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Abstract.  

Test masses and other key optics in LIGO are supported as pendulums to filter out noise from 

ground motion, and in the forthcoming AdvLIGO upgrade, these will be multistage pendulums. 

Some of them need to be fitted with multiple channels of sensors and actuators. The cabling that 

needs to be run between the levels may be stiff and heavy and can potentially degrade the 

vibration isolation or create thermal noise.1 In order to understand the cabling noise, we 

developed an apparatus that characterizes the cabling used in the double pendulum suspension 

for the OMC for its spring constant and damping function. For the pitch motion of the pendulum, 

we found the cabling’s torsion spring constant to be ktor = 0.005±0.002 N-m/rad, its bending 

spring constant to be kbend = 4.9±0.7 N/m, and that the cabling exhibits structural damping with a 

constant damping function of Ф = 0.003±0.001 .  

 

Introduction 

The Laser Interferometer Gravitational-Wave Observatory (LIGO), is a ground based laser 

Michelson interferometer (Figure 12) that searches for gravitational waves by detecting, 

effectively, the change of length in the detector’s perpendicular cavities. When gravitational 

waves interact with the test masses, the test mass displacement is in the order of 10-19
 m. Ground 

vibration, on the other hand, moves in the order of 10-6m. Thus, the test masses, on which the 

interferometer mirrors are coated, are suspended as a part of multi-stage pendulum from an 

actively isolated platform, to isolate against seismic noise.  
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Figure 1.  A schematic of LIGO as a laser Michelson Interferometer that has it’s mirrors coated on test masses, 

which in turn are suspended as pendulums to isolate against the ground motion.  

Some of these suspended objects need to be fitted with multiple channels of sensors and 

actuators. With one end on a pendulum stage and the other attached to the grounded support 

structure, the cabling provides a direct path for the ground motion to be injected into the 

suspension. The cabling may be relatively stiff and heavy and therefore can potentially degrade 

the vibration isolation or create thermal noise.  

 

We studied the effects of cabling used in the double pendulum suspension for the OMC by 

experimentally characterizing the cabling for its spring constant and damping function, and 

constructing a computer model (done by Julian Freed-Brown, based on Mathematica tool 

packages by Mark Barton) that uses these measurements to quantify the isolation deterioration. 

This paper will present primarily on the characterization of the cabling.  
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Types of Damping3,4 

Since we believe that the main contribution to the suspension’s degradation would come from 

the damping in the cabling, the primary goal of our experiment is to characterize the damping.  

 

The two most common types of damping are velocity damping and structural damping. 

Assuming velocity damping, the damping is modeled as retarding force that is proportional to the 

velocity of the mass “m”, Fd = -cv. Applying Newton’s second law on the mass, we get: 

m x
⋅⋅

+ c x
⋅

+ kx = F eq. 1 

When the system is left alone to damp down, F = 0, and we have 

                                                          m x
⋅⋅

+ c x
⋅

+ kx = 0 eq. 2 

On the other hand, if we assuming structural damping, this free damped vibration of eq.2 would 

have its damping modeled as a force proportional to the displacement but in phase with the 

velocity. The resulting equation of motion is:  

m x
⋅⋅

+ k H1 + φ  L x = 0 eq .3 

Where Ф, the damping function, is the fraction of energy lost in each cycle of the vibration. Ф(f) 

as a function of frequency f  is informative because it allows us to unambiguously distinguish 

between velocity and structural damping:  

                                                 f = const                                  eq. 4             [structural damping] 

                                                f ∂ f                                          eq.5               [velocity damping] 

 

Determination of the Cabling Damping Function Фc(f) and Torsion Spring Constant kCtor 

Consider a test pendulum in suspension with cabling symmetrically attached to both of its sides, 

as shown in Figure 2, with the left side being our experimental apparatus and the right side being 

a schematic of it.  
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Figure 2. (left) The two wire torsion pendulum in suspension, with two wires attached on each side. (right) A schematic of 
the set up. (bottom right) Definition of the pendulum’s angular displacements. 

Analyzing the yaw motion as an example, the complex spring constant of eq 3, k(1+iФ) for the 

combined system of the pendulum and the cabling can be written as: 

                                    kT H L  H PL1 + iφT = kP 1 + iφ + kc H1 i+ φ eq. 6

a b

L
Where the subscript “P” stands for the pendulum, “C” stands for the cabling, and “T” stands for 

the effective values for the combined system.  

