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1 Introduction

The modelling of the triple pendulum suspension system facilitates the analysis of
the system’s dynamic response to the external control forces or torques, providing
a platform to evaluate the design modification. The matlab model described here
is an independent approach to simulate the triple pendulum suspension installed
in the JIF lab at the University of Glasgow. The analysis for the triple pendulum
suspension system in this technical note only considers the control for the pendulum,
not including the supporting isolation stacks. The comparison between this model
and the previous model built by Torrie, etc.[1] helps check the accuracy of the model
in parameterizing the pendulum.
Similar to the triple pendulum suspension for GEO 600 [2], the top mass of the
pendulum is suspended from two cantilever springs using two wires. Four cantilever
springs are mounted below the T-shape top mass, with the intermediate mass hung
by the wires attached to these cantilevers. Another four wires hang the lower mass
below the intermediate mass.
The pendulum is hung parallel to a reaction pendulum (see Figure 1). External
control forces and torques can be applied to test masses via Integrated Optical
position Sensor/ElectroMagnetic drivers (OSEMs). An OSEM consists of a flag
magnet attached to one of the test masses, which is free to move between a light-
emitting diode (LED) and a photo diode which are mounted on reaction masses
accordingly. Motions of the magnet change the light intensity incident on the photo
diode. Variations of the photo current introduced, is used as the error signal for the
feed back control loop. The control signal is fed back to the coil mounted on the
reaction mass, which applies electromagnetic force to pull or push the magnet back
to the balanced position. Only the local control scheme (feedback control forces and
torques are applied only on the top mass location) has been implemented for the
Glasgow suspension system. And location of the six magnets on the top test mass
can be viewed in Figure 1. Parameters of the pendulum are specified in Figure 4.

1.1 Mechanical Analysis

The response of the pendulum to external control forces and torques is analyzed
using Newton’s second law. Equations for motions of three masses in six degrees
of freedom (DOF) and the transfer functions which characterize the frequency re-
sponse of the upper test mass to external control forces and torques are given.
Motions of the pendulum are limited to a small scale in order to ensure a linear
control. Thus the mechanical analysis is based on the first order approximation for
displacements of the pendulum of all 6 DOF.
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Figure 1: Schematic view of the triple pendulum.
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Figure 2: ‘T-shape’ top mass with six magnets attached. lp - the half spacing
of magnets (between 3 and 4) acting on pitch, ly - the half spacing of magnets
(between 1 and 2) acting on yaw, lr - the half spacing of magnets (between the
line along 3,4 and 5) acting on roll, ls - the height of magnets 1, 2 and 6 above the
center of mass.
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Figure 3: Three dimensional view of the triple pendulum suspension system.

4



����
����

1

n

n

n0

n2

3

n4

n5

l 1

l 2

l 3

s1

s2

d

d

0

1

d2

d3

d4

lt

lt

1

2

lt3

xy

z

yx

z

Figure 4: Parameters of a triple pendulum. s1 and s2 label half separations of
suspension wires in the x̂ direction. n0, n1, n2, n3, n4, and n5 label half separations
of wires in the ŷ direction at different suspension points. d0, d1, d2, d3, and d4 label
heights of the wire break-off points above or below the center of mass of different
masses. Lengths of upper wires, intermediate wires and lower wires are represented
as l1, l2, and l3 respectively. And their projections on the vertical direction are lt1,
lt2, and lt3.
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1.1.1 Vertical motion

Vertical motions of the pendulum remain uncoupled from the other five degrees
of freedom motions. In a simplified case when a single pendulum is considered
(see Figure 5), a vertical displacement ∆z introduces a change in the length of the
suspension wires. The length change ∆l can be calculated to be

∆l = ∆z cos Ω = ∆z
lt
l
. (1)

Here Ω is the angle of the wires with respect to the vertical direction. Hence the
vertical force applied on the mass due to the extension in the wire from the static
equilibrium point is

Fh = k∆l cos Ω = k∆z
lt

2

l2
, (2)

where k is the spring constant. Following this analysis, we can write down the
equation for vertical motions of the lower test mass

m3z̈3 = −4k3 (z3 − z2)
lt3

2

l3
2 . (3)

where z3, z2 represents vertical displacements of the lower test mass and the inter-
mediate mass. Similarly, the equation for the intermediate mass is

m2z̈2 = −4k2 (z2 − z1)
lt2

2

l2
2 + 4k3 (z3 − z2)

lt3
2

l3
2 . (4)

Considering a control force Fv applied vertically on the upper mass via OSEMs,
the equation for the upper mass is

m1z̈1 = −2k1z1
lt1

2

l1
2 + 4k2

(
z2 − z1

lt2
2

l2
2 + Fv

)
. (5)

To derive the transfer function, the above equations are rewritten in the Fourier
domain, utilizing the transformation z (t) = eiωtz (ω). These equations become

−m1z1ω
2 = −2k1z1

lt1
2

l1
2 + 4k2 (z2 − z1) lt2

2

l2
2 + Fv,

−m2z2ω
2 = −2k2(z2 − z1)

lt2
2

l2
2 + 2k3 (z3 − z2) lt3

2

l3
2 ,

−m3z3ω
2 = −2k3(z3 − z2)

lt3
2

l3
2 .

(6)
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Figure 5: Vertical displacement of a single pendulum .

The relationship between the vertical control force and vertical motions of the upper
mass can be described in the transfer function given below:

Hzv (ω) =
z1

Fv
=

1

m1ω2 − 2k1
lt1

2

l1
2 − 4k2

lt2
2

l2
2 − 16k2

2

m2ω2 − 4k2
lt2

2

l2
2 − 4k3

lt3
2

l3
2 −

16k2
3

lt3
4

l3
4

m3ω2 − 4k3
lt3

2

l3
2

.

(7)
Figure 6 is the Bode plot of the transfer function Hzv.

1.2 Longitudinal and Pitch Dynamics

The longitudinal motion in the x̂-direction and the pitch motion are strongly cou-
pled due to the fact that the break-off position of the wires are either above or
below the line through the center of the mass. The tilt angle θ and the longitudi-
nal displacement x will show up together as the variables in the linear differential
equations that characterize the dynamics of the pendulum.
First, the dynamic equations of a single pendulum suspended from two wires of
length l with a spring constant k are derived. Define s as the half separation be-
tween two suspension points and d as the height of the wire breaking off points
above the center of mass. Figure 7 shows a single pendulum suspended by two
wires. Consider the case when the mass is tilted by an angle θ from the horizontal
line and displaced by x in the x̂-direction. The wires are affected in opposite ways.

7



10−1 100 101

−100

−80

−60

−40

−20

M
ag

ni
tu

de
 (d

B)

10−1 100 101

50

100

150

Frequency (Hz)

Ph
as

e 
(d

eg
.)

Figure 6: Bode plot of Hzv.

