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I. INTRODUCTION

Rapidly rotating neutron stars are among the most
promising sources of continuous gravitational waves.
They can emit gravitational waves through a variety of
mechanisms including unstable oscillation modes [1, 2]
and deformations of the crust [1, 3–6]. Neutron stars can
radiate powerful beams of radio waves from their mag-
netic poles. If a neutron star’s magnetic poles are not
aligned with its rotational axis, the beams sweep through
space and if the Earth lies within the sweep of the beams,
the star is observed as a point source in space emitting
bursts of radio waves called a pulsar [7, 8]. Since the
first discovery [9], around 1700 pulsars have been de-
tected [10–12].

Due to magnetic dipole and gravitational radiation the
rotational frequencies of neutron stars slowly decrease in
time. Other than this effect, gravitational waves from
isolated rotating neutron stars are essentially monochro-
matic in the rest frame of the star. The waves are contin-
uous and their frequency is determined by the rotational
frequency of the star. The motion of the detector as the
earth rotates about its axis and around the sun, however,
modulates the phase as well as the amplitude of the re-
ceived signal. In order to recover the signal from inter-
ferometric data optimally, both of these effects must be
taken into account. Detecting gravitational waves from
neutron stars could reveal information about the strength
of neutron star crusts and the equation of state of the nu-
clear matter that makes up the star [6].

There are a number of techniques available for pulsar
searches. These techniques can be loosely divided into
two categories: (1) coherent methods [13, 14], which keep
track of the phase of the gravitational wave signals over
long periods of time, and (2) semi-coherent methods [15]
which combine shorter periods of data without tracking
the phase (for example taking Fourier transforms of short
segments of data and then summing the power).

When the sky-location and phase evolution of a neu-
tron star are known a coherent search for gravitational
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waves is relatively straightforward [14]. If a signal is
present the signal to noise recovered in a search increases
with the square root of the amount of data used in the
search. This is because the signal amplitude grows lin-
early while the noise follows a random walk. Thus, with
enough data, it is possible to recover any signal out of
the noise.

If certain parameters of the signal (sky location, fre-
quency, etc.) are not known the search becomes much
more involved. The reason is that the number of points
needed cover the search parameter space (and ensure no
signals are lost) grows like a large power of the amount
of data used. This makes the sensitivity of our searches
computationally bound: One cannot simply integrate ar-
bitrary amounts of data to gain sensitivity because there
is not enough computational power available to perform
the search. Thus, more efficient code and greater com-
puting power are highly desirable, since they translate
into more data being analyzed and therefore an increased
sensitivity of our searches.

The most promising method for blind searches involves
a hierarchical combination of analysis techniques. In par-
ticular a coherent step followed by an semi-coherent step
such as the Hough transform or stack-slide [15] appears
to be the most promising.

In this paper we focus on the efficient implementation
of coherent techniques. The sensitivity of searches for
continuous waves is computationally bound, and increas-
ing the speed of the search is an economical way to im-
prove search sensitivities. In particular we show how to
compute the so-called F-statistic [13], the logarithm of
the likelihood function maximized over the intrinsic (and
unknown) parameters of the gravitational wave produced
by a neutron star, using barycentric resampling and ad-
dress several important technical issues essential to the
computation.

II. THE SIGNAL

The strain produced by a gravitational-wave in Power-
recycled Fabri-Perot Michelson interferometer can be
represented as

h(td) = F+(td)h+(td) + F×(td)h×(td), (1)
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where, h+ and h× are the ’plus’ and ’cross’ polarizations
of a gravitational wave, and F+(td) and F×(td) are the
beam-pattern functions of the detector and are specified
by the detector’s location, the polarization angle, source
location and the angle between the arms of the detector.
The detector response may also be expressed through
functions a(td) and b(td as follows

F+(td) = sin ζ[a(td) cos 2ψ + b(td) sin 2ψ], (2)

and

F×(td) = sin ζ[b(td) cos 2ψ − a(td) sin 2ψ], (3)

where ψ is the polarization angle of the wave and ζ is the
angle between detector arms, which is 90◦ for LIGO.The
functions a(t) and b(t) both depend on time and location
of source and detector, but are independent of ψ and thus
are easier to use.