 

Knowing that the pendulum has very low damping comp red to ca ling, we can set Фp = 0 . 

                                               kT 1 +H L =  H φL eq. 7i k k 1 iφ + +  T P c

and with some algebraic manipulation: 

                                                
φT =

kC φC

kC + kP
=

kC φC

kT
eq. 8

 

                           where                      k k k eq. 9 = +T C P

Now, given that the angular spring constant k can be generically expressed as 

                                            k
2If eq. 10 =

we see that, 

                            I
2

T fT = IP fP
2 2I+ C f k eq. 11 =C T

4 
 

LIGO-T080341-00-R



Substituting this result back into eq. 8, we get 

                                         
φT =

kC φC

IT fT
2 eq. 12

 
When conducting this experiment, we set the pendulum in the yaw direction resonant frequency 

mode, and then measure both the resonant frequency fT and Q, the quality factor at the resonant 

frequency, which can be related to eq 12. through the following: 

 

Since for our system the dominant mechanical loss is through the dominant elastic element (the 

cabling),  

                                      
QT HfTL =

1
φT fH TL eq .13

 
 

Where Q(fT ) is the quality factor at the resonant frequency fT of the torsional pendulum.  

Substituting eq. 13 into eq.12, we have, 

                                     
QT HfTL =

fT
2 IT

kC φC
eq. 14

 
QT and fT are measured in the experiment, IT, can be calculated analytically, and kC can also be 

computed provided that we make the experimental measurements of fP, the pendulum’s resonant 

frequency before attaching the cabling, and fT, the pendulum’s resonant frequency after attaching 

the cabling. The calculation is as follows: 

 

Rearranging eq. 11, we have  

                                IC fC
2 = kC = IT fT

2 − IP fP
2 eq. 15 

We note that the inertia of the cabling is negligible as compared to the pendulum, and therefore 

the inertia of the combined system, IT, would be approximately equal to the inertia of the 

pendulum alone, IP. As a result we have, 

                                       kC = Ip I 2fT − fP
2M

Where we first measure the pendulum’s resonant frequency, fP, and then attach the cabling, and 

finally measure the resonant frequency of the combined system, fT.  

eq. 16 

 

With kC also determined, we can find Фc using eq. 14.  
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Referring back to equations 4 and 5, we see that if the cabling exhibits velocity damping, then a 

plot of QT
1/2 vs fT

1/2   would give a curve which varied as a function of fT
1/2  ; if the cabling 

exhibits structural damping, then this plot would yield a straight line through the origin.QT, the 

quality factor of the combined system measured at its resonant frequency fT, are measured 

quantities as discussed previously.  

 

Determination of the Cabling’s Bending(kCbend ) Spring Constant, Bending Modulus of 

Elasticity(Ebend) and its Torsion(kCtor ) Spring Constant.  

The cabling’s bending spring constant kCbend and modulus of elasticity(Ebend) can be estimated by 

cantilevering a section of the cabling off a clamp( Figure 3), and considering the bending 

equations of a uniform cantilevered beam.  

 

 

Figure 3. The cantilever beam showing the load P applied at distance a from the support.  

 

The beam deflects downwards when acted upon by a downwards force P. Let this force act on 

the tip of the beam, and let the tip deflection be δ, then we can find the bending spring constant       

               
kbend =

P
δ

eq. 17
 

And the bending modulus of elasticity is  

            
ECbend =

P
δ

 
L3

3 Icab
= kCbend 

L3

3 Icab
eq. 18

 
Where Icab is the area moment of inertia or the cabling, and is given by: 

              
Icab =

πr4

4
eq. 19

 
and r is the radius of the cabling.  
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The cabling’s torsion spring constant kCtor can be estimated by clamping something heavy to a 

piece of cabling, and suspending combination as a torsion pendulum where the pendulum’s bob 

is the clamp. The pendulum’s frequency is given by: 

            ω
2 I = H2 πfL2  I k= Ctor eq. 20

 

 
Where I is the mass moment inertia of the pendulum. Since the inertia of the cabling is much 

smaller than that of the clamp, we can take I to be Iclamp. Hence: 

                        H L2 πf 2 Iclamp = kCtor eq. 21  
Methods 

The cabling (Figure 4) used in these experiments consists of 18 electrical wires inside a copper 

sheath (as opposed to the black PEEK sheath). The cabling has a linear mass density of 0.32g/cm 

and a diameter of 4mm. About 90 cm of this cabling was manufactured. It was then cut in half. 