Wire 1 is contracted and wire 2 is stretched as can be seen in Figure 8. In Figure 8,
the unfixed end of wire 1 moves from N to P ′. MN is the displacement in the
x̂-direction.

|ON | = |NP | − |OP | = x− s, (8)

|MO| = |RT | =
∣∣RO′∣∣− ∣∣TO′∣∣ = s cos θ − d sin θ, (9)

|MN | = |MO|+ |ON | = s cos θ − d sin θ + x− s. (10)

For a small angle θ and a small displacement x,

|MN | = x− dθ. (11)

P ′M is the displacement in the ŷ-direction.

|MR| = |OT | = s− s cos θ, (12)∣∣P ′M
∣∣ = ∣∣P ′R

∣∣− |MR| . (13)

A small angle approximation gives,∣∣P ′M
∣∣ ≈ sθ. (14)

So the length of wire 1 changes from the original length, l, to

l′ =
√

(l − sθ)2 + (x− dθ)2 ≈ l − sθ. (15)
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Figure 7: Side view of a single pendulum’s longitudinal and pitch motion.
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Figure 8: Longitudinal displacement introduced by the pitch motion.
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Hence the change in the length of wire 1 is ∆l ≈ sθ. We can also give

sin α ≈ x− dθ

l
, (16)

cos α ≈ 1. (17)

Similar geometric analysis shows us that wire 2 is stretched by ∆l and

sinβ ≈ x− dθ

l
, (18)

cos β ≈ 1. (19)

In an equilibrium state, the tension in each wire is

T1 = T2 =
1
2
mg. (20)

Wire 1 is contracted such that in the first order approximation,

T1 =
1
2
mg − k∆l. (21)

And the tension in wire 2 becomes

T2 =
1
2
mg + k∆l. (22)

Hence the force on the mass along the x̂-direction is

F = T1 sinα + T2 sinβ. (23)

Substituting Equation 21 and 22 into Equation 23 gives

F = mg
x− dθ

l
. (24)

Finally, the equation for the longitudinal motion of a single pendulum suspended
with two wires is

mẍ = −F ≈ −mg
x− dθ

l
. (25)

The net torque which tilt the mass can be calculated as

Q = T1 cos α (s− dθ) + T1 sinα(d + sθ)− T2 cos β (s + dθ) + T2 sinβ(d− sθ). (26)

Substituting Equation 16, 17, 18, 19, 21 and 22 into 26 gives

Q ≈ mg
d

l
x−

(
2ks2 + mgd + mg

d2

l

)
θ. (27)
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Figure 9: Components of restoring forces which act to tilt the mass.
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Hence the equation of motion for pitch is

Iθ̈ ≈ mgd

l
x−

[
2ks2 + mg

(
d +

d2

l

)]
θ. (28)

The equations for the longitudinal/pitch motion of a triple pendulum can be derived
based on the mechanical analysis of the single pendulum that is described above,
i.e., the equations for each test mass can be given by simply modifying Equation
26 and 28. θi and xi are used to define the tilt angle and the linear displacement
of each mass of the triple pendulum (i = 1, 2, 3 - upper mass, intermediate mass
and lower mass). The variables x and θ are replaced with the relative displacement
of each mass with respect to the suspension points and the tilt angles between two
adjacent masses. Hence for the lower mass, the equation for the longitudinal motion
is

ẍ3 = − g

lt3
[(x3 − x2)− (d4θ3 − d3θ2)] , (29)

The equation for the pitch motion is

I3y θ̈3 =
m3gd4

lt3
(x3 − x2)− 4k3s

2
2 (θ3 − θ2)−m3gd4

(
θ3 +

d4θ3 − d3θ2

lt3

)
. (30)

The intermediate mass will be stretched by both the lower wires and the intermedi-
ate wires. The intermediate wires stretch the intermediate mass the same way that
the lower wires do the lower mass while the lower wires affect the intermediate mass
the opposite way according to Newton’s third law. Now the tension along interme-
diate wires have to balance the gravity force introduced by both the intermediate
mass and the lower mass. The dynamic equations for the intermediate mass are

m2ẍ2 = −(m2 + m3) g

lt2
[(x2 − x1)− (d2θ2 − d1θ1)]+

m3g

lt3
[(x3 − x2)− (d4θ3 − d3θ2)] ,

(31)

I2y θ̈2 =
(m2 + m3) gd2

lt2
(x2 − x1)− 4k2s

2
1 (θ2 − θ1)− (m2 + m3) gd2

(
θ2 +

d2θ2 − d1θ1

lt2

)
−m3gd3

lt3
(x3 − x2) +

(
4k3 +

m3g

lt3

)
s2
2 (θ3 − θ2) + m3gd3

(
θ3 +

d4θ3 − d3θ2

lt3

)
.

(32)
There are only two wires above the upper mass. The tension in the wire is

T =
1
2
(m1 + m2 + m3)g. (33)

Both its vertical and horizontal components act to tilt the upper mass and the net
torque is

Q =
(m1 + m2 + m3) gd0

lt1
(x1 − d0θ1)− (m1 + m2 + m3) gd0θ1. (34)

13



Figure 10: Side view of the top mass suspended with two wires.

14



The differential equations for the upper mass have the external control force and
the control torque included. The force along the x̂-direction Fl and the torque that
controls the pitch motion, Qp are applied via the OSEMs. In this case the equations
become

I1y θ̈1 =
(m1 + m2 + m3) gd0

lt1
(x1 − d0θ1)− (m1 + m2 + m3) gd0θ1 −

(m2 + m3) gd1

lt2
(x2

−x1) + 4k2s
2
1 (θ2 − θ1) + (m2 + m3) gd1

(
θ2 +

d2θ2 − d1θ1

lt2

)
+ Qp,

(35)

m1ẍ1 = −(m1 + m2 + m3) g

lt1
(x1 − d0θ1)+

(m2 + m3) g

lt2
[(x2 − x1)− (d2θ2 − d1θ1)]+Fl.

(36)
The Fourier transformation of Equation 29, 30, 31, 32, 35 and 36 gives:

x2 −
(

1− ω2 lt3
g

)
x3 − d3θ2 + d4θ3 = 0, (37)

−m3gd4

lt3
x2 +

m3gd4

lt3
x3 +

[
4k3s

2
2 +

m3g

lt3
d4d3

]
θ2 +

[
ω2I3y − 4k3s

2
2 −m3gd4 −

m3g

lt3(
s2
2 + d2

4

)]
θ3 = 0,

(38)
(m2 + m3) g

lt2
x1 +

[
m2ω

2 − (m2 + m3) g

lt2
− m3g

lt3

]
x2 +

m3g

lt3
x3 −

(m2 + m3) g

lt2
d1θ1 +

[
m3g

lt3

d3 +
(m2 + m3) g

lt2
d2

]
θ2 −

m3g

lt3
d4θ3 = 0,

(39)

−(m2 + m3) gd2

lt2
x1 +

[
(m2 + m3) gd2

lt2
+

m3gd3

lt3

]
x2 −

m3gd3

lt3
x3 +

[
4k2s

2
1 +

(m2 + m3) g

lt2

d1d2

]
θ1 +

[
ω2I2y − 4k2s

2
1 −

(m2 + m3) g

lt2
d2

2 − (m2 + m3) gd2 − 4k3s
2
2 −

m3g

lt3

d2
3

]
θ2 +

[
4k3s

2
2 +

m3g

lt3
d3d4 + m3gd3

]
θ3 = 0 ,

(40)[
m1ω

2 − (m2 + m3) g

lt2
− (m1 + m2 + m3) g

lt1

]
x1 +

(m2 + m3) g

lt2
x2 +

[
(m1 + m2 + m3) g

lt1
d0

+
(m2 + m3) g

lt2
d1

]
θ1 −

(m2 + m3) g

lt2
d2θ2 = Fl,

(41)
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and[
(m1 + m2 + m3) gd0

lt1
+

(m2 + m3) gd1

lt2

]
x1 −

(m2 + m3) gd1

lt2
x2 +

[
ω2I1y − 4k2s

2
1 −

gd2
0

lt1

(m1 + m2 + m3)− (m1 + m2 + m3) gd0 −
(m2 + m3) g

lt2
d2

1

]
θ1 +

[
(m2 + m3) gd1

+4k2s
2
1 +

(m2 + m3) g

lt2
d1d2

]
θ2 = Qp.

