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Abstract

The computer system design for Phase A Facilities and Interfer-
ometers are outlined in sufficient detail to identify the major elements
and to show how they interconnect. Data storage and analysis issues
that affect off-site operations are identified.

1 Definition and Purpose of the Data Sys-
tems

The LIGO comprises three functional entities: the Vacuum System and as-
sociated facilities, the interferometers and associated control systems and
monitors, and the data control and analysis system. The data systems link
the interferometer functions and log data from components of the vacuum
system and environmental (“housekeeping”) sensors. They provide control
of the interferometer components (at a level of intimacy with detector op-
erations yet to be determined), and serve as a conduit between the detector
signals containing gravity wave information and the storage medium for



those signals. The extraction of signals from the archived output of the
detectors—probably done off-site—is the final role of the data systems.

2 Model Data and Control System

Our description of the data and control system is linked to the LIGO Mis-
sion, as embodied in part in Drawing 89L-307. We describe the on-site
implementation of the major components of the data systems, identify-
ing the functional role of computers, how they may be linked, and their
approximate count. The conclusions of the groups working on Environ-
mental Specifications and Support Facilities (in progress as of this writing)
will influence the details of data systems implementation. Communica-
tions between buildings will be covered by another working group, meeting
starting 16 March.

2.1 Design Principles

Our design is based on the following principles:

Modularity matching the vacuum system design Each of the Mis-
sion interferometers will have an associated data system. The sepa-
rate data systems will be similar in purpose and function, and each
will have the capability to operate independently of the others. The
separate data systems are built from a few modules: control com-
puter, communications link, and logging computer. Like modules
will be largely interchangeable.

Use of existing standards As a design economy, commercially available
and industry standard computers, interconnections, and operating
systems will be used to a large extent. The special nature of some of
the LIGO control and data requirements may require custom designs
for some subsystems.

Reliability The control and data systems should be reliable and fault-
tolerant to the level that they do not contribute significantly to LIGO
down-time. This implies that software is thoroughly tested before




being used to control interferometers or to store data, and that re-
lease control procedures are instituted. Hardware reliability can be
enhanced by conservative design and by providing on-site spares for
critical parts and subsystems.

Accessible user interface A minimum of training should be needed for
staff and scientists to rapidly access information and to become ac-
quainted with the operation of the interferometers.

2.2 Capabilities

The data systems will control the overall operation of the interferometers,
aid in noise diagnostics, and mediate the storage of interferometer outputs
and other signals needed to search for and analyze gravity waves. These
functions impose the following capabilities:

Automatic control of interacting functions The simultaneous opera-
tion of several detectors will probably be too complex for control
by human operators, even with most of the functions governed by
semi-autonomous servos. The control and data systems will serve
as concentrators for the control and monitoring of many—perhaps
thousands—of signals necessary for interferometer operation. Data
systems computers will help assure that interacting parts work to-
gether properly, even if they are separated by large distances. This
requires that all control computers are linked, and that at least one
computer has access to the state of all important elements of the in-
terferometers.

Remote access to manual control of detector functions All mechan-
ical positioning stages, electronic gain settings, and switches are to
be accessible for manual adjustment via the computer system. This
allows operation of the interferometers from an on-site but separate
control room, minimizing disturbances from close human intervention.

Cross-correlation diagnostics The data system will have the capabil-
ity to find unexpected correlations between the signals controlling or
related to the detector operation (including the housekeeping data),




and between these signals and the gravity wave signal. This will in-
clude quick-look analyses, and logging the signals for more thorough
off-line analyses. Building the diagnostic software may be a consider-
able task, but it will result in a valuable tool for improving detector
performance.

Archiving of primary detector signals The principal output of each
interferometer is a single continuous round-the-clock signal represent-
ing the difference in two arm lengths. One or more such signals per
interferometer will be recorded at gravity-wave frequency bandwidth.

Environmental, vacuum, and laser monitors The signals provided by
the environmental monitoring, vacuum, and laser subsystems com-
prise the “housekeeping” data stream. The control computers should
have ready access to these signals, and there should be provision for
logging all of them, at least at low bandwidth.

Clock timing and data stamping To combine signals from detectors at
separate sites, the time must be recorded at each site—along with
the data stream—to an accuracy corresponding to less than a period
of the highest-frequency capability of the detectors. If the detector
bandwidth is 10 kHz, an error in Universal Time of 0.1 msec or less is
tolerable. In the search for periodic sources, the clock is required to
have a phase error of less than one radian of the gravity wave signal
over the integration time.

Standard data format International standards will be established for
the format of main (interferometer) and ancillary (housekeeping) data.
The standards will be disseminated to assure the capability of free
exchange of data.

2.3 Block Diagram of Model Control and Data Sys-
tem
The figure on the next page shows a possible configuration of the ligo data

and control system. It consists of a number of modular units, each with a
unique functional task.
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The housekeeping subsystem collects data from the vacuum control sys-
tem and allows monitoring of such functions as tube and tank pressure
at various locations, ion pump currents, and the state of vacuum valves.
The seismic subsystem collects data from the vibration and strain gauges
located in each of the major tanks. The cosmic ray shower detector is a veto
signal with detectors located at each of the buildings. These systems detect
showers and give timing and rough energy information. It is likely that this
equipment would be standard camac modules and scintillation detectors.
The environmental module collects information such as the acoustic sensor
and temperatures, laser status and any other type of veto signals. All of
these subsystems connect with the housekeeping module located near the
tank vertex.

The receiver modules, consisting of both analog and digital electronics,
are located close to the tanks of the signals they monitor (see drawing 89L-
307). It is probable that some of the position and feedback control will be
via digital servo at this location along with local digitization of other analog
signals. The three boxes in the vicinity of each chamber (or cluster of
chambers) might be contained in one relay rack. All of the electronics and
motorized positioners within the chambers are controlled and monitored by
these boxes. The estimate of 18 modules at site 1 assumes that one module
may serve a cluster of chambers, reflecting an attempt to keep long analog
cables to a minimum. There is capability for a mobile remote terminal for
local diagnostics.

The various signal paths have been divided into three categories: a con-
trol bus that sends packets to and from the ancillary modules, a housekeep-
ing bus that connects the realtime housekeeping module with the control
housekeeping machine, and individual receiver buses that carry the detec-
tor output and status information to the corresponding receiver control
computers.

Within the control room there is a set of nearly identical computers
(Spare, Development, Housekeeping, Receiver; ...Receiver,) that are in-
terconnected via a standard network. These machines run standard op-
erating systems, such as unix, and serve as the operator and scientist in-
terface to the observatory. The development system allows new routines
and other hardware to be tested before being placed in service. A spare
module gives quick turnaround in the event of failure. The data logging

5




module is dedicated to logging the interferometric and housekeeping data.
The clock/outnet module consists of the specialized clocking system (dis-
tributed to the various a/d systems) and the offsite communications.

2.4 Number of Signals, Bandwidths, and Recording
Requirements

We compile here the principal parameters of the signal-handling and con-
trolling capabilities required of the data system. The signals correspond
approximately to the “Electrical and Optical Feedthroughs ...” report,
Version 1.1 (two of us, A. J. and R. S., contributed to that report). The
following table is extracted from information in that report, and used here
for counting data system signals. For simplicity, infrequently appearing
functions such as Shark-1 are omitted.

Site 1 Best Guess Tank and Function Count VERr 1.7
Tank Count | Shark-6 PD4 LD Motor-3 Motor-6 Vib-mon
TM1 8 3 2 2 1 3 1
TM2 4 6 4 4 2 6 1
HAM 58 14 4 3 4 1
BS12 1 18 14 11 8 10 1
BSS8 1 10 9 9 4 5 1
SAT 6 4 5 4 2 3 1
MAN 6 6 6

Total 912 353 286 272 139 20

The environmental monitoring, vacuum system, and laser system signal
requirements are TBD (or if already determined, unknown to us). When
these requirements become available, they will be added to the signal list.
(Note: the in-air laser stabilization and initial pointing systems—everything
up to the entrance of the laser beam into the vacuum system—needs the
attention of another working group.)

The following tables list the analog and digital signals going to and from
the data system control computers.

The “No. of lines” column in the analog signal table is our best guess
of the signal count for four interferometers, as specified for Site 1 in the




Mission document. Two bandwidths are specified for each analog input
line: “Monitor”, which is the maximum bandwidth available for monitor-
ing purposes in units of kHz, or kilo-samples/sec, and “Record”, which is
the bandwidth for archiving the data. The units of recording bandwidth,
kBps, is kilo-bytes/sec—equal or double the sample rate in kHz, depend-
ing on whether the samples are one or two bytes wide. Signals that have
a lower recording bandwidth than monitor bandwidth are assumed to be
preprocessed by pulse-stretching and peak-detecting filters, so that impul-
sive events are not missed.

Many of the analog signals are likely to be mostly noise. By adding
whitening filters and compression, the number of bits that need be recorded
can be cut substantially (a calculation based on Gaussian noise suggests
that three bits per sample is adequate). The tabulated numbers are the
conservative, uncompressed bandwidths.

“Interf. ¢” is the interferometer phase, the main interferometer sig-
nal; “Susp. ¢ ” is the signal from the suspension-point interferometer.
The “Critical Shark” signals are those associated with the test masses,
beamsplitters, or critical steering mirrors. The entry 288 assumes (3 shark
detectors / test mass) - (6 signals / shark-6) - (4 test masses / interferom-
eter) - (4 interferometers). Each of these shark photodiode signals appears
to the data system in analog form. The analog-to-digital conversion should
be done close to the chamber housing the shark.

The “Noncrit Shark” signals are associated with suspended components
that should not have first-order coupling to the detector noise. We assume
that the control will be accomplished primarily by a tight analog loop; if the
control computers were burdened with closing the servo loop, this would re-
quire that the analog input and output signal counts match the number of
. wires specified in the “Feedthrough” document. (Note: Substituting con-
trol computers for conventional analog circuitry would permit a substantial
reduction in the number of electronics modules as specified by the “Receiver
Support” working group. This would impose additional requirements on the
signal count, software complezity, processing speed, latency, and dynamic
range of the computers, which we do not analyze here.)

Our estimates of the recording bandwidth assumes that secondary sig-
nals, such as seismometers and microphones, will be fully analyzed in the
search for periodic gravity waves. (All bandwidths except for those of the
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main interferometer output can be reduced for burst searches.) The ag-
gregate analog recording bandwidth, 5.9 Mbytes/sec or 21 Gbytes/hr, is
about 80% occupied with the critical shark and quadrant photodiode sig-
nals. If this bandwidth is a significant cost driver, the design can be refined
to reduce the burden placed on the data system. For example, not all six
degrees of freedom of the critical sharks are equally important; one way to
cut back is to monitor only two degrees of freedom at full bandwidth. Con-
siderable further reductions may be made after a trial period of running
demonstrates that some signals are not important indicators to have in the
archives.

The line counts for the Motor-3 and Motor-6 signals are tabulated by
taking the single-wire count and dividing by 8, assuming the data are packed
in bytes. Most of the motor lines are for shaft encoders. It is assumed the
motors are controlled intermittently. For example, a motor might be ad-
justed for a few seconds once an hour to compensate for thermal expansion
within a vacuum chamber. The motor shaft encoder and the command sig-
nals will be recorded to keep track of motor activity, resulting in an aggre-
gate bandwidth much lower than for the analog signals. The shark count
of 1824 assumes that the control computer can adjust the gain and bias of
each shark degree of freedom, but does not directly control the coil current.

3 Issues in Analysis of Data

We imagine that the principal analysis task will be done at a separate com-
puting facility, probably using university computers. A part of the regular
operations at the sites will be to make daily copies of the critical data and
to ship the copies (electronically, or, more likely, physically) to the data
analysis facility. The attached report by Y. G., including supporting ref-
erences, addresses the issue of how to analyze the data for the presence of
gravity wave information. Considerable progress has been made in recent
years in the development of algorithms to search for and analyze interfer-
ometer signals.

Most of the data analysis can be done with conventional, small, reason-
ably fast computers, such as current-generation RISC-based desktop ma-
chines. A possible exception is that specialized computing hardware, such




as dedicated parallel processors, may be needed to search for periodic sig-
nals of unknown frequency and unknown position on the sky. The creation
of efficient algorithms for searching long data streams (several months of
continuous operation) for such signals is a current topic of research.