Finally, the effective length of each half was made arbitrarily shorter by clamping, so that what is 

behind the clamp can be assumed to have no effect on what is in front of it. For the two wire test 

pendulum experiment (Figure 2), the effective cabling length was about 7cm on each side. For 

the cantilevered cabling experiment, the effective cabling length was 5 cm.  

 

These parameters are chosen to resemble the cabling used in the  OMC, where two such cabling 

enters the OMC cage through the top, and halfway to the OMC bench, each of the two 18-wire 

cables split into two 9-wire cables. It is the 4 smaller 9-wire cables that are connected to the 

OMC bench.  

 

The apparatus, data collecting and analysis methods, are discussed separately for the two wire 

test pendulum, the cantilevered cabling, and the cabling-clamp torsional pendulum in the 

following subsections.  
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Figure 4. The cabling used in our experiments. Two such cablings are used in the OMC double pendulum 
suspension.  

 

The Two Wire Test Pendulum Experiment 

The design of the test pendulum 

To ensure that we can check for the frequency dependence of Фc , the ability to vary the pitch 

and yaw frequencies over about an order of magnitude range of frequencies was a major design 

goal. Figure 5 is a schematic of our test pendulum, with the two frequency varying parameters 

“n” and “d” defined.  
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Figure 5.  A schematic of the present design of our Q‐test torsional pendulum. The parameters “d” and “n” as 

defined in the paragraph are labeled here. 

 “n” determines the pendulum’s yaw frequency, and is varied by clamping the suspension wires 

symmetrically along the column of screw holes as shown in the left most picture in Figure 5. “d” 

determines the pendulum’s pitch frequency, and is varied by inserting plates into the middle 

trough, as shown in Figure 6, to raise the height of the suspension wire attachment.  

 

Figure 6. Schematic showing three plates inserted in the center trough region of the pendulum. This is done to 

vary the “d” distance, which determines the pendulum’s pitch frequency.  

The dimensions of the test pendulum is 10cm wide * 20cm long* 5cm tall. Both the pendulum 

and the plates are made of aluminum.  
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Data Collection 

A Kaman displacement sensor is used to measure the ring down of the pendulum. The Kaman 

sensor induces an eddy current in a metallic surface, then detects the magnetic field from the 

eddy current, and outputs a voltage that is proportional to the distance between the metallic 

surface and the sensor. The time varying voltage is recorded by the LabVIEW data logging 

system for later analysis.  

 

 Data Analysis 

A typical ring down taken by the Kaman sensor is shown in Figure 7.  

  

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. (Top) A typical ring down taken from the Kaman sensor. The circled ends 
represent chunks of data that are taken out of the beginning and the end of the ring 
down. (Left and Right) The chunks of data Fourier transformed into frequency space.  

 

 

Mark Barton wrote a program that takes chunks (circled in Figure 7) of data out of the beginning 

and end of the ring down, then Fourier transform them into frequency space, as shown in the left 

and right spectrum in Figure 7. Although during the experiment only one mode was meant to be 

excited, we usually end up exciting at least one other mode, and hence there are two peaks in the 

spectrum. The peak of interest is identified, and a comparison of the peak amplitudes at the 

beginning and at the end of the ring down would yield the quality factor Q for the ring down. 
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The Cantilevered Cabling Experiment 

In simulating a cantilevered beam, the cabling clamp shown in Figure 2 is clamped on to one end 

of a segment of cabling, such that 5 cm of cabling is cantilevered off the clamp. Then, three 

different washers weighing 3, 7, and 12 grams are sequentially hung near the tip of the cabling.  

Finally, the tip displacement is measured and recorded in Table 1. 
 