(42)
These equations can be written in a matrix form:

Γ11 Γ12 0 Γ14 Γ15 0
Γ21 Γ22 Γ23 Γ24 Γ25 Γ26

0 Γ32 Γ33 0 Γ35 Γ36

Γ41 Γ42 0 Γ44 Γ45 0
Γ51 Γ52 Γ53 Γ54 Γ55 Γ56

0 Γ62 Γ63 0 Γ65 Γ66





x1

x2

x3

θ1

θ2

θ3

 =



Fl

0
0

Qp

0
0

 . (43)

Here,

Γ11 = m1ω
2 − (m2 + m3) g

lt2
− (m1 + m2 + m3) g

lt1
, (44)

Γ12 =
(m2 + m3) g

lt2
, (45)

Γ14 =
(m1 + m2 + m3) g

lt1
d0 +

(m2 + m3) g

lt2
d1, (46)

Γ15 = −(m2 + m3) g

lt2
d2, (47)

Γ21 =
(m2 + m3) g

lt2
, (48)

Γ22 = m2ω
2 − (m2 + m3) g

lt2
− m3g

lt3
, (49)

Γ23 =
m3g

lt3
, (50)

Γ24 = −(m2 + m3) g

lt2
d1, (51)

Γ25 =
(m2 + m3) g

lt2
d2 +

m3g

lt3
d3, (52)

Γ26 = −m3g

lt3
d4, (53)

Γ32 = 1, (54)
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Γ33 = ω2 lt3
g
− 1, (55)

Γ35 = −d3, (56)

Γ36 = d4, (57)

Γ41 =
(m1 + m2 + m3) gd0

lt1
+

(m2 + m3) gd1

lt2
, (58)

Γ42 = −(m2 + m3) gd1,

lt2
(59)

Γ44 = ω2I1y−4k2s
2
1−

(m1 + m2 + m3) gd0

lt1
d0−(m1 + m2 + m3) gd0−

(m2 + m3) g

lt2
d2

1,

(60)

Γ45 = 4k2s
2
1 + (m2 + m3) gd1 +

(m2 + m3) g

lt2
d1d2, (61)

Γ51 = −(m2 + m3) gd2

lt2
, (62)

Γ52 =
(m2 + m3) gd2

lt2
+

m3gd3

lt3
, (63)

Γ53 = −m3gd3

lt3
, (64)

Γ54 = 4k2s
2
1 +

(m2 + m3) g

lt2
d1d2, (65)

Γ55 = ω2I2y − 4k2s
2
1 −

(m2 + m3) g

lt2
d2

2 − (m2 + m3) gd2 − 4k3s
2
2 −

m3g

lt3
d2

3, (66)

Γ56 = 4k3s
2
2 +

m3g

lt3
d3d4 + m3gd3, (67)

Γ62 = −m3gd4

lt3
, (68)

Γ63 =
m3gd4

lt3
, (69)

Γ65 = 4k3s
2
2 +

m3g

lt3
d4d3, (70)

and
Γ66 = ω2I3y − 4k3s

2
2 −m3gd4 −

m3g

lt3
d2

4. (71)

17



Thus the response of the triple pendulum to the external force applied in the lon-
gitudinal direction and the torque that tilts the top mass can be calculated as

x1

x2

x3

θ1

θ2

θ3

 = T



Fl

0
0

Qp

0
0

 . (72)

where T = Γ−1. The response of the top mass to Fl and Qp can be analytically
calculated as

Hxl =
x1

Fl
= T11, (73)

Hxp =
x1

Qp
= T14, (74)

Hθl =
θ1

Fl
= T41, (75)

and
Hθp =

θ1

Qp
= T44. (76)

These transfer functions are plotted in Figure 11, Figure 12, Figure 13, and Fig-
ure 14 respectively.

1.3 Yaw Motion

First, we consider the case of a mass suspended by four wires of length l, which
are all at the same angle Ω with respect to the vertical direction as is shown in
Figure 15. The tension T in one wire can be projected along two directions. The
vertical component Tv balances the gravity force while the horizontal component
Th along the direction

−−→
BD is balanced by the horizontal force introduced from

another wire. However, when the mass rotates through an angle φ, the net torque
by the horizontal components of the tension force of four wires will not keep the
mass in a balanced state any longer. In Figure 16 we can clearly see that it is
the force F that acts to rotate the mass. F is the projection of Th in the direction
perpendicular to the line connecting the suspension point and the center of mass,

F = Th cos γ (77)

where
Th = Tv tanΩt =

1
4
mg

|BD|
|CD|

(78)
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Figure 11: Bode plot of Hxl.
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Figure 12: Bode plot of Hxp.
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Figure 13: Bode plot of Hθl.
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Figure 14: Bode plot of Hθp.
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Figure 15: Yaw displacement of a single pendulum. The upper part is the view
from above. And the low part is the geometric plot of the effect on one wire when
the mass is rotated through an angle φ.
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Figure 16: Projection of the tension force T (see Figure 15) onto x̂-ŷ plane which
produces the restoring torque. The upper plot and the lower plot are associated
with two different effects on wires when the mass rotates.
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and

cos γ =
|AB|2 + |BD|2 − |AD|2

2 |AB| |BD|
. (79)

|AB| and |AD| are determined by the parameters given by the dimensions of the
mass:

|AB| =
√(

s2 + n2
i

)
φ, (80)

|AD| = ni − nj . (81)

|BD| is calculated from |AB| and |AD|,

|BD| =
√
|AB|2 + |AD|2 − 2 |AB| |AD| cos 6 BAD. (82)

Here 6 BAD can be 90◦ + θ or 90◦ − θ, depending on whether a wire stretches or
contracts when the mass rotates. In Figure 15, wires 1 and 3 stretch while wires 2
and 4 contract when the mass rotates in a clockwise direction. The stretch and the
contraction change |BD| such that

|BD±| =
√(

s2 + n2
i

)
φ2 + (ni − nj)

2 ± 2
√

s2 + n2
i (ni − nj) sin θφ ≈ ni − nj ± sφ

(83)
Therefore, we can write Th and cos γ as

cos γ± =

(
s2 + n2

i

)
φ2 +

(
s2 + n2

i

)
φ2 + (ni − nj)

2 ± 2
√

s2 + n2
i (ni − nj) sin θφ− (ni − nj)

2

2
√

s2 + n2
i φ
(
ni − nj ±

√
s2 + n2

i sin θφ
)

=

√
s2 + n2

i φ± (ni − nj) sin θ

(ni − nj)

1±

√
s2 + n2

i sin θφ

ni − nj


≈


√

s2 + n2
i φ

ni − nj
± sin θ

1∓

√
s2 + n2

i sin θφ

ni − nj



≈

√
s2 + n2

i cos2 θ

ni − nj
φ± sin θ =

ni cos θ

ni − nj
φ± sin θ,

(84)

Th± =
1
4
mg

ni − nj ± sφ√
l2 − (ni − nj)

2
. (85)

Now the total torque from four wires is

Q = 2Th+ cos γ+

√
s2 + n2

i + 2Th− cos γ−

√
s2 + n2

i ≈
1
2
mg

ni − nj + sφ√
l2 − (ni − nj)

2

(
n2

i

ni − nj
φ + s

)

+
1
2
mg

ni − nj − sφ√
l2 − (ni − nj)

2

(
n2

i

ni − nj
φ− s

)
=

mg
(
n2

i + s2
)√

l2 − (ni − nj)
2
φ.