Analog Inputs to Data System

VER 2.3

Signal No. of Lines | Bits | Monitor (kHz) | Record (kBps)
min b.g. max | /line Total

Interf. ¢ 8 16 5 20 50 40 320
Microphone 6 8 5 20 50 20 120
Susp. ¢ 8 8 | 1 5 20| 5 40
Crit. Shark 288 16 | 0.1 5 20 10 2880
Noncrit. Shark 5156 8 0.1 5 20 0.1 516
Crit. PD-4 365 8 1 5 20 5 1825
Noncrit. PD-4 1008 8 1 5 20 0.1 101
Vib-mon 108 16 | 0.1 5 20 0.5 108
Env. Mon. TBD
Vac. Sys. TBD
In-air laser TBD

Total 5910
Digital Inputs/Outputs of Data System VEer 1.8
Signal Number of Lines Bits/Line
Motor-3 470 8
Motor-6 532 8
Shark control 1824 8
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SOURCES OF GRAVITATIONAL RADIATION: COALESCING BINARIES
B.F. Schutz

Department of Physics
University of Wales College of Cardiff
P.0. Box 78, Cardiff CF1 1XL, Wales, UK.

ABSTRACT

Binaries consisting of compact objects -~ neutron stars, or black holes — seem llkely to become the
source of gravitational radiation most frequently observed in the late 1990°'s by the ground-based,
laser-interferometric detectors now under development. “The radiation comes from the orbital motion
as the stars spiral together due to gravitational radiation reaction. The low frequencles abservable
from space make new classes of binaries detectable, such as coalescing massive black holes, and make
it possible that several coalescencing systems with relatively long times to coalescence could be
detected in our own galaxy. I examine the prospects for detecting such sources with various types
of space=based detectors, and then consider the sorts of things we could learn froa them, including
new tests of general relativity.

1. INTRODUCTION TO COALESCING BINARIES ¢

There are many classes of binary systems that emit detectable gravitational radiation in the Iow
frequency regime suited to observations from space. (See Thorne /1/ for & recent review.) The
class. that is perhaps the hardest to predict, and which therefore could be the most rewarding to
observe, is the coalescing binary. A good working definition of a coalescing binary is a system
whose components are massive enough and close enough together for the loss of energy and angular
momentum in gravitational waves to cause a significant evolution of the system during the period of
observation. These systems were first considered as potential sources of gravitational radiation by
Clark & Eardley /2/.

Our definition requires thast the components be compact objects: white dwarfs, neutron stars, or black
holes. Binaries consisting of main sequence stars are not relativistic enough to have a sufficiently
short gravitational radiation evolution timescale. During all but the very late stages of the
evolution of systems containing neutron stars and/or black holes, the orbital motion can be very
accurately modelled as a Newtonian point-mass binary, with gravitational radiation reaction as given
by the ‘quadrupole formula' /3/. In most circumstances it is also permissible to take the orbital
eccentricity of the model equal to zero, since gravitational radiation reduces the eccentricity
faster than it does the orbital radius. This model gives the following basic equations describing
the gravitational waves from a system consisting of two objects with total mass M x M, and reduced
mass g * M,, at a distance r x 10 kpc, whose quadrupole radiation comes off at the frequency f x
0.1 Hz. For the amplitude we have

h = 2.58 = 10 2y w2/ 32031
max

(1. D

By h,.. we mean the largest amplitude when the system and the detector are most favourably oriented
with respect to each other. The typical r.m.s. amplitude, averaged over orientations of both the
binary system and the detector, is somewhat smaller: for an interferometric detector it is down by
/5. The timescale for decay of the orbit is given by

<= f7F = 7.97 x 108 52383 ec. - a2

Because the orbital decay accelerates so quickly, the actual lifetime is 3/8 of this timescale.
Notice that, since both h and t are measureable, one can take their product to find r: the masses M
and u drop out. This ability to measure r {s almost unique in astronomy, and it forms the basis of
a new method of determining Hubble's constant from ground-based gravitational wave observations at
xiloHertz frequencies /4,5/. However, it ts important to-'note that h itself can only be measured if

To appear in Advances ca Space Research (talk presented at Cospar XXVII, July 1988)
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the various orientation angles can be determined, and this normally requires 3 or 4 detectors to
provide enough information. if space-based detections involve, say, only a single interferometer,
then only an estimate of h end therefore of r will be possible.

i i3 clear from this that with reasonable sensitivily one could =2xgact to detect any systems
csnsisiing of white Gwaris, neutron stars or solar-mass black holes if they are in our galaxy, and
that they will oe changing in the observation time if they have a frequency higher than 0.1 Hz or
so. By rescoling the same equations to larger and more distant masses, we can See that we would
get a similar smplitude (larger by 8 factor of about 1.71) and & similar timescale (smaller by the
same factor) for a system consisting of two 10° M, black holes at a distance of 10 Gpc (cosmological
redshift considerably larger than 1) radiating at a frequency of 10-* Hz. (This ignores cosmological
redshift and curvature effects, to which I will return below.)

The signal will only stand ocut from the noise over a long integration time. If the system is not
changing in frequency significantly over the period of observation, then simple Fourier analysis will
pick it out, provided that there is no confusion with other binary systems. The signal-to—noise
ratio will be proportional to the square root of the observing pericd. If the frequency does change
significantly, then matched filtering of the data will be necessary, and the signal-to-noise ratio
will improve by the square root of t. In principle this filtering can be done in the same way as is
being planned for ground-based detection: see the articles in reference /6/. It is possible that
the background ‘noise' of other binary systeas will be reduced by e larger factor by matched
filtering than would true white noise sources, such as shot noise in an interferometer, since the
binary signals are phase-coherent over long periods of time, and not necessarily very densely spaced
in frequency.

2. KEY NUMBERS FOR COALESCING BINARIES

-~
~

The formulas in the last section help us get a rough idea of the sorts of systems we can observe.
There are a few useful numbers that discriminate among importent regimes of detection.

Given an observing time T x 107 sec, what 1is the frequency feouiescing of a system whose remaining
lifetime equals T? This is a system that can be followed all the way to coalescence in the time of
observation, using of course ground-based detectors if necessary for the higher frequencies in the
late stages of coalescence. The critical frequency is:

-3/8 M—1/4 ~3/8

= 0.52 g T Hz. 2.1

fcoalescing

For Galactic systems, this frequency is rather too high to be accessible to many space-based
detectors. If we were ‘generous and imagined that a space—based detector could identify a system
that might coalesce in-a much longer time, say 20 years, which could then be picked up by ground-
based systems, what would the change in the critical frequency be? The wesk dependence on T means
that it only decreases to 0.11 Hz, still too high for presently planned detectors. For the
cosmological system considered above, however, the situation is brighter: the critical frequency for
two 10% M, black holes is 4.2 x 10™* Hz, a very accessible frequency.

Another important question is, what is the dividing frequency finemging between systems that change
their frequency measureably in the observation time T * 107 sec and those that do not? The key
point is that as T increases, one's frequency resolution also incresses, so that one can distinguish
frequencies separated by as little as 1/T. The critical frequency is, in the same notation,

3 P-3/11 M—Z/H T-G/ll

f = 4,07 x 10 Hz. (2.2)

changing

This is the frequency at which the system would chenge by Af = 1/T in the observing time T. This
is accessible from space, and it shows that Galactic coalescing binary systems can be identified,
even if they cannot ba followed to coalescence. (This equation is roughly equivalent to Eq. (35) of
/7/.) We will discuss below the likelihood that the Galaxy contains any such systems.

Finally, what is the highest f{requency finierncrion Of radiation we could expect a system to emit
before it is so drastically altered by the close interactions of its components that it becomes
difficult to model? A crude estimate, which omits tidal effects, is to take this upper limit to be
the point at which the components would be in contact. This limit is determined by the rodius of
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the less compact of the two components. For a system with the same parameters as before, and .
whose less compact star has a radius R x 10 km, this is

3 M1/2 -3/2

= 1.3 =10 R Hz. 2.3

r1nleruction

Clearly, one does not need to warry sbout interactions for low-frequency observations of systems
consisting of neutron stars and/or black holes, until the mass of the black hole exceeds about 10*
b I Corwerseiy, one can hope to see interaction effects if one ooserves massive black holes
coalescing. I will return to the significance of this below. If the sysiem contains a white dwarf,
its evolution will be the same as for more compact objects of the same mess until it reaches a
frequency no higher than about 0.2 Hz. Even if this cutoff is too high to be observed from space,
one might be able to see tidal effects beginning at lower frequencies. This problem has been
discussed in great detail in ref. /7/.

3. OBSERVABILITY IN VARIOUS DETECTORS

There are three space-based methods of detecting coalescing binaries that I will consider: Doppler
tracking of interplanetary spacacraft (which is already taking place, e.g. /8,9/), tha so-called

_ 'Skyhook' /10/, and an interferometric beam detector /11/.

Doppler tracking involves loocking for the changes caused by gravitational waves in the round-trip
signal-transmission time between the Earth and a spacecraft. It is broadband, down to a bit below
10-* Hz, and its past sensitivity to the amplitude h of a gravitational wave has been of the order
of 10'* for broadband bursts and 3x10-'¢ for continuous waves observed over & 4-month period. The
planned Galileo mission will be likely to improve this by an order of megnitude, and foreseeable
technical improvements could go as far as a further factor of 100. None of the long-lived
coalescing binaries (the galactic sources) would be likely to reach this continuous-wave amplitude,
unless it were among the Sun's nearest neighbors. For bursts, we must take Into account the
importance (mentioned above) of matched filtering of the output in improving the signal-to-noise
ratio. This will be important to our enalysis of the other detectors as well. For a source that is
as narrow band as a coslescing binary, the effect of filtering on a signal of amplitude h is to
enhance the signal-to-noise ratio to that which a broad-band burst of amplitude h/n would have,
where n is the number of cycles of the waveform while it remesins in the bandwidth of the detector
71,6/. In our case n is roughly fr, where t is the lifetime given in Eq.(1.2), and f is the lower
limit on the fregency of the detector. Putting this together with the maximum amplitude given in
Eq.(1.1), and demanding that the interaction frequency given in Eq.(2.3) be within the sensitivity
range, we see that only coalescing black holes of mass less then 107 M, at distances less than 100
Mpc stand a chance of being detected by the Galileo mission. Such events are not impossible, but
must be very rare in such -& small fraction of the Hubble volume. However, future technical
improvements might put such systems within reach even at interesting distances like 3-10 Gpe.
Clearly, there is strong motivation to pursue such improvements.

The Skyhook would be a fairly narrow-band detector, sensitive between 10™' and 10°? Hz to bursts at
a level of h ~ 10-'¢ and to continuous waves at h ~ 10-'* if it makes a continuous 4-month observing
run. This sensitivity, roughly comparable in amplitude to but higher in frequency than the best
that can be expected from Doppler tracking, is not likely to be adequate for galactic coalescing
binaries, nor would it allow the Skyhook to see massive black holes coalescing in its frequency
range unless their masses are below 10° M, and their distance considerably less than 500 Mpc.
Again, the prospects for this seem slim.

A beam in space, however, could have a much better sensitivity: perhaps as low as 3x10°** for
continuous waves over 4 months, and 10-?* for bursts, over a bandwidth of 107> to 107 Hz. This
would be more than adequate to detect galsctic coalescing binaries and even strong ones in the
Andromeda galaxy (M31). It would also ses coalescences of binary black holes of mass 10* - 10* M,
essentially anywhere in the observable universe. The beam in space is the instrument with the most
promise for returning useful astrophysical information from gravitational wave observations.

4. EVENT RATES AND COSMOLOGICAL CONSIDERATIONS
Although we have good reason to suspect that solar-mass coalescing binary systems exist in
ressonable numbers, it is very difficult from present astronomical observations to give a firm
estimate of their numbers. The first attempt was by Clark, et al /12/. A more up-to-date review of
the factors affecting the estimates and their uncertainties is given by Schutz /13/. The conclusion
is that binaries consisting of two neutron stars coslesce at the rate of about 1 per galaxy per 10*
years, with an uncertainty that is possibly as large as a factor of 100 either way. Similer rates
would apply to binaries consisting of one neutron star and one white dwarf. The rate for two—
white-dwarf binaries has been estimated by Evans, Iben, and Smarr /7/ to be perhaps as large as the
rate of Type-1 supernovae, which may be caused by the coalescence of two white dwarfs. This would

suggest a rate of 0.15 per galaxy per year.
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This leads to estimates of the likelihood of observing any given class of systems. For example, {f
the tuo-neutron-star rate is once per 10* years in our Galaxy, then we are unlikely to see such a
system with an age less' than 10* years, and therefore with a frequency greater than 4 x 10°? Hz
But {f the rate is 100 times larger, then the highest frequency we might observe is 2 x }0-? Hz,
well above .., agine: DUl Well below f,,ieecing: The number of systems per unit frequency increases at
low frequencies as f{-''“? /7/, so in this optimistic case we might see some 20-30 neutron-star
Systems above fcmungine that could be identified as coalescing binaries. White dwarf systems would be
far commoner. The problem for detection here 1is the confusion caused by the large number of
daistant but detectable sources. This affects mainly the low-frequency systems. All systems above
fenamging OUght to stand out from the continuum, even without allowing for the fact that their
distinctive frequency change allows them to be filtered from the background /7/. There might be
thousands of such systems detectable by a beam in space /7/. These would be indistinguishable from
neutron-star systems of similar masses unless tidal effects can be detected; but it nay well be that
there will be little overlap in the distribution of masses between neutron-star binaries and white-
dwarf binaries.

