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Abstract

The next generation of gravitational-wave interferometers will have mechanical iso-
lation systems so effective that seismic noise will be negligible at 10 Hz and above.
In this frequency region (which is important for both massive black hole mergers and
the gravitational stochastic background), the dominant noise source will be Newto-
nian gravity noise caused by fluctuations in the distribution of matter around the test
masses. This gravitational force cannot be shielded, even in principle, but its effect
can be estimated from independent measurements and either compensated for in the
online system or subtracted from the output data. In the present work, the vibrations
of the vacuum chamber and support columns were modeled with finite element analysis
software to estimate their contribution to the Newtonian noise. It appears that this
contribution will be at least a factor of ten smaller than that caused by vibrations
of the soil and the concrete foundation slab, so initial implementations of Newtonian
noise cancellation should ignore the chamber and focus on the ground. To evaluate
the feasibility of optimal filtering algorithms for this application, multiple-input single-
output (MISO) filters were developed with the goal of implementing active cancellation
of seismic noise at the 40-meter prototype lab as a proof of concept.
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Figure 1: Expected contributions of all fundamental and some technical noise sources to
the Advanced LIGO noise budget. The gravity gradient noise curve is based on a recent
re-evaluation by Brian Lantz.[2]

1 Background and motivation

The ubiquitous mechanical vibrations of the outside world affect the motion of the LIGO
test masses in two ways. The first, mechanical coupling, has been dealt with by placing
the test masses in ultra-high vacuum, suspended as pendula from complex seismic isolation
platforms.[1] For Advanced LIGO, this is expected to reduce the seismic noise to an insignif-
icant fraction of the total noise at frequencies above 10 Hz, and to a completely negligible
amount above 15 Hz (see Figure 1).

The second way in which vibration is transferred to the test masses is by variations in the
local gravitational field caused by the fluctuating mass distribution in their vicinity. This is
known as “Newtonian gravity noise” (because it is well approximated by Newton’s familiar
law) or “gravity gradient noise”. Unlike seismic noise, Newtonian noise cannot be shielded, so
it has been called a “short circuit” around seismic isolation systems,[1] and a fundamental
“noise floor” that limits the sensitivity of any terrestrial detector.[3] The purpose of this
project is to investigate the severity of this limit and explore the possibility that it can be
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overcome with active noise cancellation.

Newtonian noise is expected to dominate seismic noise at frequencies above 7 or 8 Hz. This
is the lower limit of the frequency band in which Advanced LIGO has a reasonable chance
of observing gravitational wave signals, and many astrophysical sources, such as pulsars and
massive black hole mergers, are thought lie in this region. Therefore, it is desirable to extend
the range of sensitivity downward as much as possible.

1.1 Outline

The first part of this paper describes several software models of the vacuum chamber and
support piers, the concrete equipment foundation, and the ground beneath the test masses.
These were intended to evaluate the relative contributions of these sources of Newtonian
noise and characterize which modes of vibration are most important.

The second part describes a proposed method of using measurements of the ground vibration
(and possibly other measurements), independent from the main interferometer, to approx-
imate the Newtonian noise accurately enough to subtract out a large fraction of it. This
approach was suggested in [4], and the present work extends that idea with a concrete im-
plementation of one simple method, which has proven effective in cancelling seismic noise at
the 40-meter prototype lab. Several possible improvements on this basic method are then
discussed.

2 Simulations

2.1 Simple worst-case model of the BSC

The BSCs (“Basic Symmetric Chambers”) are cylindrical steel structures, about 1.5 m in
radius and 4 m in height, that enclose the vacuum around the test masses. The BSC is
worthy of study because it is the closest object to the test mass that weighs more than a
tonne, and since gravitational force falls off as the inverse square of the distance, nearby
massive objects such as the BSC are possibly significant sources of Newtonian noise.

Even a simple cylinder has many different modes of vibration, so instead of modeling them
all or choosing some arbitrarily, it was decided to create a worst-case model of a (possibly
unphysical) mode of vibration that maximizes the Newtonian noise at the test mass for a
given vibration amplitude. The BSC was modeled as a collection of point masses arranged
in a hollow cylinder with end caps. Clearly, the Newtonian noise is maximized if each point
mass moves in the direction that maximizes the gravitational field at the test mass in the
same direction (along the beam axis). What is this direction?
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It is convenient to work in a coordinate system in which the test mass is at the origin, and
the beam axis lies along the x axis. The gravitational field vector at the origin due to a
particle at p = (x, y, z) is proportional to

p̂

|p|2
=

p

|p|3
,

so the x component is proportional to

x

(x2 + y2 + z2)3/2
.