(86)
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Hence the equation of motion for a four wire suspension is

Iφ̈ = −
mg
(
n2

i + s2
)√

l2 − (ni − nj)
2
φ. (87)

Similar to what is outlined in the longitudinal and pith case, the differential equa-
tion can be extended to describe the yaw motion of a triple pendulum in terms of
the rotation angle of each mass with respect to the suspension points of each stage.
The tension in the wires of each stage is proportional to the total weight of the
masses below the wires. The equations of the yaw motion for the lower mass and
the intermediate mass are therefore

I3zφ̈3 = −
m3g

(
n2

5 + s2
2

)√
l2 − (n5 − n4)

2
(φ3 − φ2) , (88)

and

I2zφ̈2 = −
(m2 + m3) g

(
n2

3 + s2
1

)
lt2

(φ2 − φ1) φ2 +
m3g

(
n2

4 + s2
2

)
lt3

(φ3 − φ2) . (89)

The line determined by the two upper suspension points on the top mass passes
through the center of mass. So the horizontal components of tensions in two upper
suspension wire can be written in a relatively simpler form

Th =
1
2

(m1 + m2 + m3) g
n1 − n0

lt1
. (90)

This produces a torque on the top mass when the mass is rotated by a small angle
φ,

Q = (m1 + m2 + m3) g
n1

2

l2t1
φ. (91)

Therefore the differential equation which describes the yaw motion of the upper
mass becomes

I1zφ̈1 = −(m1 + m2 + m3) gn2
1

lt1
φ1 +

(m2 + m3) g
(
n2

3 + s2
1

)
lt2

(φ2 − φ1) + Qy, (92)

where Qy is the external feedback torque used to stabilize the yaw motion of the
top mass. The Fourier transform of Equation 88, 89 and 92 are listed below,

ω2I3zφ3 =
m3g

(
n2

5 + s2
2

)
lt3

(φ3 − φ2) , (93)

ω2I2zφ2 =
(m2 + m3) g

(
n2

3 + s2
1

)
lt2

(φ2 − φ1)−
m3g

(
n2

4 + s2
2

)
lt3

(φ3 − φ2) , (94)
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Figure 17: Bode plot of Hφy.

ω2I1zφ1 =
(m1 + m2 + m3) gn2

1

lt1
φ1 −

(m2 + m3) g
(
n2

2 + s2
1

)
lt2

(φ2 − φ1)−Qy. (95)

From Equation 1.3, 94 and 95, the transfer function that relates the external torque
Qy to the induced rotation of the top mass φ1 is derived as

Hφy =
φ1

Qy
=

{
(m1 + m2 + m3) gn2

1

lt1
− ω2I1z +

(m2 + m3) g
(
n2

2 + s2
1

)
lt2

m3g
(
n2

4 + s2
2

)
lt3

(
1−

m3g
(
n2

5 + s2
2

)
m3g

(
n2

5 + s2
2

)
− ω2lt3I3z

)
− ω2I2z

(m2 + m3) g
(
n2

3 + s2
1

)
lt2

+
m3g

(
n2

4 + s2
2

)
lt3

(
1−

m3g
(
n2

5 + s2
2

)
m3g

(
n2

5 + s2
2

)
− ω2lt3I3z

)
− ω2I2z


 .

(96)
The transfer function Hφy is plotted in Figure 17.

1.4 Sideways and Roll Motion

The coupling between the sideways and the roll motion is similar to the coupling
between the longitudinal and the pitch motion. However, sideways and roll coupling
is more complicated. The wires that are used to suspend the masses are angled
in the ŷ-direction. The sideways motion of the mass will create a torque that can
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excite the roll motion while the longitudinal displacement does not tilt the mass.
The details will be discussed below.
Consider a single pendulum suspended with two wires as is plotted in Figure 18.

The two wires have the same length l in the equilibrium state. And the tensions in
both wires are,

T1 = T2 =
1
2
mg

l

lt
(97)

After the mass is displaced by a small distance y in the ŷ-direction, the center of
mass moves from O to P. This is followed by a mass rolling by a small angle ϕ.
The suspension points now move from G and J to E and F. Thus the new lengths
of the two wires can be derived. From Figure 18 and Figure 19,

|AE|2 = |KH|2 + l2t , (98)

|AE| =
√

(nj − ni + y − dϕ)2 + (lt − njϕ)2 ≈
√

(nj − ni)
2 + 2 (nj − ni) (y − dϕ) + l2t − 2njltϕ

=
√

l2 + 2 (nj − ni) y − 2 (njlt + njd− nid) ϕ ≈ l +
nj − ni

l
y − njlt + njd− nid

l
ϕ.

(99)
Hence wire 1 is stretched by

∆l =
nj − ni

l
y − njlt + njd− nid

l
ϕ. (100)

And for wire 2,
|BF |2 = |LI|2 + |lt + |FL||2 , (101)

|BF | =
√

(y − (nj − ni)− dϕ)2 + (lt + njϕ)2 ≈
√

(nj − ni)
2 − 2 (nj − ni) (y − dϕ) + l2t + 2njltϕ

=
√

l2 − 2 (nj − ni) y + 2 (njlt + njd− nid) ϕ ≈ l − nj − ni

l
y +

njlt + njd− nid

l
ϕ.

(102)
Wire 2 is then contracted by ∆l. Now the tensions in wire 1 and wire 2 become

T1 =
1
2
mg

l

lt
+ k∆l, (103)

T2 =
1
2
mg

l

lt
− k∆l. (104)

The angle of wire 1 with respect to the vertical direction Ω1 satisfies

sinΩ1 =
nj − ni

l
+

[
1
l
− (nj − ni)

2

l3

]
y −

[
d

l
− (nj − ni) (njlt + njd− nid)

l3

]
ϕ,

(105)
and

cos Ω1 =
lt
l
− (nj − ni) lt

l3
y −

[
nj

l
− lt (njlt + njd− nid)

l3

]
ϕ. (106)
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Figure 18: Face on view of the sideways and the roll motion of a single pendulum.
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Figure 19: Expanded view of Figure 18 to show various lengths.

The sloping angle of wire 2 satisfies

sinΩ2 = −nj − ni

l
+

[
1
l
− (nj − ni)

2

l3

]
y −

[
d

l
− (nj − ni) (njlt + njd− nid)

l3

]
ϕ,

(107)
and

cos Ω2 =
lt
l

+
(nj − ni) lt

l3
y +

[
nj

l
− lt (njlt + njd− nid)

l3

]
ϕ. (108)

The equation of motion for the displacement of the center of mass, y, is

mÿ = −T1 sinΩ1 − T2 sinΩ2. (109)

Substituting for T1, T2 from Equation 103 and 104, for Ω1 and Ω2 from Equation
105, 106, 107, and 108 and using the first order approximation for small displace-
ment y and small angle ϕ gives

mÿ = −

{
2k

(nj − ni)
2

l2
+

mg

lt

[
1− (nj − ni)

2

l2

]}
y+{

2k
(nj − ni) (njlt + njd− nid)

l2
+

mg

lt

[
d− (nj − ni) (njlt + njd− nid)

l2

]}
ϕ.