It is equally difficult to give an estimate of the coalescence rate of msssive black holes at
cosmological distances. It is popular to believe that active galactic nuclei contain supermassive
black holes in the mass range 10° - 10® M,, and there is mounting evidence that ordinary galaxies

" like our own may contain smaller black holes, perhaps 10° - 10° M,. There are several plausible

scenarios for the formation of these holes. One route might be the formation by gas—cloud collapse
of black holes of 1000 solar masses, followed by the hierarchical coalescence of larger and larger
black holes. If this were the case, then the formation of a 10° M, hole would involve a large
number of observable coalescences, and would give event rates of several per year, even if only 1
galaxy in 1000 has a supermassive black hole in it. This is the most optimistic scenario, of course,
and it may be that only gravitational wave observations from space will be able to shed light on
the question~qof the formation of these giant black holes.

When studying coalescing binary systems that are at cosmological distances, it is important to take
into account the effects of the redshift z. It can he shown that this is very simple: Egs.(l.1) &
(1.2) still apply, but the 'observed' masses B and M are (1 + z) times the true values of the masses,
as measured near the source, and the distance r is the luminosity distance. The frequency f in the
equations is the observed frequency, which 1is also redshifted from the original frequency. If a
given.system is taken to larger and larger redshifts, and if the system can be followed all the way
to coalescence, then the signal-to-noise ratio will depend on redshift to lowest nontrivial order as

SNaz P14 (B39 ) 20 “.1
. 5

Here g, is the usual deceleration parameter s14/. The 1/z dependence is just what one expects, but
the effect of going to- higher redshifts is to increase the signal-to-noise ratio above what one
would expect: in this sense, coalescing binaries are easier to detect at larger redshifts.

5. WHAT WE WOULD LEARN FROM COALESCING BINARIES

From our discussion above of the sorts of systems that would be candidates for observation, it is
clesr that very fundamental estrophysical information is available in these waves. Let us start
with the smaller, local systems first. '

An important unknown is the number and distribution (in age snd frequency) of coalescing binary
systems in our Galaxy. By the time space observations with sufficient sensitivity take place, we
should already have a good ides from ground-based detections what the typical neutron-star
coslescence rate should be, averaged over some 10¢ galaxies or more. But it is possible that
several distinct populations contribute to the rate: old systems (Populaticns II and III) that formed
with or soon after the Galaxy and whose binaries are gradually decaying, and new systems
(Population I} that are still forming precursor systems. By observing the spatial distribution of
coalescing binary systems in our Galaxy, these two populations could be distinguished, and this
would in turn tell us much about the differences between star formation now and in the remote past.
(This will not be easy to do with only one detector in space, however.) Among the coalescing
systems might be a few percent that consist of a neutron star and a black hole, and it would be
interesting to see these.

Seeing white-dwar{ binaries would be equally interesting. If their numbers correspond to a
birthrate equal to the rate of supernovae of Type I, this would be strong evidence for the idea that
they end as such supernovee. Qbservations of tidal effects in white dwarf binaries would also give
consicderable information about pre-supernova systems ond sbout accretion and mass exchange in
interacting binaries,

The cosmological systems would of course be even more dramatic. Not only would their detection
shed light on the nature and formation of active galactic nuclei and quasi~stellar objects, but they
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enough to see the nonlinear effects of general relativity on the orbit of the holes (which should
have been simulated accurately on computers by then), it will be possible to compare theory and
cbservation in the very strongest field limit. This test is also possible from ground-based
observations of two-black-hole binaries of moderate mass (10 -~ 20 M,), but these azy well not have
been observed before sensitive space-based detectors fly.

In both cases there is astrophysical information in the low-frequency gravitational waves that is
prodaoly obtainable in no other way. Let us hope that the development of space-based detectors will
make steady progress.
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Abstract

Sources of low-{requency gravitationnd rndintion are reviewed from an astrophysical point of view,
Cosmological sources include the formation of massive black holes in galactic nuclei, the capture
by such holes of ncutron stars, the coulescence of orbiting pairs of giant black holes, aud various
tneans of producing a stochastic background of gravitational waves in the eacly universe. Sources
local to our Galaxy include various kinds of close binaries and conlescing binnrics. Giravitationnl
wave sstronomy can provide informntion that no other form ol observing cun snupply: in purticulne,
the positive identification of a cosmological background originating in the early naiverse wonld be na
event as significant as the detection of the cosmic micrownve background was,

1 Introduction

Almost every speaker at this Workshop who hias discussed methods of detecting gravitational waves from
space has included a discussion of possible sources of gravitational waves at low frequencies. My aim here
is not to repeat these discussions. but to put them in their astrophysical context: why is gravitational
wave astronomy intecesting? A good source lor further reading is Thorne (1987).

{n general terms, gravitational waves open up a qualitatively new window on the nniverse. The
information they catty reflects the large-scale mass distribution of the source. on distance scales of the
same order as the gravitational wavelength. By countrast, observable clectromagnetic radiation is of much
higher frequency, and comes from small regions: atomic size for visible wavelengths. lor example. As a
consequence, astrophysical modetling of large-scale structures requires assumptions that cnable one to go
from the smail scale to the large: asswiptions of local thermodynaiic equilibrium, of houlogencity, of
syimetry, and s0 on. Gravilational waves will enable more direct modelling of the source, aud will he
complementary to electromagaetic waves wheu both are available.

1.1 A brief look at sources of high-frequency radiation

It will help us to look briefly first at sources of high-frequency gravitational waves, even though they are
of more relevance to ground- based detectors than to space-based ones. Some of them are closely related
to low-frequency sources, and if they are detected from the ground they will provide fucther incentive for
looking from space. For a review of ground-based detection, see Schutz (1988). -

Gravitational collapse

. o . . ’
Collapse to form neutron stars or black holes in the mass range 1—10Mp will radiate waves in the

frequency range 1—10 kHz, with an amplitude that depends on how much asymmctry there is in the
collapse. These collapses at least sometimes vesult in Type II supernova explosions. The tate at which
Type II supernovae occur is relatively well known, but the fraction of collapse events that produce strong
enough gravitational waves is not. Since the characteristic period of the waves is proportional to the
light-teavel time around the collapsed object, the dominant frequency scales as 1/31. For sufficiently

*Text of a taik prescnted to the NASA Workshop on Relativistic Gravitation Experiments in Space, Annapatia, M,
28-30 June 1988

large M, this source will produce low-frequency waves detectable frou space. (Sve the avticle by Srarg
in this volume.)

Coalescing binaries

This is one of the most promising sources of waves detectable from the ground, once broadbaud Laser
detectors reach their expected sensitivity. The famous 'Binary Pulsar’ PSR 1913416 is a precursor of
such a systenm: in some 103 years it will have evolved through gravitatic:..! radiation reaction into an
almost perfectly circular orbit with a period of 20 msec and a separation between the stars of about
150 km. At this point it will be a strong source of gravitational waves at 100 Hz, within the expected
observing window of laser-interferometric detectors. During the next two seconds the stars will spiral
together and coalesce; befare they coalesce, they will have emitted some 500 or so cycles of vadiation at
ever increasing {requency. Decause the signature of this radiation, or *ehirp’, is unigque and predictable. it
is possible to filter weak signals out of the noise of an interferometer. Consequently, coalescing binarics
can be seen some 25 times further away than moderately strong gravitational collapses (supernovac).
The expected event rate is very uncertain. Again, the frequency of the waves is inversely proportional to
the mass of the system, so binaries consisting of massive black holes could be detected fiom space. So,
too, might the precursor systems when the stars are still well separated, as in the present Binary Pulsar,
[ wilt return to this sousce in Section 1.2 below.

Pulsars

Pulsars emit gravitational waves if they are non-axisymmetric. The frequency of the waves will be twice
the rotation frequency of the star. We have little idea of what strength to expect from known pulsars,

but it is unlikely that any slowly rotating former pulsar would be a strong source of gravitational waves
at low frequencies.

Accreting neutron stars

Neutron stars in X-ray binaries can be spun up by accretion, possibly uatil they reach a rotation rate
at which they encounter a non-axisymmetric rotational instability. As Wagoner {(1984) has pointed ont,
further accretion will drive the instability, until it has sufficient amplitude so that the gravitational waves
that are radiated carry away as much angular momentumn as that which is being accreted. The system then
becomes a steady source of gravitational waves. Several galactic X-ray sources are candidate sources. We
do not know enough about the behavior of matter at neutron star densities to predict what the frequency
of this radiation should be. If X-ray observations — such as those proposed for the XLA satcllite (see
the talk by Woods at this meeting) — detect low-amplitude variability in X-ray sources, ground-bascd
detectors could search for the associated waves. Successful observations would be enormously iimportant

for neutron star (and hence for nuclear) physics. It is most unlikely that any of this radiation will be at
frequencies below 10 Hz. !

1.1.1 Stochastic background

There are many postulated sources of a measureable stochastic background at kiloHertz frequencics, all
of them cosmological. Perhaps the most interesting are cosmic strings, which might have acted as sceds
for galaxy formation. If they did, there is a firm prediction that the gravitational wave background
they would have produced should have an energy density of 10~7 of the closure density (Vachaspati &
Vilenkin 1985). There is no preferred frequency for this background, so the waves' spectrum should be
scale-invariant. Detection of this backgound would provide strong evidence, not only for the string madel
of galaxy formation, but also for the particle-physics theories that lead tostrings. See the talk by Mataner
at this meeting for more details on backgrounds. .. ' .

1.2 Coalescing Binaries in more detail

The interest in coalescing binarics of neutron stars or black holes is easier to understand if we write down
the formulas for the amplitude h of the gravitational waves and the timescale 7 for the coalescence of
the system, in terms of the total mass My of the system, its reduced mass g, the frequency f of the
radiation, and the distance r to the system: o '



maximum h (when the system is viewed down ihe axis)

- ~a3_M1_aya B ! 1/3}__@&’2'
hmas = 3.0 x 10”3 N Gape Nz (v )

and
coalescence timescale

Mr )3 H )Y f )~ 3sec.

28M, 0.7My’ “100Hz

ri= !. = 5.6(
f

When viewed in other directions, the binary produces a wave amplitude that is hma, times angular
factors. A network of fout broadband detectors can determine these angular factors and thereby measwre
hmc" ' . . . .
Notice that the product hmas7 depends only on r: coalescing dinaries are standard candlest 1t is
extemely difficult in astronomy to find observable systems that can provide reliable distance meastes.
Coalescing binaries ate of great interest for this reason. See the talk by Wahlquist at this meeting for
further discussion of these binaries in the context of space-based observations.

For low-frequency observing, there are two frequencies which are useful to remember. 1f onc expects
to obsetve a system consisting of two 1.44/g neutron stars for an observation period of 107sec, then the
first important number is that a binnry with an initial frequency of 0.5 Hz will just reach coalescence at
the end of the observing period. This is in some sense the optimun frequency to search for coalescing
systems at, since they are easiest to observe when they change the most in the observation period. If they
are picked up at a lower frequency, they change less dramatically in 107sec. Unfortunately, frequencies
of 0.1—1 Hz are the worst from the point of view of detector noisel The second number to keep in mind
is that if a system with the assumed masses has f < 7 x 10=2Hz, then it will not change its frequency by
a measureable amount during a 107sec observation. This frequency is roughly the dividing line between
standard binaries and coalescing binaries, from an observational point of view.

2 Sources of Low-Frequency Gravitational Waves

There is a natural division of likely sources into two categories: cosmological sources, which are strong
and distant; and galactic sources, which are local but weak.

2.1 Cosmological sources.
Formation of a giant black hole

Many astrophysicists believe that the most plausible explanation for quasats and active galactic nuclei
is that they contain massive (10%-10%My) black holes that accrete gas and stars to fuel their activity.
There is growing evidence that even so-called 'normsl’ galaxies like our own and Andromeda (M31)
contain black holes of modest size (109-108A{5) in their nuclei (Blandford 1987). It is not clear how such
holes form, but if they form by the rapid collapse of a cluster of stars or of a single supermassive star,
then with a modest degree of non-symmetry in the collapse they could produce amplitudes h ~ 10-18
- 10~'2 in the low frequency range observable from space. If a detector had a spectral noise deusity of
10~Hz~Y? (see the talk by Bender at this meeting — this might be a conservative figure), then such
events could have signal-to-noise ratios (S/N) of as much as 1000. This strong a signal would peemit a
detailed study of the event. If every galaxy has one such black hole formed in this way, then there cou‘ld
be one event per year in a detector. If no such events are seen, then either giant black holes do not exist
or_they form much more gradually or with good spherical symmetry. 4

Star falling into a giant black hole

If black holes power active galactic nuclei, they do so by swallowing stars and gas. Occasionally, nentron
stars should fall into them.” Neutron stars are compact enough not to be disrupted by tidal forces before
teaching the horizon, so they will give a coherent gravitational wave burat with a frequency similar to
that which the black hole gave off when it formed. Fairly reliable numerical calculations of this radiation
exist (sec Thorne 1987 for references), and they suggest that an event in the Virgo Cluster of galaxies

would give an amplitude h ~ 10~2! and S/N ~ 10. The event rate, however, is very uncertain: althouglh
the Virgo Cluster contains over 1000 galaxies, their central black holes are quicscent and may hy naw
hava alteady consurmned all the stars that are in orbits that take them near to the hole.