The gradient of this function is proportional to

(−2x2 + y2 + z2)̂ı− 3xŷ− 3xzk̂,

so if the point mass moves in that direction, the rate of increase of the component of gravi-
tational field along the beam axis is maximized.

If every point mass in the cylinder moves the same amount along its own gradient vector, the
cylinder deforms as shown in Figure 2. Intuitively, the masses on the right bunch together
and move closer to the test mass to attract it, and the masses on the left spread apart and
move farther away to minimize their attraction. This is not a physically reasonable mode of
vibration (although it is similar to a “folding” mode), but a hypothetical worst-case scenario.
No mode of vibration can cause more Newtonian noise if the maximum displacement is the
same.

The ratio of the gravitational field change at the test mass to the average displacement
of the points of the vibrating object has dimensions of acceleration / length, or s−2, and
this paper refers to it as a “gravity coefficient”. Assuming the BSC has a total mass of 8
tonnes (probably an overestimate), the gravity coefficient for this worst case is 1.0 × 10−7

s−2 (meaning that if the points all move by one micron, then the test mass is accelerated by
10−7 microns per second squared).

The amount of Newtonian noise obviously depends on the amplitude of vibration (in fact,
it is proportional to it in the low-amplitude limit), but to get an idea of what this gravity
coefficient means, Figure 3 shows what the Newtonian noise spectrum of the BSC would
look like if vibration at every frequency had as much of an effect as the worst-case mode.

The strain was calculated from real accelerometer data from the Hanford site. Many different
spectra were compared and the noisiest one was chosen. The accelerometer was mounted
at the top of one of the support piers, which has the largest motion of anywhere on the
pier, according to [5]. The magnitude of the x, y, z vector recorded by the accelerometer was
used as the displacement in the worst-case direction. Still, the noise is a factor of 10 below
the Advanced LIGO benchmark noise curve even at the 18 Hz spike (which is not caused
by a folding mode, so its effect is definitely overestimated). Thus the vibration of the BSC
gives at most a minor contribution to the total Newtonian noise spectrum, and any proposal
to suppress Newtonian noise should begin with the vibration of the ground. A paper by
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Figure 2: Worst-case distortion of the cylinder. Each point mass moves the same distance in
the direction that maximizes its contribution to the x component of the gravitational field at
the origin, so they become more dense on the right and more sparse on the left. The gravity
coefficient is 1.0× 10−7 s−2. All coordinates are in meters.
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Figure 3: Comparison of the worst-case estimate of the Newtonian noise caused by BSC
vibration to the total estimated Newtonian noise.

the VIRGO collaboration reached a similar conclusion for their interferometer’s much larger
suspension towers (“the effect of the direct coupling with the interferometer structures is
negligible”).[6]

2.2 Finite-element modeling with COMSOL

To create more physically reasonable models, the finite element analysis program COM-
SOL Multiphysics (formerly FEMLAB) was used. COMSOL is a versatile piece of software
with many different application modes, but only the structural mechanics mode was used
extensively for this project. The models were in three-dimensional space with no required
symmetry, and they were solved in eigenfrequency mode (rather than static mode or transient
mode).
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COMSOL has the capability of integrating an arbitrary function over any collection of sub-
domains of a model. Gravitational field is not one of the built-in functions (because very
few other COMSOL users have a use for it), but it is not difficult to derive an expression
that can be integrated over the object to obtain the gravitational field change, and hence
the gravity coefficient (see Section 5.1).

The first model is a slightly more sophisticated model of the BSC and support piers, intended
to verify the worst-case model and determine how close physically reasonable vibrations
modes can come to the worst case. It turns out that in many physical modes, there is some
symmetry or cancellation effect that makes the gravity coefficient much smaller than the
worst case. Even in modes such as the swinging mode shown in Figure 4 that have no such
symmetry or cancellation, the gravity coefficient is significantly smaller than the worst-case
one. Also, the modes are quite sparse: only two are predicted below 20 Hz, and only seven
below 100 Hz. This supports the conclusion of the previous section that the BSC itself is
not a major source of Newtonian noise.

The second model comprises a large homogeneous mass of soil with periodic boundary con-
ditions in the horizontal directions, and the concrete foundation slab on top. This produces
a large number of closely spaced modes (dozens of modes in each 1 Hz interval), and the
gravity coefficients are in general much larger. The gravity coefficients for the soil are usually
factors of 3-4 higher than those for the slab itself, but the shapes of the vibration modes
indicate that, for the relevant frequencies, the slab follows the motion of the ground beneath
it fairly closely (rather than sliding across it or moving in some other direction).

