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Inspired by questions asked on Monday afternoon, here is some addi-
tional information on the measurement and interpretation of power spectral
density.

First, an issue of notation, which Il try to clarify by the example
of seismic noise. Typically, measurements are expressed in terms of the
amplitude spectral density, which is the square root of the power spectral
density

Z(f) = amplitude spectral density of seismic displacement

The amplitude spectral density is related to the power spectral density

Py(f) by
2(f) =/ Pe(f)
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P,(f) is almost (but not quite) the absolute square of the Fourier transform
of z(t).

Like the Fourier transform, the power spectral density picks out a fre-
quency, f, and measures the overlap integral between the input data and a
sine wave of that frequency. The integral is squared to eliminate sensitivity
to phase, which is undefined for pure noise. The dimensions of P,(f) and
#(f) are meter?/Hz and meter/v/Hz, respectively.




How does one measure Z(f), and what is its meaning? The measure-
ment might be done by connecting a seismometer to a Fourier transform
spectrum analyzer, which computes P,(f) and can display V(f), the volt-
age corresponding to z, at many frequencies. The conversion from V(f) to
Z(f) is done by knowing the transfer function, or conversion factor between
displacement input and voltage output, of the seismometer. The spectrum
analyzer might be set to display 1000 frequencies equally spaced from 0 Hz
(DC) up to 100 Hz, in which case the frequency resolution, or bandwidth
of the measurement is approximately 0.1 Hz. The bandwidth is approxi-
mately the inverse of the measurement time, so it would take ten seconds
to accumulate the data for this measurement. No matter what bandwidth
is used, the resulting Z(f) will be approximately the same, a characteristic
of the seismic noise.

Alternatively, the seismometer output can be stored on analog tape and
later played back into a spectrum analyzer or a computer system pro-
grammed to take Fourier transforms. A computer is needed to analyze
long stretches of data for narrow bandwidth measurements.

The spectral density has meaning for any physical quantity that has a
spectrum of fluctuations. For example, £ may be the the voltage measured
across the terminals of a resistor R at temperature 7', in which case P.(f)
has units of Volt?/ Hz. If the fluctuations are from Johnson noise, then
P,(f) has the frequency-independent (white noise) value 4kT RB, where k
is Boltzmann’s constant and B is the measurement bandwidth.

The amplitude spectral density can be interpreted as the noise part of a
signal-to-noise ratio. For example, if an interferometer output has a spectral
density of 1-10"°meter/+/Hz at a frequency of, say, 1 kHz, then the sensitiv-
ity for unity signal-to-noise ratio is 1 -10-°meter/v/Hz at that frequency.
(On a 4-km baseline, this corresponds to a gravity wave strain sensitivity
of h(f) = #(f)/4km, or 2.5 -10-2%/+/Hz.) The measureable displacement,
z, that this corresponds to depends on the type of measurement—burst or
continuous signals.

Burst signals, such as from the birth of black holes, are of limited
duration—usually on the order of milliseconds for the type of signals we
expect to detect. The duration ¢, of a burst is related to its characteristic
frequency f by o &= 1/f. The sensitivity is related to the spectral density




by
Bursts: z = &(f) - \/}:

Taking the above value for Z(f) at 1 kHz, the displacement sensitivity
to 1 kHz bursts is approximately ¢ = 1-107'° meter/vHz - v1 kHz =
3-1071® meter.

For continuous periodic signals, the sensitivity can be improved by av-
eraging over a long stretch of time.
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where Tie.s is the duration of the data stream in a search for or measure-
ment of continuous, periodic sources—e.g. 107 seconds for an optimal use
of 4 months of data, resulting in an unbelievably small displacement sensi-
tivity of 3-10722 meter. Because Tpneas can be so much larger than ¢y, much
smaller displacements from periodic signals can be detected than from burst
signals. The strength of gravity waves from periodic signals, however, is
often inherently much smaller.

In first approximation, the sensitivity of a gravity wave detector to a
given frequency of signal depends on the sum of the contributions from the
power spectral densities of the various noise sources at that frequency:

hrsurn(F) = V/ Phsamic () + Phsgas nasoe (F) + -+ -

Noise outside of the usual frequency band for detecting gravity waves
can also be important. For example, thermal drift associated with temper-
ature fluctuations has significant amplitude mainly at time-scales of several
minutes and longer, corresponding to milliHertz frequencies. This will not
directly affect the sensitivity to 100 Hz signals. On the other hand, nonlin-
ear couplings, such as drift in the mass position causing a misalignment to
optical beams, can open a path for noise to enter in through, say, a coupling
between beam wiggle noise and misalignment. That is, the sensitivity at
100 Hz may depend on the product of the wiggle at 100 Hz and the mis-
alignment at 1 milliHertz. The entire frequency band of a power spectral
density measurement of noise contains useful information.
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