Coalescence of giant black holes.

iIf two black holes of mass 1051‘1@ or more collide and coalesce, they will emit radiation which is at
least as strong as we have suggested above for the formation of such holes. The waveform would have a
characteristic signature, from which one could identify the event with some confidence. Such collisions
could result from the merger of two galaxies that both contain black holes. Merged galaxies are nat
uncommon, especially in the centers of clusters; after the merger, dynamical friction could hring bath
holes to the center, where they would coalesce. Alternatively, it might be that giant black holes in the
centers of galaxies themselves form, not be a single collapse, but by a sort of hierarchical merger of smaller
black holes. Again, the event rate is very uncertain, but the events would be strong, S/V ~ 1000,

Stochastic background of cosmological origin

Gravitational waves having frequencies below 10~?Hz today may be redshifted relics of waves emitted
in much earlier phases of the Big Bang. Sce Matzner's talk at this meeting for a full discussion of the
different mechanisms which might produce such waves. Among the most interesting observationally are
inhomogencitics associated with inflation, which might produce a scale-invariant spectrum with a spectral
density ~ 10~7Hz~ /2 at 10~* Hz; and eacly anisotropies, which might produce a 'line’ of radiation at
about 10~%Hz, with spectral density 10~2°Hz~'/2. If these backgrounds could be detected and identified
by their spectrum, they would provide the most direct evidence that the early universe was dominated
by the sort of particle physics eflects that are fashionable but speculative in modern cosmological theory:
inflation, spontaneous symmetry breaking, cosmic strings, and so on. The implications for cosmalogy
and physics as a whole would be fully as significant as the discovery of the cosmic microwave backgronnd
was 25 years ago. Clearly, this is one of the most important gravitational wave experiments possible from
space. But it may not be easy, since as we will see below there are other backgrounds due to binary stacs
that could obscure any cosmological background.

2.2 Galactic sources
Coalescing binary precursors

If observing from space is confined to frequencies below 0.1 Hz, then our earlier discussion of coalcscing

* binaries in Section 1.1 makes it clear that no solar-mass systems will be discovered that can be followed all

the way to coalescence. However, it should be possible to see some precursors either as ordinary hinaries
(i-e., below 7 x 1073Hz). The Binary Pulsar system itself will be just detectable at about 10="Hz if the
spectral noise density of the detector is 10~3°Hz~!/2, Because pulsar radiation is beamed, it isJikely that
there are similar systems even closer Lo us that we do not observe because their beams are poiuted in
the wrong direction. If the nearest is 2 kpc away, then it might give S/N ~ 10 if it is favorable oriented
with respect to the detector. A precursor with a frequency of 10-3Hz could be seen as far away as the
Andromeda galaxy (M31) with S/ ~ 10. Since the number of precursor systems is very uncertain (see

Schutz 1988), there is a good possibility that such a system, with a lifetime of oaly 104 years, would be
seen. :

Close white-dwarf binaries

Systems like this are associated with cataclysmic variables, Type I supeinovae, and especiallywith models
of the formation of isolated millisecond pulsars by the coalescence and subsequent collapse of the two
white dwarfs. They are more numerous than neutron-star binaries, so the nearest may be cousiderably
closer, with a 5/N ~ 100 or more in a 10~2°Hz /2 detector.

Individual binaries

A number of nearby binary systems are known which produce radiation that is strong enough to be

. observed by space-based detectors. See Thorne (1987) and references therein for a list. This is one of the
_ fow certain sources of gravitational waves at these frequencies.




o

Background noise from binaries

Another certain source is the vast number of ordinary binary sytems, whose radiation reaches us from
random directions and at random frequency. A single space-based decector will have lictle directional
resolution, so below about 10%Hz it will be receiving waves from s0 many systems that they will be more
closely spaced in frequency than the frequency resolution one can obtain in a 107sec observing run. (Sce
Thorne 1987 or the talk by Bender at this meeting for details of the expected spectrum.) This background
is of interest in its own right, since detecting it would give a measure of the distribution of periods in
the binary population of the Galaxy. But it can also be a nuisance, obscuring other interesting sources.
There are at least two possible ways to beat this noise. Oue is to obtain directional information about
the gravitational waves, for example by fiying two detectors. In any given solid angle, the confusion
caused by the background will be reduced by the ratio of the solid angle to 4x. The second method is
to make use of the fact that the 'noise’ produced by these binaries is not true white noise: at auy single
frequency the amplitude is constant and the phase remains coherent over the observing period, since it
is just the signal of a single binary system. This property may make it easier io filter for signals that
do not have constant frequency, such as black-hole bursts or waves from relatively massive coalescencing
binaries, since the 'noise’ is not really stochastic.

3 Conclusion

There are a great variety of possible sources of gravitational waves at milliHertz frequencics. Some are
rather speculative and some are essentially certain, considerably rore certain in fact than any of the
postulated sources detectable by ground-based detectors. Observations of or even good upper limits on
some of these sources would contribute valuable information to astrophysical modelling of different types
of binary star systems, ncutrou stars, quasars, active galaxies, and the eatly universe. In particular, the
discovery of a gravitational wave background of cosmological origin would be of the greatest significance to
astronomy and physics. Despite the great difficulties involved in building sensilive space-basel detectors,
the possible scientific returns make a strong case for going ahead with them.
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GRAVITATIONAL RADIATION
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Abstract

In this talk [ will review the present status and plans of gravitational wave detector groups and
the current thinking about important likely sources of gravitational waves. By the middle gf next
year, several groups should have instrumented cryogenic bar detectors for continuous observing; these
have sufficient sensilivity to detect or set interesting limits on gravitational waves from supernova
explosions in our Galaxy. The next generation of ultracryogenic bars is under development. Laser
interferometric detectors can match present cryogenic bars in sensitivity, but not in long-timescale
operation, and laser groups ace concentrating on developing their plans for kilometer-scale detectors.
Such plans are well advanced in several countsies, and & oumber of projects may be approved by the
next Texos Symposium, These large laser intetferometers are being designed to reach a sensitivity
of h = 10" over & broad bandwidth, and this improvement over the old goal of 107! has bronght
about a revolution in our thinking about whal sources arc likely to be detected. Supernovae and
other gravitational collapses are still importunt sources, and even moderaiely strong events (with
0.01Mpc® geavitational wave energy) might be detected at 60 Mpc. Even given the great uncertainty
we presently have aboul the likely strength of eadiation from such sources, prospects are very good
for detecling at least a few per year. Prospects are even better for detecling coalescences ol compact-
object binsries. Becausc il is possible 1o apply pattern-malching techniques Lo the snalysis of the dats,
it will be possible to detect neutron-star conlescences out a3 far as 1 Gpc, i.c. out to redshilts of 0.1
to 0.2. Moreover, coalescing binaties are standard candles: observations with & worldwide network of
detectors can determine the distance to a coalescing binary directly. The astrophysical consequences
of this are considerable: one can conlemplate measuremeats of Hubble's constant, statistical studies
of the distribution of stars at moderate cosmological distances, and the direct identification of black
holes in coalescence events. Other soutces are also interesting: all-sky searches for nearby uaknown
pulsars will be possible, and interesting limits should be set on a possible stochastic background of
gravitational waves. The timescale for the development of laser interferometric detectors is rather
long, however, so for the next five years at least, bar detectors, operating in conjunction with neutrino
detectors, provide the best chances of » first reliably confirmed detection of gtavitational waves.
While detectors are being developed, there are a number of astrophysical questions about possible
gravitational wave sources that need to be answered.

1 Introduction

Talks on gravitational radiation at previous Texas Symposia have spanned a wide raage of subjects, from
efforts to detect gravitational waves ta the mathematical questions concerning the quadrupole formula
and the equations of motion of radiating systems. In this talk I have chosen to concentrate on detectors
and likely sources, partly because that is where my own interests lie at the moment, but mostly because
of the great deal of activity these subjects have seen in tecent years, which has led to many developments
that are not as well known as they should be in the relativity and astrophysics communities.

In concentrating on detactors and sources, I am ignoring other active areas of the subject. The “quadru-
pole controversy” that began in the late 1970°s (see ¢.g. Ehlers, et al, 1976 or the Texas Symposium talk on
the subject ten years ago, Ehlers 1980) has largely abated, many independent approaches having confirmed
the validity of the formula in the Newtonian limit (Damour 1987, Balbinski ct al 1985). Nevertheless,
there is a great deal of work on equations of motion, for example, eapecially with reference to relativistic
binary systems (see Damour 1987).

Based on & talk given at the 14'® Texas Symposium on Relativistic Astrophysics, Dallas, Texss, December 1988
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Another area that I will not be able to cover is that of numerical relativity, which is crucially important
to the reliable calculation of source strengths. A comprehensive review of that subject would require a
full lecture of its own. The field is developing in two directions: (i) to re-do with better accuracy and
more physics the eaclier spherical and axisymmetric calculations of black-hole collisions and gravitational
collapse; and (ii) to push ou to fully three-dimensional calculations in general relativity. For more details
see the proceedings of the recent workshop at the National Center for Supercomputer Applications {Evans,
et al, 1989).

Instead, what I will be concentrating on are recent progress in detector development and the conse-
quent broadening of our horizons with regard to what sources we believe we shall be able to see. For
comprehensive reviews in greater depth, see Thorne (1987), Schutz (1989a), and Blair (1989).

2 Detectors, Present and Planned

2.1 Bar Detectors

Bar detectors have been under development since Weber's pioneering efforts that began in the iate 1950,
Present bars operate with a sensitivity of a few times 10~ !, and bars now under development could push
that to 10=29, At that point they will be close to their quantum limit, and further progress will require
either beating that limit (see Caves et al 1980) or new designs incorporating new materials, about which
1 will say a little below.

The present status of bar detector groups is summarized in Table (1). There are three kinds of bars in
operation today: )

¢ Room temperature bars. These bave typical sensitivity of ~ 3 x 10=17 or worse. The only detectors
taking data at the time of SN1987a were the room-temperature bars at Rome and Maryland.
Pizzella will speak about those observations later in this meeting.

Torsion pendulum. Detectors of this type have been constructed at Tokyo to look for radiation from
the Crab Nebula pulsar. Consisting of two large masses connected by a torsion fiber, they can be
tuned to a lower frequency than solid bars can reach. Current published limits on the gravitational
radiation from the Crab are about 10-1, ) )

Cryogenic bars. Cooled to 4.2 K, these can reach as low as 10~'8, There have becn several
coincidence experiments with these detectors, the most extensive of which was the recent three-way
experiment of L.S.U.-Rome-Stanford, which set a limit of 7.5 x 10~18 on bursts during a limited
period of time. Unfortunately, none of the groups developing these antennas was funded well
enough for them to have two detectors, one to take data and the other as a development testbed.
Consequently, when SN1987a went off, only the one in Perth was actually cooled down, and that
one was not taking data because of excess noise problems. This situation is being rectified. By
early 1989, the bars at Stanford, Rome, and Perth should be cooled down and taking data. The
L.S.U. bar, which in late 1988 completed a six-month run at 4.2 K, may join them later. Figure
(1) shows a short stretch of data from that run. The groups are linked by the observing network
called GRAVNET, which will coordinate the analysis of data.

Cryogenic bars can be very frustrating to work oan. It takes a month or more to cool one down, and

if anything is wrong or needs changing, it may take a further month to warm it back up. Progress is

therefore necessarily a matter of patient, steady development. ’,
’

A typical summary of the data taken by a bar detector is in Fig. (1). The number of events per unit energy
interval is plotted against their energy. The curve follows the expected thermal distribution for an effective
noise temperature of 103 mK, except for a very few high-energy events. This is characteristic of both
bar and laser interferometer detectors, that there is always a small number of non-Gaussian, unmodelled
noise events. Coincidence experiments are necessary to exclude these. The noise temperature is much
lower than the bar temperature because measurements are being made on the state of the mode over

The active bar-detector goués

Institution

Room-temperature

Torsion | Cryogenic | Ultracryogenic

Stanford U.

Louisiana State U.

U. of Maryland

U. of Rome

U. W. Australia (Perth)
Moscow State U,

Tokyo U.

China ( & Beijing)
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Table 1: Summary of the facilities developed at and planned for the active bar-detector groups.