3 Active noise cancellation

3.1 Principles

The process of using a secondary sensor to estimate the noise corrupting the signal from
a primary sensor, and then subtracting this estimate from the primary signal, has been
extensively studied and is now well known.[7] It goes by the names of “noise cancellation”,
“active noise control”, and “antinoise”. The situation in which there is more than one
secondary sensor available is almost as well known.[8] What makes this problem non-trivial
is that although the noise measured by the secondary sensor is correlated with the noise
to be removed from the primary sensor, it is not in general equal, so simple subtraction is
usually ineffective. Instead, a filter must be created to estimate the noise as accurately as
possible from the secondary sensor measurement.

In this case, the primary sensor is the gravitational-wave interferometer, and the secondary
sensors are accelerometers fixed to the surrounding structures. The goal is to create a
multiple-input single-output (MISO) filter that combines the data from all the accelerometers
to produce an optimal estimate of the motion of the test mass.
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Figure 4: COMSOL predicts this as the first vibrational mode of the BSC-pier assembly, at
about 13 Hz. The bottom of the cylinder swings back and forth, and the piers sway along
with it. The gravity coefficient for this mode is 1.5 × 10−8 s−2 (compare to 1.0 × 10−7 s−2

for the worst case model and 6.0 × 10−7 s−2 for the slab/ground mode shown in Figure 5).
All coordinates are in meters. The color represents the amount of displacement: nodes are
blue and antinodes are red.
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Figure 5: A vibrational mode of the end station slab and underlying soil with an especially
high gravity coefficient (6.0×10−7 s−2), predicted by COMSOL at 11 Hz. Most of the image
shows the soil; the slab is the small rectangular object in the center that has been distorted
into an S shape. It is about 20 meters long and 30 inches (76 cm) thick. The soil was
modeled as a square block 100 meters on a side and 10 meters thick, with periodic boundary
conditions on the vertical faces.

Figure 6: Block diagram showing the proposed active noise cancellation scheme for Newto-
nian noise in Advanced LIGO.
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There are two distinct approaches to creating such a filter, depending on whether the noise is
modeled as a statistically stationary process (one whose parameters are constant in time), or
a non-stationary process (one that changes properties as its statistical parameters change).
For a stationary process, the optimal filter is constant in time, so it need only be optimized
once and then used without change after that (at least as long as the interferometer and
accelerometers are in the same configuration). For a non-stationary process, the optimal
filter changes as the statistical parameters change, so it must be continually adapted as
more data becomes available.

For the first case of a static filter, the optimal filter satisfies the Wiener-Hopf equations (see
Section 5.2), and is known as a Wiener filter. The simplest kind of Wiener filter to implement
is a causal FIR (Finite Impulse Response) Wiener filter, which is simply a vector of real
numbers that represent an impulse response, and which are convolved with the input signal
in the time domain to obtain the optimal estimate of the noise. Causal and non-causal IIR
(Infinite Impulse Response) Wiener filters also exist, but the non-causal filter is impossible
to implement in real time, and the causal filter is more mathematically complicated and
difficult to design.[7]

In contrast to static Wiener filters, there are literally dozens of adaptive filter algorithms.[9]
This variety is a result of the difficulty of designing an algorithm that on the one hand
adapts quickly to sudden changes in input parameters, but on the other hand converges
reliably to the optimal filter when the input is temporarily stationary. Adaptive IIR filters,
in particular, are prone to slow convergence and instability, and an effective algorithm can
be “a tightly guarded trade secret” for the company that developed it.[10]

It is important to note that neither of these methods requires any a priori knowledge of the
physical transfer function relating the input to the desired filter output. They are completely
model-independent. To illustrate this point, the impulse responses in Figures 9, 10, and 11
do not come from any model of the suspensions; they are derived solely from the input and
output data via the filter optimization process.

