometers, and temperature

probes are present throughout the instrument, providing valuable data for finding the

sources of noise in the primary signal. Standard sampling rates for these channels are 20

kHz, 10 kHz, 5 kHz, and 1 kHz, depending on the nature of the sensor.

V: Coherence

 A tool used by the noise group, coherence is a mathematical concept that measures

the linear response between two signals. A commonly used coherence process at VIRGO is

written:

C �f �2= �X �f �Y �f ��2

�X �f ��2�Y �f ��2
1

The convolution of the two signals, squared, is divided by the product of the two power

spectra. The coefficient C runs from 0 (which means no linearity between the signals), to 1

(which indicates an exact linear relationship between the signals. Coherence, when

computed between the VIRGO environmental channels and the dark fringe signal, allows

VIRGO researchers to develop connections between environmental occurrences and noise

signals in the interferometer signal.

1 This is the procedure used in compute.c, by Gabriele Vajente

7

LIGO LIGO-T070191-00-R

DOCUMENTATION OF coherence2.c

This is intended as a rough “walkthrough” of the algorithm. For more complete

information, consult the source code comments (attached).

I: Main

 The main function first establishes a connection with a MYSQL database. As of my

last modification of the program, the database was located on the “slvtf” machine and

called “test”. The table used by the program is called “coherence” and contains 7 fields:

 id : a unique ID is assigned to each point, for internal use only

 gps_start: the start time of the lock containing the processed coherence data

 gps_end: the end time of the lock containing the processed coherence data

 frequency: the frequency of the given point

 value: the value of the coherence coefficient (between 0 and 1)

 channel: a string naming the environmental channel used to compute coherence with

the dark fringe

 threshold: the set minimum cutoff of the “value” entry

After connecting, the main function begins the main processing loop, governed by two GPS

times given by the user (labeled “USER DEFINED PARAMETERS”). First, the findnextlock

function is called. This function searches the trend.ffl data file for data tagged as

“science mode” data. When a lock is found, with a definite beginning and end time, the

function returns the time of the end, and sets the values of variables which are needed for

the processing functions.

 Next, the function searches a text file, named channels.txt, which is provided by

8

LIGO LIGO-T070191-00-R

the user and contains a list of channels. The first entry in the file must be the dark fringe

channel selected by the user. Below, any number of environmental channels may be listed.

NOTE: at this point, the environmental channels must match the sampling rate of the dark

fringe channel.

 The program stores the first entry of the text file as the dark fringe data, and begins

a loop through the environmental channels. The end of the channels.txt file breaks this

loop. For each channel, the process function is called. When all channels are processed

for each lock found between the start and end times specified, the main function closes the

connection with the database and terminates.

II: findnextlock Function

 This function opens the trend.ffl file for lock-finding. Using a function from the

frame library, it obtains a vector for the search time which contains a flag for each point of

data. Next, a loop searches this vector for data above the acceptable value. When a good

data point is found, the start time of the lock is recorded. Next, another loop begins,

looking for a bad data point. When found, the time is recorded and used to calculate the

duration of the lock. The function terminates, returning the end time of the found lock

and passing pertinent values back to the main function.

NOTE: Though the function passes the actual length of the lock back to main, it also

9

LIGO LIGO-T070191-00-R

returns a user-defined length for the FFT to be computed. Currently, it may be set up to 2

hours with stability.

III: process Function

 This program performs the necessary FFT's, coherence computations, and database

output for the specified FFT length returned by the findnextlock function. The function

first opens the raw.ffl file for interferometer data. It also opens a .txt file for

debugging output. The text files are automatically named with the channel identification

of the the dark fringe channel and the GPS time of the lock beginning. This program

processes data buffered by the individual frames. Before the processing loop, the program

grabs the first frame of Analog-to-Digital Converter (ADC) data of the specified process

time. From this frame data, it extracts the sampling rate of the data, so that memory

allocation can be performed. The program allocates three arrays: time series data for the

dark-fringe, time series data for the environmental data, and an array to contain the

processed coherence data.