The phase of the gravitational wave is given by

Ψ(td) = Φ0+2π

s∑
k=0
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where Φ0 is the phase at the start time, f
(k)
0 is the kth

derivative of the frequency and n0 is the unit vector of
the source in the Solar System Barycenter(SSB) reference
frame. rd is the position vector of the detector in the
same frame.

We can write Ψ(td) = Φ0(td) + Φ(td) and we can also
rewrite

Φ(td) = 2πf [td + Φm(td;α, δ) + Φs(td; f
(k), α, δ)] (5)

The maximum likelihood statistic for the detection of
pulsar signals is called the F-statistic and as referenced
in the JKS paper, the F-statistic is given by

F =
4

Sh(f)T0

B|Fa|
2 +A|Fb|

2 − 2CR(FaF
∗

b )

D
. (6)

The A, B, C, and D are given by

A = (a‖a);B = (b‖b);C = (a‖b);D = A · B − C2 (7)

with

(x‖y) =
2

T0

∫ T0

2

−T0

2

x(td)y(td)dtd (8)

and

Fa(f) =

∫ T0

2

−T0

2

x(td)a(td)e
−iΦ(td)dtd, (9)

and

Fb(f) =

∫ T0

2

−T0

2

x(td)b(td)e
−iΦ(td)dtd, (10)

If we define a new time variable called tb as follows

tb = td + Φm (11)

since δtb ≈ δtd, to very good accuracy, we can rewrite
the equations for Fa and Fb as

Fa(f) =

∫ T0

2

−T0

2

x(tb)a(tb)e
−2πiftbeiΦs(tb)dtb, (12)

and

Fb(f) =

∫ T0

2

−T0

2

x(tb)b(tb)e
−2πiftbeiΦs(tb)dtb (13)

which are just the Fourier transform of the resampled
data and the detector response, multiplied by a phase
eiΦs(tb) [13].

III. IMPLEMENTATION OF BARYCENTRIC

RESAMPLING

Modern scientific computers have memories which
range from 1 Giga-Bytes to a few Giga-Bytes. A practi-
cal way of using such computers for scientific computing
is to combine them in the form a Beowulf cluster. These
clusters typically are made up of hundreds to thousands
of such computers. Gravitational-Wave detectors collect
data at the rate of about 16-20 KHz and typically have
data-sets spanning years. This roughly converts to a few
Tera-Bytes of data for any given analysis. It is impor-
tant to break the data down into parts the fit the in the
memory of a single computer.

The method we use to break up the data into small
and processable pieces is by processing sub-bands one at
a time. We heterodyne and downsample the data such
that the frequencies of interest are brought to near DC,
and analyse only a small sub-band. Parceling out all the
data this way allows it to be ananlysed in paralell by a
Beowulf cluster.

Gravitational-wave detectors are subject to many
sources of noise; some of which change daily or even
hourly, such as wind, microseism, earthquakes, antro-
pogenic noise etc. These change the noise floor of any
analysis as a function of time. Continuous wave searches
are sensitive to such changes in the noise floor. A practi-
cal way to deal with non-stationarity is to divide the data
into short segments within which the noise is stationary
and estimate the noise for each segment. The length
of the segments can be decided based on the particular
interferometer and noise sources which are prominent.
For the LIGO detectors 1800 seconds is the usual choice,
which is sufficient to track non-stationarities in the data.

A. Time Domain Analysis

The F-statistic can be calculated from a time series
directly by following the steps outlined in te background
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section. But this is impractical due to the size of the
data-sets involved in any real analysis. One way to solve
this problem is by dividing the data into band limited,
heterodyned time series.

