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Abstract

We show how the use of a wrong antenna pattern (detector response) af-
fects detection sensitivity and parameter estimation for signal detection. We
illustrate the general method on a simple example, and then apply it to the
case of a cross-correlation search for an istropic stochastic gravitational-wave
background.
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1 Simple example

Let’s take a simple example of a constant signal S modified by an antenna gain fac-
tor Gi and noise ni (variance σ2) to give an apparent strain hi in an interferometer
so that

hi = GiS + ni , (1)

where the subscript i represents the ith sample in time. Note the signal is constant
but the gain varies with time due e.g., to Earth’s rotation.

Conventionally we would determine the maximum likelihood estimator for S
from

χ2 =
∑ (hi −GiS)2

σ2
. (2)

Setting dχ2/dS = 0 we get the maximum likelihood estimator for the signal

Ŝ =
∑

hiGi∑
G2

i

. (3)

But what happens if we calculate this using the wrong antenna gain factor, Wi?
We get an estimator that is

ŜW =
∑

hiWi∑
W 2

i

(4)

=
∑

(GiS + ni)Wi∑
W 2

i

(5)

=
1∑
W 2

i

(
S
∑

GiWi +
∑

Wini

)
. (6)

The expectation value for this estimator is

〈ŜW 〉 = S

∑
GiWi∑
W 2

i

. (7)

Clearly, if Wi = Gi we get the unbiased maximum-likelihood estimator of S. How-
ever, if Wi 6= Gi, there is a bias in the estimator given by

bias = 〈ŜW 〉 − S = S

(∑
GiWi∑
W 2

i

− 1

)
. (8)

To see the effect of this on sensitivity, we need to calculate the variance of the
estimator:

var(ŜW ) =
〈(

ŜW − 〈ŜW 〉
)2
〉

(9)

=

〈(
1∑
W 2

i

(
S
∑

GiWi +
∑

Wini

)
− S

∑
GiWi∑
W 2

i

)2〉
(10)
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=

〈(
1∑
W 2

k

)2∑
Wini

∑
Wjnj

〉
(11)

=

(
1∑
W 2

k

)2∑
i,j

WiWj〈ninj〉 (12)

=

(
1∑
W 2

k

)2∑
i,j

WiWj σ2 δij (13)

=
σ2∑
W 2

i

. (14)

The signal-to-noise ratio of the ‘wrong’ method is therefore

snrW =
〈ŜW 〉√
var(ŜW )

(15)

=
S

σ

∑
GiWi√∑

W 2
i

. (16)

Again, if Wi = Gi we get the ‘best’ signal-to-noise ratio

snr =
S

σ

√∑
G2

i . (17)

The reduction in signal-to-noise ratio from using the wrong weights is therefore

r = 1− snrW

snr
= 1−

∑
GiWi√∑

G2
i

√∑
W 2

i

, (18)

where the last term is (sort of) the correlation coefficient between the two antenna
gain factors.

2 Application to isotropic stochastic search

2.1 Cross-correlation statistic

Searches for an isotropic stochastic gravitational-wave background typically make
use of the cross-correlation statistic, which can be written in the form:

Y =
1
T

∫ ∞

−∞
df

∫ ∞

−∞
df ′ δT (f − f ′)K(f ′)h1(f)h∗2(f

′) (19)

where

hI(f) = sI(f) + nI(f) (20)
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are the Fourier transforms of the output of two detectors (I = 1, 2), and K(f)
is a filter function chosen to maximize the expected signal-to-noise ratio of Y . If
one assumes (i) weak signals, (ii) uncorrelated detector noise 〈n1n2〉 = 0, and
(iii) an isotropic background with Ωgw(f) = Ω0 = const (for which the associated
gravitational-wave power is H(f) = Ω0f

−3), then

K(f) = N γ∗(f)|f |−3

P1(|f |)P2(|f |)
, N =

[∫ ∞

−∞
df

|γ(f)|2f−6

P1(|f |)P2(|f |)

]−1

(21)

where

〈h1(f)h∗2(f
′)〉 = 〈s1(f)s∗2(f

′)〉 (22)
= δ(f − f ′)γ(f)H(f) (23)
= δ(f − f ′)γ(f)Ω0f

−3 . (24)

Note that the numerators in K(f) and the integrand of N are proportional to the
complex conjugate of the (assumed) gravitational-wave cross-power and its absolute
square, respectively.

Given the above definitions and assumptions on the stochastic signal model,
one can show that

〈Y 〉 = Ω0 , var(Y ) =
1

4T

[∫ ∞

−∞
df

|γ(f)|2f−6

P1(|f |)P2(|f |)

]−1

. (25)

Thus, Y is an un-biased estimator of Ω0 with optimal expected signal-to-noise ratio

snr = Ω0 2
√

T

[∫ ∞

−∞
df

|γ(f)|2f−6

P1(|f |)P2(|f |)

]1/2

. (26)

In all of the above expressions, hI(f) are calibrated data (with units proportional
to strain) and PI(f) are their corresponding power spectra (units proportional to
strain2).