(110)
With reference to Figure 20, we can see that the component of force which rolls

the mass for wire 1 is T1sinα and for wire 2 is T2cosβ where

α = 90◦ − (σ + ϕ) + Ω1, (111)

and
β = σ − ϕ + Ω2. (112)
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Figure 20: Tension of two wires act to roll the mass.
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The angle σ is defined by the parameters of the pendulum. Using Equation 105, 106,
107 and 108, sinα and cos β are calculated to be

sin α ≈ njlt + d (nj − ni)

l
√

n2
j + d2

+
1√

n2
j + d2

{
d

[
1
l
− (nj − ni)

2

l3

]
− nj

(nj − ni) lt
l3

}
y

− 1√
n2

j + d2

{
nj

[
nj

l
− lt (njlt + njd− nid)

l3

]
+ d

[
d

l
− (nj − ni) (njlt + njd− nid)

l3

]
−nj

nj − ni

l
+ d

lt
l

}
ϕ,

(113)

cos β ≈ njlt + d (nj − ni)

l
√

n2
j + d2

+

− d√
n2

j + d2

[
1
l
− (nj − ni)

2

l3

]
+

nj√
n2

j + d2

(nj − ni) lt
l3

 y+ nj√
n2

j + d2

[
nj

l
− lt (njlt + njd− nid)

l3

]
+

d√
n2

j + d2

[
d

l
− (nj − ni) (njlt + njd− nid)

l3

]

+
d√

n2
j + d2

lt
l
− nj√

n2
j + d2

nj − ni

l

ϕ,

(114)
Now the torque for the roll motion is

Q =
√

n2
j + d2 (T1 sinα− T2 cos β) =

{
mgd

[
1
lt
− (nj − ni)

2

l2lt

]
−mgnj

(nj − ni)
l2

+

2k
njlt (nj − ni) + d (nj − ni)

2

l2

}
y −

{
mgnj

[
nj

lt
− (njlt + njd− nid)

l2

]
+ mgd

[
d

lt

−(nj − ni) (njlt + njd− nid)
l2lt

]
+ 2k

njlt + d (nj − ni)
l

njlt + njd− nid

l
+ mg

(
d−

nj
nj − ni

lt

)}
ϕ.

(115)
And the equation of roll motion around the center of mass is

Ixϕ̈ =

{
mgd

[
1
lt
− (nj − ni)

2

l2lt

]
−mgnj

(nj − ni)
l2

+ 2k
njlt (nj − ni) + d (nj − ni)

2

l2

}
y−{

mgnj

[
nj

lt
− (njlt + njd− nid)

l2

]
+ mgd

[
d

lt
− (nj − ni) (njlt + njd− nid)

l2lt

]
+ mg

(
d−

nj
nj − ni

lt

)
+ 2k

njlt + d (nj − ni)
l

njlt + njd− nid

l

}
ϕ.

(116)
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The extension to a triple pendulum is outlined below. Although the lower mass
and the intermediate mass are both suspended with four wires, the way the wires
introduce the sideways and the roll motion is not different from the case where they
are suspended with two wires in the manner described above. However, since what
we need to consider here is the relative motion between two adjacent masses, the
equations of motion become complicated. In Figure 21, the length of the suspension
wires can be calculated by substituting y with ym − yn, dϕ with dlϕm − duϕn, and
njϕ with njϕm − niϕn in Equation 99 and 102. Hence ∆l becomes

∆l =
nj − ni

l
(ym − yn)− lt

l
(njϕm − niϕn)− (nj − ni)

l
(dlϕm − duϕn) . (117)

The angle of wire 1 with respect to the vertical direction Ω1 now satisfies

sinΩ1 ≈
nj − ni + ym − yn − dlϕm + duϕn

l +
nj − ni

l
(ym − yn)− (njϕm − niϕn) lt

l
− (nj − ni) (dlϕm − duϕn)

l

≈ nj − ni

l(
1 +

ym − yn − dlϕm + duϕn

nj − ni

)[
1− nj − ni

l2
(ym − yn) +

lt
l2

(njϕm − niϕn) +
(nj − ni)

l2

(dlϕm − duϕn)
]

=
nj − ni

l
+

[
1
l
− (nj − ni)

2

l3

]
(ym − yn) +

(nj − ni) lt
l3

(njϕm − niϕn)

+

[
(nj − ni)

2

l3
− 1

l

]
(dlϕm − duϕn) ,

(118)

cos Ω1 ≈
lt − njϕm + niϕn

l +
nj − ni

l
(ym − yn)− (njϕm − niϕn) lt

l
− (nj − ni) (dlϕm − duϕn)

l

≈ lt
l(

1− (njϕm − niϕn)
lt

)[
1− nj − ni

l2
(ym − yn) +

lt
l2

(njϕm − niϕn) +
(nj − ni)

l2
(dlϕm

−duϕn)
]

=
lt
l
− (nj − ni) lt

l3
(ym − yn)−

(
l2 − l2t

)
(njϕm − niϕn)

l3
+

lt (nj − ni)
l3

(dlϕm

−duϕn) .
(119)
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Figure 21: Sideways and roll displacements between two adjacent masses.
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The sin and cos value of the sloping angle of wire 2 now become

sinΩ2 ≈ − nj − ni − ym + yn + dlϕm − duϕn

l − nj − ni

l
(ym − yn) +

(njϕm − niϕn) lt
l

+
(nj − ni) (dlϕm − duϕn)

l

≈ −nj − ni

l(
1− ym − yn − dlϕm + duϕn

nj − ni

)(
1 +

nj − ni

l2
(ym − yn)− lt

l2
(njϕm − niϕn) +

(nj − ni)
l2

(dlϕm − duϕn)

)
= −nj − ni

l
+

[
1
l
− (nj − ni)

2

l3

]
(ym − yn) +

(nj − ni) lt
l3

(njϕm − niϕn)

+

[
(nj − ni)

2

l3
− 1

l

]
(dlϕm − duϕn) ,

(120)

cos Ω2 ≈
lt + njϕm − niϕn

l − nj − ni

l
(ym − yn) +

(njϕm − niϕn) lt
l

+
(nj − ni) (dlϕm − duϕn)

l

≈ lt
l[

1 +
(njϕm − niϕn)

lt

] [
1 +

nj − ni

l2
(ym − yn)− lt

l2
(njϕm − niϕn)− (nj − ni)

l2
(dlϕm

−duϕn)
]

=
lt
l

+
(nj − ni) lt

l3
(ym − yn) +

l2 − l2t
l3

(njϕm − niϕn)− lt (nj − ni)
l3

(dlϕm

−duϕn) .
(121)

The force on the lower mass in Figure 21 becomes

F = −1
2
mg

l

lt
(sinΩ1 + sinΩ2)− k∆l (sinΩ1 − sinΩ2) ≈

{
mg

[
1
lt
− (nj − ni)

2

l2lt

]
− 2k

(nj − ni)
2

l2

}
(ym − yn) +

{
mg

(nj − ni)
l2

+2k
nj − ni

l

lt
l

}
(njϕm − niϕn) +

{
mg

[
(nj − ni)

2

l2lt

− 1
lt

]
+ 2k

(nj − ni)
2

l2

}
(dlϕm − duϕn) .

(122)
And the equation of motion for the displacement of the lower mass mm is

mmÿm = Rm (ym − yn) + (Smnj −Rmdl) ϕm − (Smni −Rmdu) ϕn. (123)

Here,

Rm = −Mmg

[
1

ltm
− (nj − ni)

2

l2mltm

]
+ 2km

(nj − ni)
2

lm
2 , (124)

Sm = −Mmg
(nj − ni)

lm
2 − 2km

nj − ni

lm

ltm
lm

, (125)

where Mm represents the total mass suspended on the wire. If there is no other
mass suspended below mm, Mm = mm.
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The angles αl, βl, αu and βu as specified in Figure 21 can be given using simple
geometric analysis.