1. Heterodyning

Consider a Fourier transform∫
∞

−∞

X(t) · e−2πft = X̃(f), (14)

where X(t) is an arbitrary function. If we multiply X(t)
by e2πif0t, then we get the following expression∫

∞

−∞

X(t) · e−2πift · e2πif0tdt =

∫
∞

−∞

X(t) · e−2πi(f−f0)tdt

= X̃(f − f0). (15)

Thus by multiplying by a phase, we can shift the fre-
quency of interest arbitrarily. In practice one shifts the
middle of the band of interest to D.C and then down-
samples the data. This ensures that down-sampling is
possible even for very large frequencies. This procedure
is called Heterodyning.

If one is interested in analyzing data from say 990 Hz to
1000 Hz, a minimum sampling rate of 2 KHz is required.
But this high sampling rate is only needed if one needs
to analyze the whole band from D.C to 1 KHz. If instead
the frequencies of interest lie in a 10 Hz band starting at
990 Hz, we can heterodyne the data such that 995 Hz
moves to D.C and thus moving 990 Hz to -5 Hz and 1000
Hz to +5 Hz. This heterodyning can be achieved in the
time domain by multiplying by the phase factor e−2π995t,
where t is measured in units of seconds.

In the frequency domain, heterodyning can be achieved
by just relabelling the various frequency bins. In the
example above, we can just internally change the labels
of the 995 Hz frequency bin to be 0 Hz and 100 Hz to
be 5 Hz. Once this relabelling is done, the original data
will have all shifted by 995 Hz, with the 10 Hz from -5
Hz to +5Hz containing all the relevant information. All
the other frequencies can then be ignored, since they are
of no consequence in our analysis.

2. Low Pass Filtering and Downsampling

After heterodyning the middle of the band to D.C, it is
imperative to downsample the data, since it will reduce
the size of the data set. But before downsampling, a
low pass filter must be applied with a sharp fall off near
and around the new nyquist frequency. The new nyquist
frequency is given by

Nynew = Nyold/D (16)

where D is the downsampling factor. A low pass filter
eliminates the problems of aliasing, since after the filter

is applied, the time series will be nyquist limited. Any
downsampling technique will suffice for such a nyquist
limited time series. A simple but effective technique is
picking every Dth point.

3. Resampling

The heterodyned, band limited, downsampled time se-
ries will be a complex time series, which we can call x(tkd),
with

tk+1
d − tkd = dt =

1

∆F
(17)

where tkd is the kth datum as measured in the detector’s
frame of reference and ∆F is the size of the band used
for the analysis. Also

∆F

2
= Nynew (18)

This time series contains all the information in the band
of interest spanning the time of the analysis. Thus we can
calculate the F-statistic as laid out in 6 using discrete
versions of equations 12 and 13. The discrete versions
for a time series with N points are -

Fa(f) =
N∑

k=1

x(tkb )a(tkb )e−2πiftk

b eiΦs(tk

b
)dtb, (19)

and

Fb(f) =
N∑

k=1

x(tkb )b(tkb )e−2πiftk

b eiΦs(tk

b
)dtb. (20)

Here tkb is the kth datum in the time series as measured
in the barycentric frame. Since we know the relationship
between

tkb = G(tkd , α, δ, f
(k)) (21)

where G is a function linear in tkd. This relationship be-
tween tkd and tkb can be used to calculate x(tkb ) from the
time series, which is x(tkd).

The way to accomplish this during computation, is to
create an array of times which are linearly spaced in the
barycentric time and the use interpolation to calculate
the value of x(tkb ). The algorithm is as follows

1. Start with x(tkd) with tkd linearly spaced in time, in
the detector’s frame of reference.

2. These x(tkd) correspond to datums non-linearly
spaced in the barycentric frame. Calculate tkb (tkd).

3. Start at t0b and using interpolation calculate x(t0b +
k · dt), which is the x(tkb ) used in equations 19 and
20.
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4. Similarly from a(tkd) and b(tkd) calculate a(tkb ) and
b(tkb respectively.