LSU Detector — 1988 ~ UTC 259/00:00 - 24:00 {Sept15). |

E—; = 93 mK

1051

105}

104

1034

meoldeZ

102}

101}

None

~4—————— Langevin forces from the transducer

Calculated distribution due to

and amplifiernaise. T, = 103 mK

Impulse Energy
19}

* 0

[ 3]

: E
1
4

-y

W

f

e

he =24 x10"

15

ne 10y |

. c e
be . —1— j WD) &%t a

1msec

;allad 'conventional pulse m;ﬂihde'

Figure 1: Data taken by the L.5.U. detector during one day of operation. See text for discussion.




timescales short compared to the time Q/w it takes a mode with frequency w to exchange thermal energy
with the rest of the bar.

For the immediate future, several groups have plans for ultra-cryogenic bars, reaching temperatures of
100 mK or less. Stanford expects to take delivery of its new refrigerator in carly 1989, and Rome began
constructing theic milliKelvin bar in 1988. Similar plans exist at Maryland and L.S.U. By 1991-2 we
may see bars operating with sensitivity at the 1019 = 1077 level.

It is very important for astrophysics that these developments go ahead without damaging the efforts to
keep the 4.2 K bars on the air. For at least the next 5 years, bars will be our only gravitational wave
detection system, and there is at least a fair chance that there will be a gravitational collapse in our
Galaxy in that time. Operating in coincidence with neutrino detectors, cryogenic bars would have an
excellent chance of seeing gravitational radiation from such an event.

In the more distant future, the prospects for making measurements below the quantum limit, although
in principle possible, do not seem encouraging at this time. But it may be possible ® build bars whose
quantum limit is considerably lower, near to 10~33 (W. Faisbank, private communication). These might
be made of materials with a higher speed of sound, such as silicon carbide, allowing a larger size for a
given tesonant frequency. These might take bars into the same sensitivity tegime as the planned laser
interferometric detectors, although with much narrower bandwidth.

2.2 Laser Interferometric Detectors

The idea of using laset interferometers to detect gravitational radiation also goes back to Weber, who did
not pursue it because of the limitations of the technology of the time. The first working interferometer for
gravitational wave detection was built by R.L. Forward and associates at Hughes Rescarch Laboratories
(Moss, et al, 1971; Forward & Moss 1972; Forward 1978). Developments in laser and mirror technology,
allied to clever ideas for the optical configuration of the detectors (such as various forms of recycling,
as described by Drever 1983, Vinet ¢t al 1988, and Meers 1988), have greatly enhanced the potential
sensitivity of these instrumeats.

Current designs are based on arm lengths of 3-4 km. Roughly speaking, they would be built in two
stages. The first stage would aim at a sensitivity of about 10~3! over a 1 kHz bandwidth. The second
stage would implement mote sophisticated optical techniques, leading to noise levels of h ~ 10-%2,

In addition, there is every expectation thai the final-stage interferometers should be able to achieve good
isolation from seismic noise down at least to 100 Hz, and possibly as low as 10 Hz. This low-frequency
observing window, coupled with the enhanced sensitivity, has made it possible to contemplate detecting
a much wider range of sources than one envisioned with bar detectors. The most exciting “new” source
is the coalescing binary, which I will discuss in detail below. '

The present status of laser interferometric detectors is summarized in Table (2). Working prototypes
with arm lengths in the range 10-40 m have been constructed at Glasgow, Munich, Caltech, and recently
in Japan. The sensitivity of the Glasgow detector is displayed in Figure (2). The flat spectrum is what
detectoe groups hope to achieve over a widet bandwidth in full-scale detectors. The vertical units indicate
the actual displacement being measured. To convert to an accuracy in A, multiply by the square root of
the bandwidth of the expected signal (say 1000 Hz) and divide by the arm length (10 m). This gives &
sensitivity of h ~ 4 x 1018, comparable to the cryogenic bars. This is the best displacement sensitivity
of any interferometer at present, but the Munich detector has bettér h sensitivity because of its longer
arm length. :

Special-purpose interferometers, designed to atudy patticular technical problems in this area, have been
built at M.LT., Paris, and Pisa. In the U.S.S.R., plans ate being made to convert a lot-sensitivity
interferometer built for geophysical purposes into a sensitive gravitational wave laser interferometer.
Various detectors have made observing runs of limited duration, and a coincidence experiment lasting
about one week is planned for early 1989 by Glasgow and Munich. There are no plans to run continuously,
as the bars intend, because (i) the prototype interferometers are engineering testbeds for the large-scale
detectors and cannot be left alone to take data for long periods, and (ii) laser interferometers are difficult
systems to keep locked onto a fringe, and this must be done essentially by hand at the momeat. Part of
the design effort for large-scale detector will go into their control systems, but this considerable effort is

The active laser interferometer groups

Institution Protatype | Special Purpose | Plan for Full-Scale Project
Calif. Inst. of Tech. Vv - v
Mass. Inst. of Tech. - Vv v
U. Glasgow v - v
Max Planck Q. Opt. Munich v - v
L.N.F.N. Pisa - Vv v
C.N.R.S. Orsay—Paris - v v
U. W. Australia (Perth) - - v
Tokyo Vv - v
India - - Vv
U.S.S.R. - / J

Table 2: Summary of the facilities developed at and planned for the active laser interferometric-detector
groups.

no:llfkely to b.e devoted to the prototypes. This means that until the large-scale projects are ;:onstructcd
and in operation, Lthe only systems capable of sustained operation will be the bar detectors.

Regarding future plans, the American project is presently (December 1988) engaged in a design exercise
and expects to submit its fully costed proposal for two detectors to the National Science Foundation ixi
'Autumn 198.9. If approved, it could start in 1990. In other countries, the large cost of these instruments
is a spur to m.teruational collaboration. In the U.K., there is a commitment of about 25% of the mone

required to build a detector, and discussions with possible partners in other countries are actively under}:
way. A 1990 start to ."hia project does also does not seem unrcalistic, provided a suitable partner can be
found. In Itialy t.h_ere is also a sum slightly larger than the British funding committed to the project, and
a collaboration with Franc'e is likely. That detector would be built in Pisa. Other countries have en’tered
thg field recently: Australia, I.ndi.a, and Japan may well enter into partnerships with other countries to
build detectors. From the scientific point of view, the more detectors the better. At least three and
preferably. four are required to reconstruct the gravitational wave completely, giving its intrinsic ampli-
tude and its position on the sky. More detectors operating in coincidence will allow all the detect pt

set lower thresholds against noise and thereby to see further away. oo

2.3 Space-based Detectors

I will m?t bave much time to discuss detection of gravitational waves from space, but a few words ar
appropnat? here.‘ Methods presently used include tracking of interplanetary spacec;aft and pulsar timin; ;
Transponding to interplanetary spacecraft is sensitive to low-frequency gravitational waves, i.¢. from 10"3‘.
to 10-7Hz, Ty.pically this method is sensitive at the level A ~ 10=13, but this may impr,owje .l;y a facto:
of 10 or more in the near future. (See articles in Hellings 1989.) Laser tracking could improve this t;

the level at which it would be likely to see the formation of gi o in the.
4 ant 1090 bl .
galaxies. See Thorne (1987) for a recent review. ’ o black holes ia the.ceaters of

Pulsar timing is & technique for detecting a stochastic background of gravitational wav illi
pulsar PSB: 1?37+214 is so stable that from the absence of gbig ﬂuctu:tions in its appa:;f:r;iiﬁlt:: (c)::
set upper lm'utf on the gravitational wave field the signals are passing through. This is most sensitive ¢
waves with periods of the order of the time of observation. The present limit is that these waves con:ai:
an energy not mote than 10~% of the cosmological closure density (Thorne 1987), tantalizingly close to
th‘e dcfmty of 107 predicted by cosmic string theory if strings seed galaxy formation (Vachaspati &
Vilenkin 1985). This limit should improve with time, but the extent to which it does will depend on
wh?ther Earth-based clocks can be made stable enough to measure (or limit) Aluctuations in the pulsar’s
penofi. At the moment, the pulsar is just about as stable as any man-made clock. Discovery of apsecond
or third very stable millisecond pulsar would dramatically change the situation, and would allow the
pulsars to be used as an “interferometer” for the detection of very-low-frequency radiation.

f& technique fo.r the future tlfat has been very seriously studied is the possibility of putting a laser
interferometer in space. Consisting of three independent spacecraft arranged in an L-shape with arma
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Figure 2: The noise petformance of the Glasgow prototype in mid-1988.

of the order of 10~® km, it might sit in the Earth’s orbit about the Sun at some distance from the
Earth. With realistic laser power, it could reach a sensitivity of 10~32 over a bandwidth of 10-4-10-3
Hz. This would suffice to detect many galactic binaries, including the radiation from the Binary Pulsar

PSR1913-+16, as well as interesting cosmological sources, such as the formation of massive black holes in
the centers of quasars.

3 Sources of Gravitational Waves

3.1 Supernovae and Gravitational Collapse

Supernovae have always been the source that detector builders aimed to detect; as the most violent
event in our corner of the universe, it seemed the most likely candidate for detection. While coalescing
binaries have to some extent displaced supernovae as the “most likely” source, at least for the laser
interferometers, supernovae are still extremely important sources, particularly for the observing network
of cryogenic bars in the uext five years or more. Observations of supernovae, or of a gravitational
collapse that is not accompanied by a strong electromagnetic outburst, would be extremely interesting
for astrophysics. There is considerable uncertainty about the likely strength of gravitational waves from
a supernova, and I will discuss this below. But first it is useful to see what sort of range detectors would
bave for a source of a given strength.

I will characterize the source by the total energy radiated in gravitational waves during approximatcfy one
millisecond; for both 1My neutron stats and 10Mg black holes, this is the timescale of the biggest burst.
Some kinds of gravitational collapses may give strong wave-trains of much longer duration; provided that
numerical calculations can provide us with predicted waveforms that we can use for pattern matching,
such collapses may be even easier to detect than simple bursts of the same total energy. (This is because
the radiation is likely to come out at a lower frequency: see Schutz 1989b for the reason why frequency
matters.} I will consider two types of burst, which I will call stzong and moderate.

.~

» Strong bursts contain (by definition) about 0.1M;c? of energy in the gravitational waves. This is
as much as any theorist might hope for from the formation of a neutron star, but it is a much more
modest amount of energy to extract from a collapse that forms a 10Mg black hole. Such a burst
would have an amplitude of

h =6 x 10~ in our Galaxy, 1)

which could be seen by the cryogenic bars, or

h = 4 x 10~*in the Virgo cluster, . (2)

which would be visible to the first-stage laser interferometers.

*

A maderate burst has, by my definition, ten times less energy: 0.01Mgc?, This is not an unrea~
sonable amount of energy to come from a highly non-axisymmetric rotating collapse that forms
a neutron star: the binding encrgy released is ten times larger, so this can easily be fit into the
energy budget. If a 10Mg black bole is formed, the “moderate” burst is not very much more than
axisymmetric collapses might generate. Its amplitude is down by roughly a factor of 3 from that of
a strong burst, and in particular

h =4 x 10~*at a distance of 60 Mpc. (3)

This would be strong enough to be seen by laser interferometers when they achieve their design goals,
Moreover, a network of detectors could measure locations on the sky to an accuracy of 1° or better
(Gursel and Tinto 1989), This distance is at least three times larger than that to the Virgo cluster,
which has commonly been regarded as the minimum distance for obtaining an interesting event
rate. In this volume of space Lhere are several stachurst galaxics, where star formation and hence
presumably supernovae are occurring at a much higher rate than in most galaxies. There might
well be thousands of supernovae per year in the volume out to 60 Mpe. The nearest “starburst”
galaxy, M82, is only 3 Mpc away, and has a supernova once every few years (Kronberg, et al, 1985).

Now it is time to return to the uncertainties surrounding supernovae as gravitational wave sources, which
arise because a perfectly spherically symmetric collapse would produce no gravitational radiation at all.
In order for a Type II supernova to produce even a moderate burst of radiation, the collapsing core must
presumably become very asymmetric. The most plausible candidate for producing asymmetry is rotation.
If the collapsing core contains enough angular momentum to make rotation dynamically dominant when
it reaches neutron-star densities (and this is not much angular momentum — the Sun has much more
than this), then the non-axisymmetric “bar mode” instability may be excited, and the resulting tumbling
cigar-shaped core would be a strong source of gravitational waves. :

There are two problems making this scenatio quantitative. The first is that numerical calculations are

.. not yet good enough to predict how much radiation will come from a core with a given amount of

angular momentum. As computers improve, this problem will probably be solved, but it will not be
easy: detailed guclear physics and neutrino transport need to be included. A first step in this direction
is described by Bludman in his talk at this Symposium. The second problem is that we don’t know what
initial counditions are likely: how much rotation does the pre-collapse degenerate core typically have?
Observations of pulsars suggest that they may be formed with relatively slow rotation rates: the Crab
pulsar is young and may never have been rotating near to its breakup velocity. This argues that there
is little rotation in a collapsing core. On the other hand, SN1987a offers some suggestion that rotation
may have been important in its collapse: polarization measurements (Cropper, et al, 1988) Suggest that
the expanding cloud has an elliptical shape, and the axis of the ellipse lines up with the direction to
the mysterious “spot” that appeared in speckle photographs (Meikle, et sl 1987; Nisenson, et al, 1987).
Rotation must be a strong candidate for the mechanism that produces these alignments.