 The primary loop fills the time series data for the environmental and dark fringe

channels. It executes until the time series data is filled, freeing and accessing subsequent

frames as necessary. When complete, the time series data arrays are passed to

computeCoherence, a function found in the code compute.c, written by Gabrielle

Vajente. This code divides the time series into segments of length specified by the user

(must be a power of 2 to optimize execution time). It then computes FFT's of these

segments and averages the results, for reasons of speed and cleanup of computational

10

LIGO LIGO-T070191-00-R

noise. A Hanning window is used. The actual FFT computation is done by a freely-available

algorithm called FFTW2. Returned from the computeCoherence function is an array

containing the frequency-domain data from the coherence computation outlined above.

 After the primary loop terminates, output is performed by another loop which

searches through the coherence array. A simple filter checks each point against the set

threshold value. If greater than the threshold, this value is checked against the average of

the 20 surrounding points. While rather crude, this filter works to reduce the data output

to the database without sacrificing information about coherence peaks.

2 “The Fastest Fourier Transform in the West”. Documentation of this code is found at www.fftw.org.

11

http://www.fftw.org/

LIGO LIGO-T070191-00-R

WEB INTERFACE APPLET

 Access to the database containing the coherence2.c output is facilitated by a multi-

functional web interface, written in php by Kiel Howe3. This interface allows for graphing

of data and tab-separated text file downloads. The graphing window displays noise peak

data computed by LineMonitor. A line-seeking algorithm is used to identify individual noise

lines. Once identified, either by the algorithm or user specification, the interface can

automatically query the database for correlating entries in the VIRGO Known Lines

Database, which is a logbook-style repository for noise lines cataloged by researchers, and

the coherence2 database. The user simply specifies a frequency delta about the noise line

to query these databases. The advantage of the web interface over other tools available to

VIRGO researchers is convenience. With this web applet, a researcher simply specifies a

data range of interest and quickly receives information entered by other researchers in the

Known Lines Database, as well as a list of channels which exhibit high coherence values

near the frequency of the noise line.

3 https://slvtf.virgo.infn.it/vtf/wwwDev/lmTest/stable/lmView.php

12

https://slvtf.virgo.infn.it/vtf/wwwDev/lmTest/stable/lmView.php

LIGO LIGO-T070191-00-R

REMARKS

 Coherence2.c was written with a rudimentary knowledge of C programming. In its

current state, user-defined parameters must be entered into the source code, and the code

rebuilt before use. If this tool is to become frequently utilized by a variety of users, a

configuration file must be implemented to streamline input.

 Furthermore, the code works only with environmental channels utilizing a 20 kHz

sampling rate, matching the sampling rate of the dark fringe channel. To use other

environmental channels, a down-sampling process must be added. In a previous

(nonfunctional) version of the coherence2.c code, a down-sampling function was used,

but this proved difficult to implement in the latest code. A code containing a down-

sampling function, xcorr.c, is located in the virgoDev/Coherence/Old_codes

directory.

 Regarding execution time, it was difficult to find a reliable measure of program

speed, due to frequent revisions to the code. On semi-reliable figure emerged with

repeatability: with the complete list of 20 kHz channels and an FFT length of 65536 points,

the code computed 1 hour of data in about 75 min. Increasing the FFT resolution to 196608

points slowed the execution, but the extent of this was not recorded reliably.

 On a personal note, this program was by far the most ambitious code I have

attempted in C. It was written without knowledge of Object-Oriented Programming (OOP)

techniques, and as a result, may be difficult to follow or modify. I would have liked to

rewrite the code using OOP, but chose instead to work on implementing the database and

web functionality before my time at VIRGO concluded.

13

	LIGO
	Aug 14th, 2007
	Report: Coherence2.exe