5. Evaluate equations 19 and 20 to calcualte Fa(f)
and Fb(f).

6. Use equation 6 to calculate the F-statistic.

4. Heterodyne Correction

For any practical search for gravitational waves, het-
erodyning is an essential component of the analysis.
Heterodyning is accomplished by multiplying the data
stream with e2∗πifhtd , which has an effect of shifting the
frequency fh to D.C or 0. All other frequencies follow
this linear shift as is shown by 15. Since barycentric re-
sampling relies on a wholesale change in the reference
frame, any td functionality in the time series will inter-
fere with the recovery of all the F-statistic. Thus due to
heterodyning, equations 19 and 20 become

Fa(f) =

N∑
k=1

x(tkb )a(tkb )e−2πiftk

b eiΦs(tk

b
) · e2πifhtk

d , (22)

and

Fb(f) =

N∑
k=1

x(tkb )b(tkb )e−2πiftk

b eiΦs(tk

b
) · e2πifhtk

d . (23)

The effect desired from the process of heterodyning is to
shift the frequencies of interest in the barycentric frame,
since that is the frame in which we carry out our calcu-
lations. But equations 22 and 23 will fail to achieve that
goal. In order to correct this effect due to heterodyning,
we need to multiply the data by e2πifhΦm , where Φm is
as defined in equation 11. Thus this makes equations 22
and 23,

Fa(f) =
N∑

k=1

x(tkb )a(tkb )e−2πiftk

b eiΦs(tk

b
) · e2πifhtk

de2πifhΦk

m ,

(24)
and

Fb(f) =
N∑

k=1

x(tkb )b(tkb )e−2πiftk

b eiΦs(tk

b
) · e2πifhtk

de2πifhΦk

m

(25)
But -

e2πifhtk

de2πifhΦm = e2πifh(tk

d
+Φk

m
) = e2πifhtk

b (26)

Thus -

Fa(f) =
N∑

k=1

x(tkb )a(tkb )e−2πiftk

b eiΦs(tk

b
)·e2πifhtk

b = Fa(f−fh),

(27)
and

Fb(f) =
N∑

k=1

x(tkb )b(tkb )e−2πiftk

b eiΦs(tk

b
)·e2πifhtk

b = Fb(f−fh)

(28)
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FIG. 1: Pictorial description of data pre-processing

B. Frequency Domain Analysis

A heterodyned, downsampled and low-pass filtered
time series can also be obtained in the frequency do-
main. The frequency domain data can be whitened as
a function of time if the data is pre-divided into small
chunks each corresponding to a short interval in time.
This has the advantage of dealing with the problem of
non-stationarity of the detector. But there are subtle is-
sues when dealing with data in the frequency domain. A
simple algorithm to produce a time series equivalent to
the one used for the time domain analysis is as follows -

1. Divide raw data into small chunks of time.

2. Take the fourier transform of each chunk, hence-
forth referred to as Short Fourier Transforms
(SFTs).

3. Identify contiguous SFTs.

4. Combine each contiguous chunk of SFTs into one
long time baseline SFT.

5. Pick required frequencies from the long time base-
line SFT.

6. Heterodyne, Low-Pass filter and Down-Sample
these frequencies.

7. Inverse Fourier transform to convert to time do-
main.

8. Stitch all these time domain chunks, filling gaps
with zeros.

1. SFTs

Cite S2 paper. SFTs are described there.

2. Combining SFTs

The SFT data, after whitening, can be combined using
the Dirichlet kernel to form longer time-baseline Fourier
transforms. The procedure is as follows
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3. Filtering and Down-Sampling

Since we limit our analysis to a certain band, all the
information outside of that band of interest is irrelevant
and should be removed in order to keep the minimum
amount of information required. After heterodyning the
data, the simplest thing one can do to get rid of all the
unwanted frequencies is to just ignore them completely.
But this means that there will be a sharp edge in the
data, which can lead to some erratic behavior at the
boundaries. An easy way to overcome this problem is
to use a window on the data.