αl = 90◦ − (σmu + ϕm) + Ω1, (126)

βl = σmu − ϕm + Ω2, (127)

αu = 90◦ − σnl + ϕn − Ω1, (128)

βu = σnl + ϕn − Ω2. (129)

Therefore, the torque which rolls the lower mass is

Q+
m =

√
n2

j + d2
l (T1 sinαl − T2 cos βl) =

√
n2

j + d2

[
1
2
Mmg

lm
ltm

(sinαl − cos βl) +

km∆l(sinαl + cos βl)
]

= Am (ym − yn) + Bm (njϕm − niϕn) + Cm (dlϕm − duϕn)

+Mmg

(
nj

nj − ni

ltm
− dl

)
ϕm,

(130)
where

Am = Mmgdl

[
1

ltm
− (nj − ni)

2

l2mltm

]
−Mmgnj

(nj − ni)
l2m

+2km
njltm + dl (nj − ni)

lm

nj − ni

lm
,

(131)

Bm = Mmg
njltm
l2m

−Mmg
nj

ltm
+ Mmg

dl (nj − ni)
l2m

− 2km
ltm
lm

njltm + dl (nj − ni)
lm

,

(132)

Cm = Mmg
nj (nj − ni)

l2m
+Mmgdl

[
(nj − ni)

2

l2mltm
− 1

ltm

]
−2km

(nj − ni)
lm

njltm + dl (nj − ni)
lm

.

(133)
And the torque which rolls the upper mass is

Q−
n = Dn (ym − yn)+En (njϕm − niϕn)+Gn (dlϕm − duϕn)+Mmg

{
ni

nj − ni

ltm
− du

}
ϕn,

(134)
where

Dn = Mmgdu

[
1

ltm
− (nj − ni)

2

l2mltm

]
−Mmgni

(nj − ni)
l2m

−2km
niltm + du (nj − ni)

lm

nj − ni

lm
,

(135)

En = Mmg
niltm
l2m

−Mmg
nj

ltm
+ Mmg

du (nj − ni)
l2m

+ 2km
ltm
lm

niltm + du (nj − ni)
lm

,

(136)

Gn = Mmg
ni (nj − ni)

l2m
+Mmgdu

[
(nj − ni)

2

l2mltm
− 1

ltm

]
+2km

(nj − ni)
lm

niltm + du (nj − ni)
lm

.

(137)

34



Equation 123, 130, 134 can be used as general equations to describe the roll and
sideways motion of all three masses of the pendulum. The functions R, S, V A, B,
C, D, E and G with variables Mm, ni, nj , dl, du, lm and ltm need to be specified

for each test mass. And Mm =
3∑

i=m
mi, with i = 1, 2, 3.

For the lower mass,

m3ÿ3 = R3 (y3 − y2) + (S3n5 −R3d4) ϕ3 − (S3n4 −R3d3) ϕ2, (138)

I3xϕ̈3 = −A3y2 + A3y3 − (B3n4 + C3d3) ϕ2 +
[
B3n5 + C3d4 + m3g

(
n5

n5 − n4

lt3
− d4

)]
ϕ3,

(139)
where

R3 = −m3g

[
1
lt3

+
(n5 − n4)

2

l23lt3

]
− 4k3

(
n5 − n4

l3

)2

, (140)

S3 = −m3g
(n5 − n4)

l23
− 4k3

(n5 − n4) lt3
l23

, (141)

A3 = m3gd4

[
1
lt3

− (n5 − n4)
2

l23lt3

]
−m3gn5

(n5 − n4)
l23

+4k3
n5lt3 + d4 (n5 − n4)

l3

n5 − n4

l3
,

(142)

B3 = m3g
n5lt3
l23

−m3g
n5

lt3
+ m3g

d4 (n5 − n4)
l23

− 4k3
lt3
l3

n5lt3 + d4 (n5 − n4)
l3

, (143)

C3 = m3g
n5 (n5 − n4)

l23
+m3gd4

[
(n5 − n4)

2

l23lt3
− 1

lt3

]
−4k3

(n5 − n4)
l3

n5lt3 + d4 (n5 − n4)
l3

.

(144)
The equations for the intermediate mass are

m2ÿ2 = R2 (y2 − y1) + (S2n3 −R2d2) ϕ2 − (S2n2 −R2d1) ϕ1 −R3 (y3 − y2)−
(S3n5 −R3d4) ϕ3 + (S3n4 −R3d3) ϕ2 = −R2y1 + (R2 + R3) y2 −R3y3−
(S2n2 −R2d1) ϕ1 + (S2n3 −R2d2 + S3n4 −R3d3) ϕ2 − (S3n5 −R3d4) ϕ3,

(145)
I2xϕ̈2 = Q+

2 −Q−
2 = A2 (y2 − y1) + B2 (n3ϕ2 − n2ϕ1) + C2 (d2ϕ2 − d1ϕ1) +

(m2 + m3) g

(
n3

n3 − n2

lt2
− d2

)
ϕ2 −D2 (y3 − y2)− E2 (n5ϕ3 − n4ϕ2)−G2 (d4ϕ3

−d3ϕ2)−m3g

(
n4

n5 − n4

lt3
− d3

)
ϕ2 = −A2y1 + (A2 + D2) y2 −D2y3 − (n2B2

+d1C2) ϕ1 +
[
n3B2 + d2C2 + n4E2 + d3G2 + (m2 + m3) g

(
n3

n3 − n2

lt2
− d2

)
−m3g

(
n4

n5 − n4

lt3
− d3

)]
ϕ2 − (n5E2 + d4G2) ϕ3.

(146)
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Here

R2 = (m2 + m3) g

[
1
lt2

− (n3 − n2)
2

l22lt2

]
− 4k2

(
n3 − n2

l2

)2

, (147)

S2 = (m2 + m3) g
(n3 − n2)

l22
+ 4k2

(n3 − n2) lt2
l22

, (148)

A2 = (m2 + m3) gd2

[
1
lt2

− (n3 − n2)
2

l22lt2

]
− (m2 + m3) gn3

(n3 − n2)
l22

+ 4k2

n3lt2 + d2 (n3 − n2)
l2

n3 − n2

l2
,

(149)

B2 = (m2 + m3) g
n3lt2
l22

− (m2 + m3) g
n3

lt2
+ (m2 + m3) g

d2 (n3 − n2)
l22

− 4k2
lt2
l2

n3lt2 + d2 (n3 − n2)
l2

,

(150)

C2 = (m2 + m3) g
n3 (n3 − n2)

l22
+ (m2 + m3) gd2

[
(n3 − n2)

2

l22lt2
− 1

lt2

]
− 4k2

n3lt2 + d2 (n3 − n2)
l2

(n3 − n2)
l2

,

(151)

D2 = m3gd3

[
1
lt3

− (n5 − n4)
2

l23lt3

]
−m3gn4

(n5 − n4)
l23

−4k3
n4lt3 + d3 (n5 − n4)

l3

n5 − n4

l3
,

(152)

E2 = m3g
n4lt3
l23

−m3g
n5

lt3
+ m3g

d3 (n5 − n4)
l23

+ 4k3
lt3
l3

n4lt3 + d3 (n5 − n4)
l3

, (153)

G2 = m3g
n4 (n5 − n4)

l23
+m3gd3

[
(n5 − n4)

2

l23lt3
− 1

lt3

]
+4k3

(n5 − n4)
l3

n4lt3 + d3 (n5 − n4)
l3

.