3.2 Application to seismic noise at the 40-meter lab

To evaluate the applicability of Wiener filters and adaptive filters to active noise cancellation
in gravitational-wave interferometers, it was decided to implement seismic noise cancellation
at the 40-meter prototype lab. The programming environment MATLAB, which is in wide
use in the LIGO community, has built-in functions to create FIR Wiener filters and sev-
eral kinds of adaptive filters, but they are all single-input single-output (SISO) filters. The
signal from a single one-axis accelerometer is not enough to predict either Newtonian noise
or seismic noise accurately enough to subtract it effectively, so these built-in functions were
insufficient. Furthermore, although a SIMO filter with n outputs is equivalent to n indepen-
dent SISO filters,[8] a MISO filter is not equivalent to any collection of independent SISO
filters, so the built-in SISO algorithms could not be used as building blocks to create MISO
filters. Instead, a function to create MISO FIR Wiener filters was written from scratch,
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Figure 7: A photo of the accelerometer setup. The three steel cylinders are the accelerome-
ters.
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Performance of Wiener filter noise cancellation method for 40−meter beamsplitter position signal
(sampling rate 64 Hz, 2048 filter taps, 32−second impulse response)

Original beamsplitter position signal, using uncalibrated matrix
Same signal after noise cancellation with X, Y, Z accelerometers

Figure 8: Effectiveness of a MISO FIR Wiener filter for seismic noise reduction at the 40-
meter lab. The upper (blue in color) trace is the motion of the optic before noise cancellation
and the lower (red) trace is the same signal after noise cancellation. The peak at 1 Hz is the
pendulum mode (caused by the optic swinging back and forth as the suspension wires flex
at their attachment points) and the spike at 16 Hz is the bounce mode (caused by the optic
bouncing up and down as the wires stretch and relax).

based on the algorithm in [8] (see Section 5.3. The filters it produces agree with those pro-
duced by the built-in function in the single-input case, which provides a valuable check on
its correctness.

This function was then applied to representative data from three accelerometers mounted
mutually perpendicularly onto a support of the beam splitter chamber (known as the x, y,
and z accelerometers), and the position signal from the optical sensors on the beam splitter
inside. The result of subtracting the filter output from the position signal is shown in Figure
8. To eliminate the possibility of overfitting, the filter was optimized using one set of data
and then applied to a distinct set of data to evaluate its performance. The noise reduction
is clear. The noise at the 1 Hz pendulum mode is reduced by a factor of 2.5 and that
at the 16 Hz bounce mode by a factor of 16, but the filter shows its best performance at
the intermediate frequencies from 1.5–10 Hz, where the physical impulse response of the
suspension is short. The noise at these frequencies is reduced by factors of up to 100.

Below 0.5 Hz and above 16 Hz, the noise is actually increased. This is because there is
not enough coherence at those frequencies for effective noise cancellation, and although the
noise approximation filter could remove those frequencies (resulting in no change to the
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Impulse response for X accelerometer channel estimated by Wiener filter algorithm

(sampling rate 64 Hz, 2048 filter taps, total length 32 seconds)

Figure 9: Response of the beam splitter position to an impulse in the X direction, as es-
timated by the MISO FIR Wiener filter. There are some transients at the beginning and
then the appearance is dominated by the 1 Hz pendulum mode. The 16 Hz bounce mode is
invisible because its amplitude is so much smaller.

original noise spectrum), it is designed to optimize the RMS power of the whole spectrum,
so frequencies where there is much noise are improved at the expense of frequencies where
there is little noise. In practice, this is easily dealt with by identifying the frequency band
in which the noise cancellation is effective, and then filtering the estimate of the noise with
a simple band-pass filter to avoid worsening the noise outside that band.

The actual coefficients of the filter, which form the estimated impulse responses, are shown
in Figures 9, 10, and 11. The forms of these impulse responses seem physically reasonable,
which provides another verification that the filter is doing what it should.

3.3 Possible improvements

Although already effective at reducing seismic noise, the noise cancellation method presented
here is still inefficient in several important ways. First of all, the FIR Wiener filter algo-
rithm requires solving a linear equation involving a large matrix of a special form known as
“symmetric block Toeplitz”. In the current implementation, this equation is solved using
the generic MATLAB division operator (‘/’), which does not take advantage of the special
form of the matrix. This is a serious limiting factor in the computation of the filter co-
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Figure 10: The response to an impulse in the Y direction is similar to that in the X direction
because the beam splitter is suspended diagonally.
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Figure 11: The response to a vertical impulse is much smaller because the pendulum mode
is excited less. At this scale, the bounce mode is visible.
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efficients. For example, the length-2048 Wiener filter shown here required more than one
gigabyte of memory to compute. Computations involving much larger numbers n of input
channels would be intractable with this naive method, because the size of the matrix grows
as n2. If an efficient algorithm designed specifically for solving Toeplitz matrices, such as
Levinson-Durbin recursion,[7] were used instead, it would drastically reduce these computing
requirements and make it easy to compute long filters with many input channels.