A window is just a series of weights applied to the data.
To preserve all the relevant information and to avoid edge
effects, a smoothly rising window applied outside the re-
gion of interest on either side with a flat top of 1.0 is used
asa window. Such a window is called a Tukey window
and is a Rectangular window with a split Hann window
on either edge.

Multiplying by a window serves the same purpose as a
low-pass filter does in the time domain. It supresses all
the unwanted frequencies, which are now higher than the
ones of interest. The act of ignoring all the remaining fre-
quencies is equivalent to the procedure of down-sampling
in the time domain. The down-sampling factor is given
by Numberoffrequencybinskept

Totalnumberoffrequencybins
.

Wonder if we need to show my matlab simulation to
prove all this here.

4. Patching

A complex time series is obtained once an Inverse Fast
Fourier Transform is taken on the heterodyned, filtered
and down-sampled. This complex time series contains
all the information in the frequencies of interest for the
whole block of contiguous data. A Tukey window is
applied to each such time series to bring ends to zero
smoothly and to ensure that there is a smooth rise in
the beginning. Then each of these time series is patched
to the neighboring contiguous block with an appropriate
number of zeros representing a gap in the data. This
patched up time series is then used to calculate the F-
statistic.

C. Interpolation Issue

Ignoring this piece for a while. Need to discuss if before
I write it.

IV. RESULTS AND CONCLUSIONS

A. Speed

The current scheme of calculating the F-statistic in-
volves using the Dirichlet kernel to patch up a series of
short Fourier transforms (SFTs), which are calculated
for 30 minutes of data taken at 16 kHz. The 30 minute
window is set by the maximum Doppler shift due to the
motion of the Earth. This algorithm uses a code called
ComputeLALDemod to calculate the F-statistic.

There are nested loops over the sky location , α and
δ, the frequency f and the spin-downs f (k), a loop over
the number of SFTs and a loop to calculate the Dirichlet
kernel in the calculation of the F-statistic in Compute-
LALDemod . At this point in the analysis, we can ignore
the loops over α, δ and f (k), since they will be similar in
both the methods. Assume that we have N data-points
(take for example 106 seconds of data at 100 Hz i.e. 108

data-points).
Now assume that the number of operations per sky

location and per spin-down is Nops. If the number of
Dirichlet kernel points used are ND Ker, then the total
number of operations used by ComputeLALDemod are -

NDemod
Tot = Nops ·ND Ker ·NSFTs ·N (29)

Where, Nops is defined as the number of operations
conducted in the innermost loop and is approximately
of order 10, ND Ker is the number of times the Dirichlet
Kernel loop is repeated, NSFTs = Tobs

TSFT
is the number of

SFTs and N is the number of data-points.
Comparing this to the resampling method, which con-

sists of 4 major steps

1. Calculating tb(t), given a sky location and time.

2. Calculating the integrands of Fa and Fb.

3. Interpolate and calculate the beam patterns.

4. Take the Fourier Transform.

Each of these steps involves operations of order 10, but
all of these steps are sequential, therefore they only add
and we have say N resamp

ops number of operations, which
is approximately 30 or so operations per data point.
The last step is the Fourier transform, which is of or-
der N logN , therefore total number of steps are -

NResamp
Tot = (NResamp

ops + logN) ·N (30)

Therefore, the ratio of operations between the two meth-
ods is

NDemod
Tot

NResamp
Tot

=
Nops ·ND Ker ·NSFTs

NResamp
ops + logN

(31)
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To first order,

NDemod
Tot

NResamp
Tot

≈
NSFTs

logN
(32)

Therefore for large observation times, this method of

calculating the F-Statistic is faster and in the case of a
targeted search, it allows for a large parameter space in
F (k)’s.
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