There are other important questions that need more work before they can be answered. The radiation that
can be expected from Type I supernovae is also uncertain; if the exploding star completely disintegrates,
then none can be expected. But if occasionally a neutron “cinder” is left bebind, then the original star
probably has enough angular momentum to produce a strongly deformed core.

-



Another question is whether there are electromagnetically quiet collapses: do all gravitational collapses
tesult in visible supcrnovae? The statistics of stellar births, deaths, supernovae, and pulsars are not
good enough to exclude this possibility. On theoretical grounds, there is some reason to think that quiet
collapses may be common. Current successful Type II supernova models are delicately balanced: the
escaping neutrinos provide only just enongh energy to power the shock outwards through the envelope
and blow off the envelope. If one has a strongly rotating collapse, the lower core densities and longer
timescale may weaken the shock and prevent it from blowing off the outer shell. There could therefore
be an anticorrelation between elcctromagnetic and gravitational radiation intensities from a gravitational
collapse: the strongest gravitational wave emitters may have the weakest explosions, and may therefore
even go on to form black holes.

It may be that ouly gravitational wave observations of supernovae will settle some of these questions.
But it would surprise me if the answers conspired to give no observations of bursts in laser interferometer
detectors. Of all the supernovae out to 60 Mpc, if even only one percent produce moderate bursts, the
network could zegister tens of events per year. And stroug bursts could be seen to nearly 200 Mpe. There
may be hundreds of black holes like Cygnus X-1 formed per year in that volume. a

3.2 Gravitational Waves from SN1987a

It is one of the great frustrations of gravitational wave astronomers that the cryogenic bars were not
taking data at the time of the supernova. What sort of waves would have been expected? Even if the
burst was exceptionally strong, say 1.0Mpc? of energy in the radiation itself, its amplitude would have
been only about A ~ 5 x 1013, just within range of the cryogenic bars. The room-temperature bars at
Rome and Maryland were sensitive at about 3 x 10~17, No significant coincidences have been reported
between them at the time of the supernova (as defined by the time of arrival of the bursts of neutrinos
in any of the ncutrino detectors).

However, it has been reported that there were excess correlations between events in the nentrino detectors
and the excitation of the bar detectors 1.2 s before cach neutrino event, over a two-hour period including
the supernova, and Pizzella describes the latest results on that elsewhere in this volume. I will remark
here only that if these events are gravitational waves from the Large Magellanic Cloud, then even at
the 10 level in a 3 x 10~17 detector, each event would represent the release of about 40Mpc? of energy
in gravitational radiation. They therefore cannot be gravitational waves if general relativity is correct
and their source is physically associated with the supernova. Other plausible theories of gravity can be
excluded as well (de Rujula 1989). ' '

3.3 Coalescing Compact-Object Binaries

In its final moments some 102 years from now, the “Binary Pulsar” PSR 1913416 will be a pair of neutron
stars in a perfectly circular orbit that is decaying rapidly because of gravitational radiation reaction. The
orbit is well approximated as a simple Newtonian point-particle orbit with quadrupole radiation reaction
(Peters & Mathews 1963). Tidal, post-Newtonian or other effects do not begin to make it deviate from

this behavior until the gravitational waves have a frequency of some 500 Hz or so (Clark & Eardley 1977,
Krolak & Schutz 1987).

As was first pointed out in a remarkable early paper by Forward & Berman (1967), these sources are good
candidates for detection by broad-band detectors. The energy carried off by the waves from the orbit
will be enormous: some 6 x 10™3Myc? as the radiation frequency rises from 100 to 200 Hz. Moreover,
the very predictable wavetrain allows matched filtering to be applied to the data, which allows one to dig
into the noise and see these systems at very great distances.

The maximum amplitude is along the axis of the orbital angular momentum. These gravitational waves
have amplitude

= ~2ay_Mr 33 __H f a3, 100Mpc
hmes = 3.6 x 10 (2.8M0) (0.7M@)(100Hz) (=) )

where My is the total mass and u the reduced mass of the binary. The amplitude in other directions is
reduced by angular factors of order 1, and the detected amplitude is further reduced by antenna-patiern

.

effects. With a network of three or four laser interferometers it will be possible to unravel these angular
factors and reconstruct Amay from the observations. ‘

The orbit decays due to gravitational radiation reaction, and the orbital period decreases. The formal
coalescence timescale is given by

=t Mr s B
mi= 7= 58 Gy

The true time to coalescence is 3/8 of this. If we look at these two equations, we see that the way that the
(generally unknown) stellar masses enter the relations is the same in both cases. Therefore, the product
of the two observables is independent of the masses: hpq; 7 depends only on r, the distance to the binary
(Schutz 1086). Coalescing binaries ate thetefore standard candles, and this makes them useful for many
purposes, including the determination of Hubble’s constant (Schutz 1986). I will return to this below,

[ _\-313
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Couversely, detection of the coalescing binary does not determine the individual masses of the stars. It
only tells us the mass parameter of the system, defined by:

M= mglam‘;’/s/(mp}-mz)'/“, N (8)

or equivalently by the more transparent formula,

M3 = 32, ' )

Only if the signal is strong enough to detect post-Newtonian orbital effects in the waveform will it be
possible to determine the individual stellar masses (Krolak & Schutz 1987),

By using pattern-matching techniques, it should be possible for the second-stage laser interferometers to
detect coalescing binaries out as far as 1 Gpc, where the cosmological redshift is 0.1-0.2 (Thorne 1987,
Krolak 1989). A network of four detectors would detect 5-10% of all the sources in this volume (Tinto
1989).

As with gravitational collapse, there are considerable uncertainties about coalescing binaries as gravita-
tional wave sources. The most important is their event rate. An early estimate suggested there would
be 3 per year out to 100 Mpc (Clark, et al 1979). If we extrapolate this to our expected range of 1 Gpe,
and allow for the fraction we expect to detect, we find that this gives an event rate in the network of
detectors of 150-300 per year.

But the Clark, et al, event rate is based on a number of assumptions, not least of which is that the
one coalescing binary precursor system that we do observe — the Binary Pulsar — is representative of
its class. We would learn much more about the event rate if we could discover other precursors. In
this connection, the recently discovered binary pulsar in the globular cluster 47 Tuc is potentially very
important (Ables, ¢! al 1988); but we must await confirmed measurements of the orbital elements and
their rates of change. At the moment, I would estirnate that it would be fair to say that the event rate
is uncertain by a factor of 10-100 either way. Even the pessimistic lower bound would give a few events
per year in a network of detectors. This is why I feel that coalescing binaries are the most likely source
that laser interferometers will detect in the long run.

Another approach to understanding coalescing binaries is to study their evolutionary history. Bow many
binary evolutionary paths could lead to systems with two compact objects close enough to have an orbital
lifetime less than 101 years? What fraction of them could contain black holes of 10Mg or more? If the
fraction of compact X-ray binaries in our Galaxy that have black oles is typical of coalescing binary
precursors, then perhaps 1% of coalescences would involve a neutron star and a black hole, while 10-4
might involve two black holes. Since systems with two 14Mg black holes could be seen roughly ten times

- further away than two-neutron-star systems, they could account for as much as ten percent of the total

number of systems detected. Another question concerning the formation of coalescing binary precursors
is whether conditions in evolved globular clusters lead to the formation of such systems more often than
in the disk of the Galaxy. It is interesting that 47 Tuc is one of the most centrally condensed clusters, and
it may have just undergone central core collapae and reheating by the formation of a few dozen binary
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stars. If a good fraction of globular clusters go through this cycle many times, how often will coalescing
binary precuzsors be formed?

It might be possible to get further information about coalescing binaries if we knew what the coalescence
event looked like in electromagnetic radiation. An interesting suggestion by Blinnikov et al (1984) is that
in a system with unequal-mass neutron stars, the more massive star will strip the less massive one, and
this will go on until the less massive one reaches the minimum mass of a neutron star, about 0.1Mg. At
this point the small neutron star is unbound and will explode. What will this explosion look like? Will it
look like a weak Type I supernova? Will it give a detectable X- or gamma-ray burst? What will happen
to the primary star? If it'accepts all the mass shed by the secondary, it may exceed the upper limit on
the mass of a neutron star, and it may collapse to a black hole. Theoretical study of these questions
could shed considerable light oo the question of whether coalescing binaries will be detected frequently
ot at all,

If coalescing hinaries are detected at the rate predicted by Clark, et al, then they become veY interesting
for astronomy:

Nearby events (within 100 Mpc) could be used to determine Hubble’s constant with an accuracy
of a few percent. Our recent estimates of the accuracy of the angular positions that a network will
be able to infer aze much better than I assumed when [ first suggested this method (Schutz 1986).
It may take only a handful of events to pin down Hg this way.

If we detect a few hundred events per year from 500 Mpc and beyond, each with a distance and
an angular position, we can do statistical studies of the stellar distribution on scales not heretofore
possible. Gravitational waves are not obscured by any intervening matter, so they represent an
ideal survey medium.

s Each coalescing binary event gives us a measure of the masses of the component stars, the mass

patameter M = “3/5511’,/“_ Statistical studies of this could help us infer the neutron star mass
function.

o Coalescences involving black holes could be the most reliable method available for positive identifi-
cation of black holes. Those involving two black holes can be modeled by computers, and therefore
provide a test of general relativity.

o Coalescences of two black holes seen at z ~ 1.0 are bound to give us new statistical information
about conditions at that epoch. They may also be candidates for gravitational lensing (Krolak
& Schutz 1987). The different lensed components could not be resolved spatially, but the events
would arrive at different times; the time-delay would therefore be known extremely accurately (to
less than a second). The elliptical polarization of the generic coalescing binary gravitational wave
would allow one to distinguish positive from inverted images.

Figure (3) summarizes the great variation in the effective ranges of expected gravitational wave detectors,
when looking at supernovae and coalescing binaries.

As a sobering final thought on the subject, let us recall that it will be some time before abundant data
on coalescing binaries becomes available: if the Clark et al event rate is correct, then only when laser
interferometers reach a sensitivity of 10=72 can they begin to do serious observing. This may be ten years
from now. ‘ ’

3.4 Other Sources: Pulsars and the Stochastic Background
z

Pulsars. Pulsars are particularly interesting sources to search for, because the gravitational radiation
they may emit will not be beamed: the statistics of a “complete” search of the solar neighborhood would
not be affected by the uncertainties due to beaming factors that afflict radio searches. Moreover, since the
radiation would presumably be due to crustal deformations, old radio-quict pulsars could still in principle
be sources of gravitational waves. Oa the other hand, thete is considerable doubt about the amplitude of
any gravitational waves that may be emitted, and it may be that only by observing gravitational waves
from pulsars or setting upper limits on their amplitudes will we be able to settle the question.
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Figure 3: Wedge-shaped sections of the universe displayed on different scales to indicate the ranges of
different detectors for supernovae and coalescing binarics. The observer sits-at the apex of the cone.
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Present observational limits come from the Tokyo experimeat (Owa, et al, 1986), which can reach dowa to
about A ~ 3 x 10~%3 at 60 Hz. (The dominaut quadrupole radiation will come out at twice the frequency
of rotation of the pulsar, just as it does for binary systems.) This limit is far above an indirect one of
1034, which is the maximum allowed if the entire spindown of the Crab pulsar is due to its losing energy
to gravitational waves. latetferometers in their ultimate configuration could in principle reach to 10-%7
at 60 Ha, provided they can beat the seismic noise at such a low frequency.

Finding known pulsars is one thiag: making an all-sky search in gravitational waves is another. The
ptimary problem is that long integration times (typically 107 s) are required, and during such long times
the Earth's various motions produce very significant Doppler shifts in the pulsar signal. Moreover, these
shifts depend on the position of the pulsar in the sky. Removing these shifts is computationally prohibitive
for a search by a single detector (Schutz 1989¢). But a less-sensitive ail-sky search is possible using cross-
correlation of three or more interferometers. Gursel & Tinto (1989) have shown how to remove the effects
of different instrumental polarizations in order to reach the maximum sensitivity. Their method works
provided the detectors are sufficiently close that there is no significant Doppler shift offhe signal in
one relztive to the other. For millisecond pulsars the detectors need to be within about 600 km of one
another, but a world-wide network could search for pulsars efficiently below 100 Haz.