2.2 Expressions in terms of uncalibrated data

To determine how the use of incorrect detector response functions change the above
statistic, it is convenient to rewrite the relevant expressions above in terms of the
raw (i.e., uncalibrated) detector output rI(f). Thus, let RI(f) denote the exact
response functions that relate rI(f) and hI(f):

hI(f) = RI(f)rI(f) . (27)

Then one can rewrite Y , K(f), and N as

Y =
1
T

∫ ∞

−∞
df

∫ ∞

−∞
df ′ δT (f − f ′)K(f ′)r1(f)r∗2(f

′) (28)
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where

K(f) = N Γ∗(f)|f |−3

Q1(|f |)Q2(|f |)
, N =

[∫ ∞

−∞
df

|Γ(f)|2f−6

Q1(|f |)Q2(|f |)

]−1

(29)

where QI(f) are the power spectra of rI(f),

PI(f) = |RI(f)|2QI(f) (30)

and
〈r1(f)r∗2(f

′)〉 = δ(f − f ′)Γ(f)Ω0f
−3 (31)

is the associated cross-power. The overlap reduction functions γ(f) and Γ(f) are
related by

γ(f) = R1(f)R∗
2(f)Γ(f) . (32)

2.3 Effect of using the wrong response function

Since the raw detector output and associated power spectra are prior to calibration,
the effect of using a wrong detector response function enters only in the expression
for Γ(f). (There are also possible systematic errors that arise from the use of an
incorrect signal model H(f), but we will not consider that possibility here.) Thus,
using an incorrect detector response in the expression for Γ(f) leads to a modified
cross-correlation statistic

YW =
1
T

∫ ∞

−∞
df

∫ ∞

−∞
df ′ δT (f − f ′)KW (f ′)r1(f)r∗2(f

′) (33)

where

KW (f) = NW
Γ∗W (f)|f |−3

Q1(|f |)Q2(|f |)
, NW =

[∫ ∞

−∞
df

|ΓW (f)|2f−6

Q1(|f |)Q2(|f |)

]−1

. (34)

By repeating the same steps as above to calculate the expected value and variance
of YW , one finds

〈YW 〉 = Ω0
< ΓW ,Γ >

< ΓW ,ΓW >
, var(YW) =

1
4T

1
< ΓW ,ΓW >

(35)

where we’ve defined the inner product

< ΓX ,ΓY >=
∫ ∞

−∞
df

Γ∗X(f)ΓY (f)
f6Q1(|f |)Q2(|f |)

= 2
∫ ∞

0
df

Re [Γ∗X(f)ΓY (f)]
f6Q1(f)Q2(f)

. (36)

The expected signal-to-noise ratio is

snrW = Ω0 2
√

T
< ΓW ,Γ >√
< ΓW ,ΓW >

. (37)
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Thus, YW is a biased estimator of Ω0, with

bias = Ω0

(
< ΓW ,Γ >

< ΓW ,ΓW >
− 1

)
(38)

and reduced signal-to-noise ratio (relative to the optimal signal-to-noise ratio (26)):

r = 1− snrW

snr
= 1− < ΓW ,Γ >√

< ΓW ,ΓW >
√

< Γ,Γ >
. (39)

Note that the above expressions for the bias and the reduction in signal-to-noise
ratio for the cross-correlation statistic have the same form as those in Sec. 1 for
the simple example, (8), (18) with the inner product < ΓW ,Γ > playing the role of∑

GiWi.

2.4 Rewriting the inner product

To calculate the size of systematic errors given, for example, the nominal design
sensitivity curves for the calibrated power spectra PI(f), it easiest to rewrite the
inner product < ΓX ,ΓY > in terms of the PI(f) and the associated overlap re-
duction functions γX(f) and γY (f). Thus, assuming that the PI(f) are properly
calibrated, we have

PI(f) = |RI(f)|2QI(f) (40)

where RI(f) are the exact responses functions, as before. The overlap reduction
functions, on the other hand, may be improperly calculated, e.g.,

γW (f) = R1W (f)R∗
2W (f)ΓW (f) . (41)

where RW
I (f) are the response functions corresponding to whatever approximation

is being made (e.g., a single cavity-pole approximation to the full Fabry-Perot
response and the use of the long-wavelength antenna pattern functions). In terms
of these response functions and the calibrated P ’s and γ’s, one finds

< ΓX ,ΓY >= 2
∫ ∞

0
df

Re
[

|R1|2
R∗

1XR1Y

|R2|2
R2XR∗

2Y
γ∗X(f)γY (f)

]
f6P1(f)P2(f)

. (42)

This can also be written in more compact form as

< ΓX ,ΓY >= 2
∫ ∞

0
df

Re [γ̄∗X(f)γ̄Y (f)]
f6P1(f)P2(f)

, (43)

where
γ̄X(f) =

R1(f)
R1X(f)

R∗
2(f)

R∗
2X(f)

γX(f) (44)

and similarly for γY (f). Note that systematic errors can enter the search through
either an correct calibration RIW (f), or through an incorrect antenna pattern in
γW (f).
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