(154)
And for the top mass, the equations for the sideways and roll motion are

m1ÿ1 = R1y1 + (S1n1 −R1d0) ϕ1 −R2 (y2 − y1)− (S2n3 −R2d2) ϕ2 + (S2

n2 −R2d1) ϕ1 = (R1 + R2) y1 −R2y2 + (S1n1 −R1d0 + S2n2 −R2d1) ϕ1−
(S2n3 −R2d2) ϕ2,

(155)
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I1xϕ̈1 = Q+
1 −Q−

1 = A1y1 + B1n1ϕ1 + C1d0ϕ1 + (m1 + m2 + m3) g

(
n1

n1 − n0

lt1
−d0) ϕ1 −D1 (y2 − y1)− E1 (n3ϕ2 − n2ϕ1)−G1 (d2ϕ2 − d1ϕ1)− (m2 + m3) g (n3

n3 − n2

lt2
− d1

)
ϕ2 = (A1 + D1) y1 −D1y2 +

[
B1n1 + n2E1 + d1G1 + (m1 + m2 + m3)

g

(
n1

n1 − n0

lt1
− d0

)]
ϕ1 −

[
n3E1 + d2G1 + (m2 + m3) g

(
n3

n3 − n2

lt2
− d1

)]
ϕ2,

(156)
with

R1 = − (m1 + m2 + m3) g

[
1
lt1

− (n1 − n0)
2

l21lt1

]
+ 2k1

(
n1 − n0

l1

)2

, (157)

S1 = − (m1 + m2 + m3) g
(n1 − n0)

l21
− 2k1

(n1 − n0) lt1
l21

, (158)

A1 = (m1 + m2 + m3) gd0

[
1
lt1

− (n1 − n0)
2

l21lt1

]
− (m1 + m2 + m3) gn1

(n1 − n0)
l21

+ 2k1

n1 − n0

l1

n1lt1 + d0 (n1 − n0)
l1

,

(159)

B1 = (m1 + m2 + m3) g
n1lt1
l21

− (m1 + m2 + m3) g
n1

lt1
+ (m1 + m2 + m3) g

d0 (n1 − n0)
l21

−2k1
lt1
l1

n1lt1 + d0 (n1 − n0)
l1

,

(160)

C1 = (m1 + m2 + m3) g
n1 (n1 − n0)

l21
+ (m1 + m2 + m3) gd0

[
(n1 − n0)

2

l21lt1
− 1

lt1

]
− 2k1

(n1 − n0)
l1

n1lt1 + d0 (n1 − n0)
l1

,

(161)

D1 = (m2 + m3) gd1

[
1
lt2

− (n3 − n2)
2

l22lt2

]
− (m2 + m3) gn2

(n3 − n2)
l22

− 4k2
n2lt2 + d1 (n3 − n2)

l2
n3 − n2

l2
,

(162)

E1 = (m2 + m3) g
n2lt2
l22

− (m2 + m3) g
n3

lt2
+ (m2 + m3) g

d1 (n3 − n2)
l22

+ 4k2
lt2
l2

n2lt2 + d1 (n3 − n2)
l2

,

(163)
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and

G1 = (m2 + m3) g
n2 (n3 − n2)

l22
+ (m2 + m3) gd1

[
(n3 − n2)

2

l22lt2
− 1

lt2

]
+ 4k2

n2lt2 + d1 (n3 − n2)
l2

(n3 − n2)
l2

.

(164)

The Equation 138, 145, 155, 139, 146, 156 are first Fourier-transformed and then
rewritten in matrix form

Λ11 Λ12 0 Λ14 Λ15 0
Λ21 Λ22 Λ23 Λ24 Λ25 Λ26

0 Λ32 Λ33 0 Λ35 Λ36

Λ41 Λ42 0 Λ44 Λ45 0
Λ51 Λ52 Λ53 Λ54 Λ55 Λ56

0 Λ62 Λ63 0 Λ65 Λ66





y1

y2

y3

ϕ1

ϕ2

ϕ3

 =



Fs

0
0

Qr

0
0

 . (165)

Here,
Λ11 = R1 + R2 + m1ω

2, (166)

Λ12 = −R2, (167)

Λ14 = S1n1 −R1d0 + S2n2 −R2d1, (168)

Λ15 = −S2n3 + R2d2, (169)

Λ21 = −R2, (170)

Λ22 = R2 + R3 + m2ω
2, (171)

Λ23 = −R3, (172)

Λ24 = −S2n2 + R2d1, (173)

Λ25 = S2n3 −R2d2 + S3n4 −R3d3, (174)

Λ26 = −S3n5 + R3d4, (175)

Λ32 = −R3, (176)

Λ33 = R3 + m3ω
2, (177)

Λ35 = −S3n4 + R3d3, (178)

Λ36 = S3n5 −R3d4, (179)

Λ41 = A1 + D1, (180)

Λ42 = −D1, (181)
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Λ44 = B1n1 +n2E1 + d1G1 +(m1 + m2 + m3) g

(
n1

n1 − n0

lt1
− d0

)
+ I1xω2, (182)

Λ45 = n3E1 + d2G1 + (m2 + m3) g

(
n3

n3 − n2

lt2
− d1

)
, (183)

Λ51 = −A2, (184)

Λ52 = A2 + D2, (185)

Λ53 = −D2, (186)

Λ54 = −n2B2 − d1C2, (187)

Λ55 = n3B2 + d2C2 + n4E2 + d3G2 + (m2 + m3) g

(
n3

n3 − n2

lt2
− d2

)
−m3g(

n4
n5 − n4

lt3
− d3

)
+ I2xω2,

(188)
Λ56 = −n5E2 − d4G2, (189)

Λ62 = −A3, (190)

Λ63 = A3, (191)

Λ65 = −B3n4 − C3d3, (192)

Λ66 = B3n5 + C3d4 + m3g

(
n5

n5 − n4

lt3
− d4

)
+ I3xω2. (193)

Hence the sideways motion induced by Fs and the roll motion induced by Qr can
be described as 

y1

y2

y3

ϕ1

ϕ2

ϕ3

 = Ξ



Fs

0
0

Qr

0
0

 , (194)

where Ξ = Λ−1. The transfer functions that characterize the response of the top
mass to Fs and Qr are

Hys =
y1

Fs
= Ξ11, (195)

Hyr =
y1

Qr
= Ξ14, (196)

Hϕs =
ϕ1

Fs
= Ξ41, (197)

Hϕr =
ϕ1

Qr
= Ξ44. (198)

The Bode plots for the above transfer functions are shown in Figure 22, Figure 23,
Figure 24, and Figure 25 respectively.

39



10−1 100 101

−100
−80
−60
−40
−20

0

M
ag

ni
tu

de
 (d

B)

10−1 100 101

0

100

200

Frequency (Hz)

Ph
as

e 
(d

eg
.)

Figure 22: Bode plot of Hys.
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Figure 23: Bode plot of Hyr.
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Figure 24: Bode plot of Hϕs.
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Figure 25: Bode plot of Hϕr.
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Figure 26: Feedback control block diagram of the triple pendulum. A - actuator
matrix, T - system transfer function matrix, S - sensor matrix, and G - control
filter.

1.4.1 Damping

Mechanical loss of the pendulum could greatly affect the sensitivity of a gravita-
tional wave detector which use pendulums to reduce seismic noise. But it is not
considered to be a big factor that will severely deteriorate the control for the sus-
pension system at low frequencies. Although damping mechanism is complicated
to be fully understood and modeled, we can simply approximate total damping
effect for motions of 6 DOF by introducing viscous forces or torques which are
applied on the test mass directly, using the concept of equivalent viscous damping
[4]. Damping in the system is not expected to cause obvious frequency shift of
the resonant modes. The viscous damping constant utilized in the model can be
calibrated according to the measurement result.