Table 1.  Data recorded for the cantilevered cabling experiment. Two trials are repeated for each load washer. For 
each washer, the cabling tip deflection is found for each trial, the average is calculated, and then the bending spring 
constant k Cbend is computed. 
mass  3 grams         

trial 
original pos 
(mm) 

end 
pos(mm)  deflection(mm)

avg defl 
(mm)  k Cbend(N/m) 

1  205  210 5 6 4.9 

2  205  212 7    

mass  7 grams         

trial 
original pos 
(mm) 

end 
pos(mm)  deflection(mm)

avg defl 
(mm)  k Cbend (N/m) 

1  205  222 17 16 4.3 

2  205  220 15    

mass  12 grams         

trial 
original pos 
(mm) 

end 
pos(mm)  deflection(mm)

avg defl 
(mm)  k Cbend (N/m) 

1  205  226 21 21 5.6 
2  205  226 21    

 

For each trial the cabling bending spring constant is calculated by eq 17. These values are then 

averaged to give the estimate: 

        
kCbend =

1
3

 H4.9 + 4.3 + 5.6L = 4.9 ± 0.7 
N
m  

where the error is taken as 1 standard deviation of the three kCbend calculations, one for each 

washer.  

To find the cabling’s bending modulus of elasticity ECbend, we compute Icab as given in eq. 19, 

and substitute the results into eq. 20. We end up with Icab = 1.2566*10-11 m, and 

     

    
ECbend =

4.9 ∗ 0.053

3 ∗ 1.2566 ∗ 10−11
= 1.6 ∗ 107  Pa
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The Cabling-Clamp Torsion Pendulum Experiment 

The Cabling-Clamp torsion pendulum is constructed by first placing one end of the cabling in 

between two aluminum blocks, and then screwing the blocks together, thereby clamping the 

cabling in place. Suspend this combination from its top, and we have a torsion pendulum. The 

pendulum is given an angular displacement and then allowed to oscillate. The ringdown data for 

four trials is given in Table 2.  

 

Table 2. The recorded data for the Cabling-Clamp torsion pendulum ringdown. For each of the 4 trials, 
the number of cycles and the corresponding time elapsed is recorded. Frequency is then calculated, and 
averaged over the trials. Finally, and estimate of the torsion spring constant KCtor is also provided.  
Trial # of periods time(sec) f(Hz) favg (Hz) kCtor (N) 

1 4 3.13 1.277955272 1.11679659 0.003046 
2 5 4.89 1.022494888   
3 4 3.87 1.033591731   
4 4 3.53 1.133144476   

 

kCtor is calculated according to eq. 21. Iclamp is the mass moment of inertia of the two blocks with 

respect to the axis of the cabling, and is calculated to be 6.19*10-5 kg-m4, based on the 

measurement that each block has the dimensions of 13mm*26mm*50mm, and the gap between 

the blocks where the cabling fits is 3mm, and that the mass of the block is 108 grams.   

kCtor is estimated to be: 

      
kCtor = 0.003 

N ⋅ m
rad  

Results 

As part of the two wire torsion pendulum experiment, we computer modeled the two wire torsion 

pendulum (without the cabling) shown in Figure 2, and predicted its frequencies in various 

degrees of freedom. Table 3 compares the measured frequencies against the predicted values.  

Table 3. A comparison between the measured and predicted pendulum frequencies for the yaw and pitch 
angular displacement. “n” and “plate” are parameters of the test pendulum that varies the pendulum 
frequencies. Please see the Methods section for details.  
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As shown, the predicted yaw frequencies are highly accurate, and the predicted pitch frequencies 

are fair, when compared to the measurements.  

 

For the pitch mode, we measured QT for various frequencies, and plotted QT
1/2 v.s. f as shown in 

Figure 8. Within experimental error, this is a straight line through the origin. According to the 

previous section, this unambiguously concludes that for the pendulum’s pitch mode, the cabling 

exhibits structural damping.   

 

By computing kC and ФC for each of the frequencies tested, and finding the standard deviations, 

we find that for the pitch mode of the pendulum kC = 0.005±0.002 N-m/rad and                         

ФC = 0.003±0.001, which is constant with respect to f. It is important to note that during the 

pitch mode of the pendulum, the cabling is actually being twisted about its long axis, so the kC 

obtained in this experiment is the cabling’s torsion spring constant.  