Wagoner stars. Wagoner (1984) pointed out that an accreting neutron star that is spun up to the
angular velocity at which a non-axisymmetric mode of the star becomes unstable to gravitational radiation
(a CFS instability: see Thorne 1987, Schutz 1987) will become a gravitational wave beacon, emitting
gravitational waves at exactly the rate required to carry off any further accreted angular momentum.
Such a source would be an X-ray source as well, and in fact the gravitational wave luminosity would be
propottional to the X-ray luminosity. There are several Galactic X-ray sources in which this scenario is
possible and whose luminosity is large enough to suggest that interferometers could see their gravitational
waves, most particularly Sco X-1 (Thorne 1987). They could be searched for in the same way as for
pulsars.

Stochastic background. A stochastic background can also be found by cross-correlation between de-
tectors. The detectors should be no more than a reduced wavelength of the gravitational waves apart, for
maximum sensitivity. There are many possible sources for such backgrounds: cosmic strings (Vachaspati
& Vilenkin 1985; Brandenberger, et ol 1986); very massive objects — VMOs — formed in the early
universe (Bond & Carr 1984); or phase transitions in the early universe (Thorne 1987). In particular,
the cosmic string scenario makes a fairly definite prediction of the energy density of the background: if
cosmic strings are seeds for galaxy formation, then the gravitational radiation they produce as they decay
should contain at present about 10=7 of the closure density. Laser interferometers could reach to 10~° of
closure, so they could test this prediction at 100 Hz. It may also be tested soon by observations of very
stable millisecond pulsars, but this would be at low frequencies (10~® Hz) and it will depend on progress
in the development of very stable laboratory clocks.

3.5 Low-Frequency Sources

Although I have concentrated on sources of gravitational waves at frequencies above about 50 Hz, which
would be observable from the ground, there is considerable interest at present in the design of space-
based detectors that can reach as low as h = 1033 at 10-? Hz (Hellings 1989). There are a number of
interesting sources at these frequencies, that make the development of such detectors desirable. These
include:

o Formation and coalescence of black holes of mass greater than 108My in the centers of galaxies.

o Binary systems in our Galaxy: there ate many systems with periods of a few hours or less that
could in principle be observed. Binaries consisting of two white dwarfs are particularly interesting
(Evans, et al, 1987). Neutron-star binaries that will eventually coalesce could be identified at a
much earlier stage of their evolution. In fact, there are so many binaries in this frequency range
that they will become a nuisance, acting as a noise background against which it will be harder to
detect bursts from massive black hole events in distant galaxies. )
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o Stars falling into nearby galactic black holes. Even.nearby galaxies may have “dead” black holes
in their nuclei, and neutron stars may occasionally fall into them. Such an encounter would emit a
detectable butst of radiation.

For more details, see Thorne (1987), Schutz (1989b,d).

4 A Gravitational Wave Astronomer’s Shopping List of Astro-
physical Problems

There are many questions that lead to uncertainties in our predictions about gravitational wave sources
that do not need to wait for gravitational wave observations before they can be solved. The following very
personal “shopping list” is offered in the hope that it will encourage astrophysicists to give some needed
attention to these problems during the time when the large laser interferometers are being constructed.
The list is by no means exhaustive; it simply represents the problems that I personally would most like
to see progress on during the next five years. '

o Incorporate significant rotation into supernova collapse models. Although this is a long-term goal
of numerical general relativity, present highly-developed spherical collapse codes.that do the nu-
clear physics correctly could be modified within Newtonian gravily to examine rotation. Even an
extension and updating of the work of Miiller & Hillebrandt (1981) on axisymmetric collapse would
be very useful. One would especially want to treat neutrino transport correctly (sce Bludman in
this volume). Given the well-known scnsitivity of present collapse/supernova models to details of -

the nuclear physics, it would be interesting to sce how realistic amouats of rotation might modify
the picture.

Are there electromagnetically quiet gravitational collapses? If oné has confidence in at least a
spherically symmetric collapse code, then it would be interesting to explore some sott of reasonable
parameter space of initial conditions and physical uncertainties to see whether there is a class of
stara that could collapse without a big explosion.

Model the coalescence of two neutron stars from circular orbits. There are really three phases of
coalescence that need to be better understood:

— Model the interactions of the stars once they are too close to be treated as point masses. This
could be attacked with analytic calculations and numerically. As a numerical problem, it is
one of the most demanding goals one could set for a numerical relativity program. Head-on
collisions of neutron stars have been treated by Evans (1989), and a remarkable first attempt
within Newtonian gravity at modeling coalescence of two stars that start out in roughily circular
orbits with their surfaces in contact has been reported by Nakamura (1989). As computers
improve and more physics can be put in, one would like to see tidal effects and mass transfer

“modeled accurately. Is there a long “coasting” stage in which the orbital frequency is roughly
constant as mass is transferred? Such models would help us to extend the filters we use for
digging coalescence signals out of the noise beyond the point-mass stage, increasing the range
of any detectors and improving the signal-to-noise ratio of any detection. This would have

the further effect of improving the determination of the angular position and distance of any
event. . . s

— Model the explosion of a mini-neutron star. The late “stage of mass transfer between two
neutron stars or a neutron star and a black hole may result in the stripping of a neutron star
down to its minimum mass, at which point it would explode. What would such an explosion
look like? Are there observational tests or searches one could perform?

~ Model the subsequent development of the primary star in the binary. If the secondary explodes
because it has too little mass, does the primary in its turn collapse because it gains too much?
What electromagnetic radiation would such a collapse produce? Given that the primary is
probably rotating rapidly because of the accreted angular momentum, does its collapse produce .



a long wavetrain of gravitational waves? If so, then nureerical predictions of this wavetrain
can be used to produce filters for the incoming data that will aid ie detecting any collapses
that may follow detected coalescing binary events,

o \What is the coalescing binary event rate? It may be possible to provide much more confident pre-
dictions of this from studies of binary star evolution and from observational teats of the predictions
of coalescence models, such as models for the explosion of mini-neutron stars.

In his Summary of the first Texas Symposium, Peter Bergman (1964) wrote that we could hope that
gravitational waves will be detected, but only in the “rather distant future”. Twenty-five years later,
that hope is rather more concrete. If the funding authorities cooperate, and if-our predictions regarding
gravitational wave sources are not too far wrong, then in the foresecadle future — maybe at the 10th
Texas Symposium in 1998, maybe well before — we should have a talk, not just about gravitational wave
detectors, but about gravitational wave astronomy. In the meantime, it is not just the gravitational wave
experimentalists who will be working hard: the more theoretical understanding we have &Bout likely
gravitational wave soutces, the easier it will be to dig their radiation out of the noise when the detectors
come on line,
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Abstract

The problem of detecting gravilational wave sources with broad-band interferometric detectors
is characterized by the need to store and process large smounts of duts, using patlern-mat¥hing
techniques to find weak radiation buried in the noise. [ review the principal features of this prob-
lem: setting thresholds for relinble detection, using matched filtering to find coslescing binaries and
determine their positions in the sky, the demaands that real-time fltering inakes on computing machin-
ety, the difficulties of the pulsar-search problem, using cross-correlstion to conduct an all-sky pulsaz

search, using a network of detectors o reconstruct the gravitationsl wave {the inverse problem), and 4

difficulties of data storage and exchange. Many zesults aze presented heze for the first time.

1 Introduction

Laser-interferometric gravitational wave antennas face one of the most formidable data handling problems
in all of physics. The problem is compounded of several parts: the data will be taken at reasonably high
data rates (of the order of 10 kHz of 12-16 bit data); they may be accompanied by four times as much
“housekeeping™ data to ensure that the system is working appropriately; the data will be collected 24

bours a day for many years; the data need to be seazched in real time for a variety of rare, weak events of -

short duration (1 second or less); the data from three or more detectors need to be cross-correlated with
each other; and the data need to be archived in searchable form in case later information makes a re-
analysis desirable. One detector might generate 300 Mbytes of data each houz. Even using optical discs or
digital magnetic tapes with a capacity of 2 Gbytes, a network of 4 interferometers would generate almost
5000 discs or tapes per year. The gathering, exchange, analysis, and storage of these data will require
international agreements on standards and protocols. The object of all of this effort will of course be to
make astronomical observations. Because the detectors are nearly omni-directional, a network of at least
three and preferably more detectors will be necessary to solve the “inverse problem”, i.c. to reconstruct
a gravitational wave event completely, from which the astronomical information can be inferred.

In this chapter I will discuss the mathematical tachniques for analysing the data and solving the inverse
problem, the technical problems of bandling the data, and the possibilities for international cooperation,
as they appear in late 1988, This discussion can only be a snapshot in time, and a personal one at that.
The subject is one that can be expected to develop considerably in the next decade. I will orient the
discussion toward ground-based interferometers, with the sensitivity and spectral range expecied of the

instruments that are planned to be built in the next decade. Much of the discussion naturally is equally :

applicable to present prototypes, but it is important to look ahead towards future detectors so that their
data problems can be anticipated in their design. A large part of the section on data analysis also applies
to space-based interferometers or to the analysis of ranging data for interplanetary spacecraft, although
in these cases the volume of data is much lower because they operate as low-frequency detectors. 1 will

To sppear in D. Blair, Grantational Radiation (Cambridge University Press, Cambridge, England 1989).

also assume that the interferometers will operate in a reasonably broad-band mode, even though there
exisi & number of techniques for enhancing their sensitivity in narrower bandwidths. In the extreme
aarrow-banding case, in which the detectors have & bandwidth smaller chan that of the waves. the dita

analysis problem resembles that for bar detectors, as discussed by Pizzella elsewhere in this volume.

2 The Analysis of the Data

2.1 Signals to look for

The likely soutces of gravitational radiation are described by David Blair in the first part of this hook. If
a source is strong enough to stand out above the noise in the time-series of data coming off the machine,
then simple threshold-crossing criteria can be used to isolate candidate events, If the event is too weak to
be seen immediately, it may still be picked up by settern-matching techniques, but the sensitivity to such
events will depend upon how much information we have about the expected waveform. At the present
time, we have little idea of what waveform to expect from bursts of radiation from gravitational collapse
(supernovae or eléctromagnetically quiet collapses), so their detectability depends upon their being strong
enough to stand up above the broad-band noise. (Future detalled numerical calculations of gravitational
collapse may change this, of course.) On the other hand, we have detailed predictions for the waveforms
frora binary coalescence and from continuous-wave sources such as pulsars; these can be extracted from
noisy data by various techniques, such as matched filtering. Pulsars with a known position may be found
from the output of & single detector by sampling techniques. An all-sky search for unknown pulsars can
be performed by cross-correlating the output of thcee or more detectors. There is also the possibility of

a stochastic background of radiation; cross-correlation techniques between detectors can also search for
this.

2.2 Analysis of the data from individual detectors

Bursts and continuous-wave signals can in principle be detected by looking at the output of one instru-
ment. Of course, one would like to have coincident observations of the same waves in different detectors,
for several reasons: to increase one’s confidence that the event is real, to improve the signal-to-noise ratio
of the detection, and to gain extra information with which to solve the inverse problem. It might be
thought that the detection problem splits into two parts: first find the events in single detectors, then
correlate them between detectors. In many cases this will work, but in some cases it will only be possible
to detect signals in the first place by cross-correlating the output of different detectors. In this section I

will addsess the problem of finding candidate events in single detectors. Cross-correlation will be treated
later.

2.2.1 Finding broad-band bursts -

A broad-band burst is an event whose energy is spread across the whole of the bandwidth of the detector
(which I will take to be something like 1002000 Hz), although coasiderable efforts are now being devoted
to techniques for extending the bandwidth down to 40 Hz or less. To be detected it has to compete against
all of the detector’s noise, and the only way to identify it is to see it cross a pre-determined amplitude
threshold in the time-series of data coming from the detector. The main burst of radiation from stellar
cote collapse will be like this. Numerical simulations of axisymmetric collapse (Evans 1986, Piran & Stark
1986) reveal, among other things, that after the main burst there, is - at least if a black hole is formed ~
a “ringdown phase” in which the radiation is dominated by the fundamental quasi-normal mode of the
black hole. This phase lends itself to some degree of pattern-recognition, such as that which I will describe
for coalescing binaries in the next section. But it is unlikely that ringdown radiation will substantially
improve the signal-to-noise ratio of & collapse burst, since it is damped out very quickly. Some simplified
models of non-axisymmetric collapse (e.g. Ipser & Managan 1984) suggest that if angular momentum
dominates and non-axisymmetric instabilities deform the collapsing object into a tumbling tri-axial shape,
then a considerable part of the radiation will come out at a single slowly-changing frequency. If future
three-dimensional numerical simulations of collapse bear this out, thea this would also be a candidate for
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pattern-recognition. But one must bear in mind that even if we have good predictions of waveforms from
simulations, there will be an intrinsic uncertainty due to our complete lack of knowledge of the initial
conditions we might expect in a collapse, particularly regarding the angular momentum of the core. So it
is not clear yet whether collapses will ever be easier to see than the time-series threshold criteria described
next would indicate.