1.5 Local Control of the Triple Pendulum

The resonant modes of the pendulum are damped by sensing the position of the
upper mass relative to the reference pendulum or the supporting frame. Correction
forces which are proportional to velocity are applied using OSEMs. Figure 1.5
shows the control loop of the triple pendulum system. The actuator, sensor and
control blocks are represented by three matrices in the Matlab model. Sensor block,
S, represents the calibration from position error signals to electrical current out of
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the OSEM. S can be mathematically represented as

S=



1 ls 0 ly 0 0
1 ls 0 −ly 0 0
0 lp 1 0 0 −lr
0 −lp 1 0 0 lr
0 0 1 0 0 −lr
0 0 0 0 1 ls

 . (199)

The error signal is then amplified and modified by the control loop filter to generate
the feedback signal. The electrical feedback signals, variations of the current in the
coil, introduce electro-magnetic force on the magnets attached on the top mass.
Actuator block, A, describes the conversion from the current in the coils to the
control forces and torques on the top mass. The matrix representations for S is

A=



1 1 0 0 0 0
ls ls lp −lp 0 0
0 0 1 1 1 0
ly −ly 0 0 0 0
0 0 0 0 0 1
0 0 lr lr −lr ls

 . (200)

The transfer functions from the forces and torques to the position errors are included
in block, T . The relationship between motions of the top mass and the control forces
and torques can be written as

x
θ
z
φ
y
ϕ

 = T



Fl

Qp

Fv

Qy

Fs

Qr

 (201)

And the transfer function matrix that represents T is

T=



Hxl Hxp 0 0 0 0
Hθl Hθp 0 0 0 0
0 0 Hzv 0 0 0
0 0 0 Hφy 0 0
0 0 0 0 Hys Hyr

0 0 0 0 Hϕs Hϕr

 . (202)

The overall DC responsivity of coils, actuators and other mechanical and electrical
components that build up the control loop of the suspension system is represented
by block G, which consists of 6 parameters for 6 control channels, respectively. The
bode plot of the control loop filter, F , is shown in Figure 1.5.
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Figure 27: Bode plot for the transfer function of the control loop filter.

2 Measurement Result

To characterize the response of the pendulum to external control forces and torques,
close loop transfer functions associated with various control channels were mea-
sured. These measured transfer functions can be specified by the block diagram
shown in Figure 28.

The input signal, Xin, can be injected into single or multiple input channels to
excite motions of the pendulum of different degrees of freedom while the close loop
response, Xout, can be read from specified output channels. We can define a loop
transfer function matrix, H, as

H = SATG. (203)

And the closed-loop transfer function Hcl can be mathematically expressed as

Hcl =
Hij

1 + HijHji
, (204)

where

Hij =
{

H(i, j) if i 6= j
1 if i = j

, (205)

and
Hji = H(j, i). (206)
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Figure 28: Block diagram used to determine the closed-loop transfer function mea-
surement for the triple suspension system. Xin, Xout represent the input and the
output signals. i and j specify the input and the output channels. Hij represents
the transfer functions with channel i as the input channel and channel j as the out-
put channel (i = 1,· · · 6, j = 1,· · · , 6). Hji reprsents the transfer function defined
vice versa.

45



10−1 100 101−40

−30

−20

−10

0

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

 

 

simulated
measured

Figure 29: Measured and simulated close loop transfer functions with the input
signal injected to coils 1 and 2 and the output signal read from channel 1.

Figure 29 shows the close loop transfer function with injections to channel 1 and
channel 2 as the read out channel. We can clearly see the excited longitudinal mode
at 6 Hz, 1.3 Hz and 2.3 Hz (Figure 11). The extra dip at around 1.9 Hz shown
in the measurement result is believed to be associated with yaw motions that were
excited due to the unbalanced driving on two magnets. This can be confirmed in
Figure 17. The small dips located between 7 Hz and 8 Hz in the measurement curve
represent motions of the supporting stack which is not considered in the matlab
model. Figure 30 shows the resposne of the pendulum to an even more unbalnced
driving. The 1.9 Hz Yaw mode becomes enhanced here.

Figure 31 shows a more complicated inter-channel close loop transfer function.
Only one longitudinal mode at 2.4 Hz can be clearly seen here due to the strong
damping effect.

We also checked the longitudianl-pitch cross coupling effect. A longitudinal
force was exerted by injecting driving signals to coils 1 and 2, while pitch motions
of the pendulum thus introduced was measured by reading the difference between
output signals from channel 3 and channel 4. The measured result is plotted along
with the simulation result in Figure 32.

Vertical motions of the pendulum can be excited by a balanced injection to coils

46



10−1 100 101
−35

−30

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

 

 

Simulated
Measured

Figure 30: Measured and simulated close loop transfer functions with the input
signal injected to coil 1 and the output signal read from channel 1.
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Figure 31: Measured and simulated close loop transfer functions with the input
signal injected to coil 1 and the output signal read from channel 2.
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Figure 32: Measured and simulated close loop transfer functions with the input
signal injected to coils 1 and 2 and the output signal read as the difference between
readouts from channels 3 and 4.

3, 4 and 5. From transfer functions plotted in Figure 33 and 34, we can clearly see
the excited vertical modes at 1.2 Hz and 4.8 Hz. A dual channel injection to coils
3 and 4 causes the pendulum to move vertically and roll, with sideways modtions
being introduced due to the sideways/roll coupling. Figure 35 demonstrates the
simulated closed loop frequency response and the measurement result for this case.
Single channel injections to one of these three channels make motions of the pen-
dulum become more complicated with pitch motions being introduced as well. The
associated simulation and measurement results are plotted in Figure 36, Figure 37
and Figure 38. The curves in Figure 38 characterize the inter-channel frequency
response between channel 3 and channel 4.

Sideways motions can be excited by injecting a driving signal into channel 6.
The measured close-loop response is shown in Figure 39. The measured resonant
modes agree well with the prediction by the matlab model.

3 Discussion

The dynamic equations derived in Section 1.1 can be easily expanded to include
extra control forces and torques applied on the intermediate mass, and the lower
mass as well. So the Matlab model we have built can be modified to simulate
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Figure 33: Measured and simulated close loop transfer function with the input
signal being injected to coils 3, 4 and 5 and the output signal from channel 3.
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Figure 34: Measured and simulated close loop transfer function with the input
signal being injected to coils 3, 4 and 5 and the output signal from channel 5.
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Figure 35: Measured and simulated close loop transfer functions with the input
signal injected to coils 3 and 4 and the output signal read from channel 4.
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Figure 36: Measured and simulated close loop transfer functions with the input
signal injected to coil 3 and the output signal read from channel 3.

50



10−1 100 101
−30

−20

−10

0

10

M
ag

ni
tu

de
 (d

B)

Frequency (Hz)

 

 

simulated
measured

Figure 37: Measured and simulated close loop transfer functions with the input
signal injected to coil 5 and the output signal read from channel 5.
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Figure 38: Measured and simulated close loop transfer functions with the input
signal injected to coil 3 and the output signal read from channel 4.
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Figure 39: Measured and simulated close loop transfer function with the input
signal being injected to coil 6 and the output signal from channel 6.

not only the local control scheme, but also the global control scheme. Moreover,
the analysis for motions of the masses of the pendulum, which are suspended with
either two wires or four wires, can generally be applied for other pendulums with
similar suspension designs. Hence this model can also be viewed as an potentially
useful reference model for the design of the quadruple pendulum suspension system.
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