 

In a different experiment, the cabling-clamp torsion pendulum experiment, we estimated the 

torsion spring constant of the cabling’s torsion spring constant kCtor = 0.003 Nm/rad , which 

agrees well with the value kC = 0.005±0.002 N-m/rad
 
found in the two wire torsion pendulum 

experiment.
 
 

 

 

 

 

 

 

 

 

 

 Figure 8. QT
1/2 v.s. f for the pitch mode. Within experimental error, this 

is approximately a straight line through the origin, therefore 
concludes that the cabling exhibits structural damping in the pitch 
mode.  
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Finally, in the cantilevered cabling experiment we estimated the cabling’s bending spring 

constant kCbend = 4.9 N/m. This experiment was inspired by the work of Dennis Coyne5, and in 

his experiment he estimated the spring constant of his cabling to be about 8.1 N/m. This result is 

surprising, since Coyne’s cabling had only a single pair of twisted wires, while ours has 18 

wires. Thus if the wires contribute significantly to kCbend, our cabling’s bending stiffness should 

be greater, not less than that used by Coyne. We provide a possible explanation for this 

discrepancy in the next section. 

  

We still note that the kCbend of our is in the same order of magnitude as that of Coyne’s, and that 

our estimate of the cabling’s bending modulus of elasticity ECbend = 1.6*107 Pa is in the same 

order of magnitude of his calculated value for his cabling, E = 9.3*107 Pa.  

 

Discussion 

While in the modeling we have paid attention to such detail as the change in position of the 

pendulum’s center of gravity with the successive insertion of plates into the trough region, the 

experimentally measured pitch frequencies don’t agree well with the modeling predictions.  This 

is probably due to the fact that the pitch frequencies are very sensitive to the attachment point of 

the suspension wires on the pendulum. Although we designed for the suspension wires to be 

symmetrically placed along the center of the length of the “trough” of our pendulum, in practice 

this attachment point is very difficult to place accurately. However, the great agreement between 

the model and the experiment for the yaw frequency gives us confidence on the modeling 

equations, which are formulated by Calum Torrie, and are also used in other models of LIGO’s 

suspensions.  

 

Also, the good agreement of the torsion spring constant of the cabling found across two 

independent experiments, the two wire torsion pendulum experiment and the cabling-clamp 

torsion pendulum experiment, gives us confidence that the value kCtor = 0.005±0.002 N-m/rad
 
for 

the torsion spring constant is of the correct order of magnitude.  

 

The disagreement between our measurement of our cabling’s bending stiffness (4.9 N/m)  and 

Coyne’s measurement of his cabling stiffness (8.1 N/m) is puzzling. Coyne’s cabling had only a 
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single pair of twisted wires, while ours has 18 wires. Thus if the wires contribute significantly to 

kCbend, our cabling’s bending stiffness should be greater, not less than that used by Coyne. A 

possible explanation might be that the wires don’t contribute significantly to kCbend, but instead 

the restoring force comes mostly from the copper sheath, and he used a stiffer sheath than we 

used. However, this is inconclusive, and encourages further investigation.   

 

Finally, Figure 8 suggests strongly of structural damping not only because the straight line 

through the origin is what is expected for structural damping, but also because Figure 8 is clearly 

not the alternative – a curve that varied as a function of fT
1/2 , as would be expected for velocity 

damping.  

 

 

Conclusion 

Several of LIGO’s suspensions need to be fitted with electronics. However, the electronic 

cabling used to power them may be stiff and heavy, and can potentially degrade the seismic 

isolation. Experimental characterization of the cabling used in the double pendulum suspension 

for the OMC concludes that for the pendulum’s pitch mode, the cabling exhibits structural 

damping. For the pitch mode, it is determined that   ktor = 0.005±0.002 N-m/rad  and                       

ФC = 0.003±0.001, which is constant with respect to fT, the torsional pendulum’s pitch mode 

resonant frequency.   

 

For future work, it would be good to investigate further the previously noted discrepancy 

between the bending stiffness of our cabling and Coyne’s cabling. It would be good to 

characterize the cabling for the pendulum’s yaw and translational motion as well.  Also, the 

cabling model’s validity can be further checked by comparing between predicted and measured 

frequencies of the pendulum with cabling attached. Finally, the model can be used to quantify 

the isolation degradation of different cabling arrangements.  
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