Second of all, no matter how long an FIR filter is, there will always be a “tail” of the impulse
response that is not modeled, which limits the performance of the filter. It would be a good
idea to implement a causal IIR Wiener filter and compare its performance to that of the FIR
filter described here.

Lastly, seismic noise is not a perfectly stationary process. Therefore the Wiener filters created
from different data, for example at different times of day, should be compared, and it should
be determined if they are different enough that an adaptive filter is necessary. An interesting
intermediate alternative is a filter that acts like a static Wiener filter most of the time, but
periodically updates its coefficients so that it can never stray very far from optimality.

4 Summary of results

Worst-case models and realistic finite-element simulations demonstrate that vibrations of the
vacuum chamber and support structures make only a minor contribution to Newtonian noise.
The vibrations of the concrete foundation slab and underlying soil are more significant.

A proof-of-concept noise cancellation method incorporating an optimal filter was successfully
implemented at the 40-meter prototype lab. Although applied to ordinary seismic noise
rather than Newtonian noise, there is no reason to suspect that the same method would not
work in both cases, because it does not rely on shielding or passive isolation.

Ideas for future research include injecting realistic noise spectra into the finite-element model
and using virtual accelerometers to evaluate different strategies (number and placement of
accelerometers), and comparing the performance of different noise estimation filters such as
IIR Wiener filters and adaptive filters.
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5 Methods

5.1 Derivation of Newtonian noise formula

The gravitational field at the origin due to a point mass m at position p = (x, y, z) is

Gmp̂

|p|2
=

Gmp

|p|3
,

so the component along the x axis is

Gmx

(x2 + y2 + z2)3/2
.

The gradient of this expression is

(−2x2 + y2 + z2) ı̂− 3xŷ− 3xzk̂

(x2 + y2 + z2)5/2
,

so if the point mass moves by a small vector (u,v,w), the x component of the gravitational
field at the origin changes by the scalar product of (u,v,w) with the gradient:

(−2x2 + y2 + z2) u− 3xyv − 3xzw

(x2 + y2 + z2)5/2

This is the expression that should be integrated over the object and divided by its average
displacement to obtain the gravity coefficient.

5.2 Theory of the MISO FIR Wiener filter

The optimal filter satisfies the Wiener-Hopf equation,

Rw = p,

where R is the autocorrelation matrix of the input, w is the impulse response of the optimal
filter, and p is the cross-correlation vector between the input and the desired output. In this
equation, R is a symmetric1 Toeplitz matrix, which means it is of the form

r1 r2 r3 · · ·
r2 r1 r2

r3 r2 r1
...

. . .

 ,

and therefore completely determined by the first row or column. Multiplication by such a
matrix is equivalent to a convolution operation.

1Hermitian for complex signals
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5.3 MATLAB implementation of MISO FIR Wiener filter

function  [W,R,P] = miso_firwiener (N,X,y)
%MISO_FIRWIENER Optimal FIR Wiener filter for multiple inputs.
%   MISO_FIRWIENER(N,X,Y) computes the optimal FIR Wiener filter of order
%   N, given any number of (stationary) random input signals as the columns
%   of matrix X, and one output signal in column vector Y.

%   Author: Keenan Pepper
%   Last modified: 2007/08/02

%   References:
%     [1] Y. Huang, J. Benesty, and J. Chen, Acoustic MIMO Signal
%     Processing, Springer−Verlag, 2006, page 48

% Number of input channels.
M = size(X,2);

% Input covariance matrix.
R = zeros(M*(N+1),M*(N+1));
for  m = 1:M
    for  i = m:M
        rmi = xcorr(X(:,m),X(:,i),N);
        Rmi = toeplitz(flipud(rmi(1:N+1)),rmi(N+1:2*N+1));
        top = (m−1)*(N+1)+1;
        bottom = m*(N+1);
        left = (i−1)*(N+1)+1;
        right = i*(N+1);
        R(top:bottom,left:right) = Rmi;
        if  i ~= m
            R(left:right,top:bottom) = Rmi’;  % Take advantage of hermiticity.
        end
    end
end

% Cross−correlation vector.
P = zeros(1,M*(N+1));
for  i = 1:M
    top = (i−1)*(N+1)+1;
    bottom = i*(N+1);
    p = xcorr(y,X(:,i),N);
    P(top:bottom) = p(N+1:2*N+1)’;
end

% The following step is very inefficient because it fails to exploit the
% block Toeplitz structure of R. It’s done the same way in the built−in
% function "firwiener".
W = P/R;
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