2.2.1.1 Simple threshold criteria. The idea of setting thresholds is to exclude “false alarms® —
apparent events that are generated by the detector noise. Thresholds are set at a level which will
guarantee that any collection of events above the threshold will be free from contamination from false
alarms at some level. The “guarantee” is of course only statistical, and it relies on understanding the
noise characteristics of the detector. I will assume here that the noise is white and Gaussian.

. \
This should be a good first approximation, but there are at least two important refinements: first, detector
noise is frequency-dependent, and when we consider coalescing binaries this will be important; and second,
one must allow for unmodelled sources of noise that will occasionally produce large-amplitude “events”
in individual detectors. This latter noise can be eliminated by demanding coincident observations in
ather detectors, provided we assume that it is independent of noise in the other detectors and that it is
not Gaussian, in particular that there are fewer low-amplitude noise events for a given number of large-
amplitude ones than we would expect of a Gaussian distribution. This implies that the cross-correlated
noise between detectors will be dominated by the Gaussian component. These assumptions are usually
made in data analysis, but it is important to check them as far as possible in a given set ofdata.

Assurning that the noise amplitude n in any sampled point has a Gaussian distribution with zero mean
and standard deviation o, the probability that its absolute value will exceed a threshold T' (an event that
we call a “false alarm” relative to the threshold T) is

. j ;
winl>T) = (2 /T e (T - e T )

In the asymptotic approximation given by the second line, the first term gives 10% accuracy fo; T > 3.20,
and the first two terms give similar accuracy for T > 2.50. If we want the expected number of false alarms
to be one in N,,, data points, then we must choose T such that

pIn|>T)=1/Nu,. (2)

This is a straightforward transcendental equation to solve. For example, if we imegine looking for
supernova bursts of a typical duration of 1 s, then we might be sampling the noise in the output
effectively 1000 times per second. (If we want to reconstruct the waveform we might the data at its raw
sampled rate, say 4 kHz; but this would require a larger signal-to-noise ratio than simple detection, for
which we could use the data sampled at or averaged over 1 ms intervals.) If we wish no more than one
false alarm per year, then we must choose T = 6.6c.

If we have two detectors, with independent noise but located on the same site, then we can dig deeper
into the noise by accepting only coincidences, which occur when both detectors simultaneously cross their
respective thresholds T, and T;. Given noise levels oy and o3, respectively, the criterion for the threshold
is

p(in|> Tp(In|> T2) = 1/Nois. (3)

For two identical detectors (oy = a7), each making 1000 observations per second, the threshold T needs
to be st at only 4.50, to give one false alarm per year. Similarly, three identical detectors on the same
site require T' = 3.60 and four can be set at T' = 3.00. The improvement from two to four detectors is a
factor of 1.5 in sensitivity, or a factor of 3 in the volume of space that can be surveyed, and hence a similar
improvement in the expected event rate. This favorable cost/benefit ratio — in this case, a factor of three
improvement in event rate for a factor of two increase in expenditure — is characteristic of networks of
gravitational wave detectors, and indeed of any astronomical detector network whose sensitivity is limited
by internal noise uncorrelated between instruments.

2.2.1.2 - Threshold criteria with time delays. I have qualified the discussion of multiple detectors
so far by demanding that they be on the same site; the reason is that if they are separated, then allowing
for the possible time delay between the arrival of a true signal in different detectors opens up a larger
window of time in which noise can masquerade as signal. Suppose that two detectors are separated by
such a distance that the maximum time delay between them is W measurement intervals. (For example,
Glasgow and California are sepuated by about 25 ms, which we take to be effectively +25 measurement
intervals for collapse events. This gives a total window size of 50 measurements.) Then in Eq. (3), the
appropriate probability to use on the right-hand side is I/Nu,/W. since each possible “event” in one
detector must be compared with W possible coincident ones in the other. For two identical detectors, a
“typical” window W = 40 raises the threshold T to 4.9¢. This is an 8% decrease in sensitivity. or a 22%
decrease in volums surveyed. .

For three detectors, the situation beging to get more complex: as we will see later, if three detectors
sec an event that lasts considerably longer than their resolution time, there is a self-consistency check
which may be used to reject spurious coincidences. (The check is that three detectors can determine
the direction to the source, which must of course remain constant during the event.) For four detectors,
even a few resolution times are enough to apply a self-consistency check. In principle, the quantitative
effect of these corrections will depend on the signal-to-noise ratio of the event, since strong events can be
checked for consistency more rigorously than weak events can. But the level of the threshold in turn will
determine the minimum signal-to-noise ratio. A full study of this problem has not yet been made, and
can probably only be undertaken in the light of a more thorough investigation of the inverse problem [see
Sec. (3) below].

2.2.2 Extracting coalescing binary signals

Coalescing binaries are good examples of the type of signal that will probably only be seen by applying
pattern-matching techniques: the raw amplitude from even the nearest likely source will be below the
level of broad-band noise in the detector. Nevertheless, the signal is so predictable that interferometers
should be able to see such systems ten times or more as distant as collapse sources. We will see that the

. signal depends on two parameters, so when we discuss the coincidence problem from the point of view of

pattern-matching, we will have to consider the added uncertainty caused by this.

2.2.2.1 The coalescing binary wave form. The amplitude of the radiation from a coalescing
binary depends on the masses of the stars and the frequency f of the radiation, which together determine
how far apart the stars are. It is usual to assume that the stars are in circular otbits. This is a safe
assumption if the binary system has existed in its present form long enough for its orbit to have shrunk
substantially, since the timescale for the loss of eccentricity, e/é, is 2/3 of the similar timescale for the
decrease of the semimajor axis a. If the binary has only recently been formed, e.g. by tidal capture in
a dense star cluster, then more general wave forms can be-expected. The model assumes point particles
in a Newtonian orbit, with energy dissipation due to quadrupolar gravitational radiation reaction. I will
discuss corrections to this briefly below. The radiation amplitude when the radiation frequency is f is
given by the function:

Arf) =28 x 07y RS, @)

where AM is what I shall call the mass parameter of the binary system, defined for 2 system consisting of
stars of masses my and m by the equation

M = mi myS f(my + ma)'VS, (s)

or equivalently by the more transparent formula,

MB/J =/.1M.}.I',. v » (6)



where 4 is the usual reduced mass and My the total mass of the system. A system consisting of two
1.4Mq stars has M = 1.22Me. The numerical value of hy is actually the mazimum observable value of
the amplitude A, which obtains when the system is viewed down the axis of its angular momentum. One
must inserc angulat factors in front of the expression to get the wave amplitude in other directjons. If
one averages over these angular factors and over the angular factors that describe the anteana pattern

of an interferometer, one obtains an effective mean amplitude only 2/5 of the maximum (Thorne 1987,

Krolak 1989).

The binary’s orbital period changes as gravitational waves extract energy from the system. The frequency
of the radiation is twice the orbital frequency, and its rate of change is

df
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The maximum wave amplitude we expect, therefore, has the time-depel;dence i
1]
hmas(t) = An{f(O)con(z [ £(€)it + 8), @
te .

where 1, is an arbitrarily defined “arrival time” (conveniently taken to be, say, the time when the signal
reaches an arbitrarily chosen frequency f,), and & is the signal’s phase at time t,. This phase depends
on where in their orbits the stars are when the frequency reaches f,. The amplitude increases slowly
with the frequency-dependence of A,. Doing the frequency integral explicitly gives

J(t) = 100Hz x [(-1-0—{-)55)“‘/3 ~0.3aM(t — 1)), (9)

where ¢ is measured in seconds. The phase integral is

¢ ’ [ - - fc - fo - !
2r 3 F(t")dt! = 3000 m((m) W-[(m) 813 1 0.34 M3t - ¢,)]5/8), (10)

Putting this into Eq. (8) for hmes(t) gives the desired formuls, which we will use in the next section.
Notice that coalescence in the two-point-particle model occurs when f = oo. For a system whose radiation
is at {requency £, the remaining lifetime until this occurs is

Teatscrnael £) = 2.0( 523 2 s, Gy

‘This is 3/8 of the formal timescale f/f deducible from Eq. (7). Of course, for realistic stars the Newtonian
point-particle approximation breaks down before this time, but if the stats ace neutron stars or soler-mass
black boles, corrections need be made only in the last second or less. Corrections due to post-Newtanian
eflects are the first to become important in this case, followed by tidal and mass-transfer effects. These
have been considered in detail by Krolak & Schuts (1987) and Krolak (1989). If at least oae of the stars
is a white dwarf, tidal corrections will become important when Tioalescence i8 still 1000 years or so, and
f is tens of milliHertz; the system would only be observable from space (Evans, ef af, 1987).

We shall aeed below not only the waveform h(f), but also its Fourier transform. We shall denote the
Fourier transform of any function g(t) by §(f), given by

i) = /_: g(t)e~17it gy, . (12)

Provided that the frequency of the coalescing binery signal is changing relatively slowly (i.e., that
Teostescence > 1/f), the method of stationary phase can used to approximate the tzansform of Rmaz(t),

7 Bnagf (Thorne 1987; Dhurandhar, et al, 1989). We shall only need its magnitude,

{

|h"f¢rf|= 3.7x 'w-u( %)slc(l@fajy“(%)ﬂz-" (13)

This gives good agreement with ruulu of numerical integrations performed by Schutz (1986). We shall

use if in the next sections.
, ;

2.2.2.2 The mathematics of matched filtering: finding the signal. Matched filtering is a linear

pattern-matching technique designed to extract signals from noise. For references on the theory outlined
in this and subsequent sections, the reader may consult a number of books on signal analysis, such as
Srinath & Rajasekaran (1979). To use matched filtering we have first to define some properties of the
noise, n(t). We expect that n(t) will be a random variable, and we use angle brackets < > to denote
expectation values of functions of this noise. It is usually more convenient to deal with the noise as a
function of frequency, as described by its Fourier transform #i(f). We shall assume that the noise has
zero mean,

< n(t) >=< 3{f) >=0.

We shall also assume that the noise is stationary, i.e. that its statistical properties are independent of
time. Then the spectral density of (amplitude) noise S(f) is defined by the equation

<ANR(F) >= S(NE(f - 1), (14)

where a * denotes complex conjugation. This says two things: (i) the noise at different frequencies is
uncorrelated; and (ii) the autocorrelation of the noise at 2 single frequency has variance S(f), apart from
the normalization provided by the delta function, which arises essentially because our formalism assumes
that the noise stream is infinite in duration. (Texts on signal processing often define S(f) in terms of a
normalized Fourier transform of the autocorrelation function of a discretely sampled time-series of noise
n;{t). The continuous limit of this definition is equivalent to ours.) Since n(t) is real, S(f) is real and
an even function of £,

White noise has a constant spectrum, which means that S(f) is independent of /. Interferometers have
many sources of naise, as described in the article by Winkler in this volume. In this treatment I will
consider only twa: shot noise, which limits the sensitivity of a detector at most frequencies; and seismic
poise, which I idealize as a “barrier” that makes a lower cutoff on the sensitivity of the detector at
a frequency f,. The shot noise is intrinsically white (that is, a3 a noise on the photodetector), but —
depending on the configuration of the detector — the detectar’s sensitivity to gravitational waves depends
on frequency, so the relevant noise is the photon white noise divided by the frequency response of the
detector (called its tronsfer function). We call this function S(f). I will assume that the detector is in
the standard recycling configuration, so that (allowing for the seismic cutoff) we have

S =oAL+ (1A forf > £, (15)
=00 focf < f,.

Here i is the so-called “Ime® frequency, which may be chosen by the experimenter when recycling is
implemented, and o7(f,) is the stendard deviation of the frequency-domain noise at fi. In the usual
discussions of source strength va detector noise [e.g. Thorne(1987), what is taken to be the detector noise
23 a function of irequency f is o (f), not [Sh(f)}}/3, because it is assumed in those discussions that the
knee frequency fy will be optimized by the experimenter for the particular range of frequencies being
studied, so that oy is representative of the naise that the experimenter would encounter. Later in this
section we will see that the optimum value of fy for observing coalescing binaries is 1.44f,.

Now, the fundamental theotem we need in order to extract the signal from the noise is the matched
filtering theorem. I we have a signal h(t) buried in noise n(t), so that the output of our detector is

oft) = h{t) +a(t),



and if the Fourier ttansform of the signal is A(f), then the best linear way to determine whether the
signal is present is to correlate the output with 2 filter g(¢), chosen in the optimum manner given below.
The cortelation is

) = (00q)t) |
= [ otn i | (16)
= [ anemerra o (a7

The expectation value of ¢(1) is the signal,

*
< cft) >= (hog)(t), (18)
and the noise is the square root of the variance of the cotrelation,
<t <ett) > >= [~ st 1 o <

This gives a "raw* signal-to-noise ratio of

Sy e (hO0
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The idea of matching the filter to the signal comes from finding the filter q(t) that maximizes this signal-

to-noise ratio. It is not difficult to show that the optimal choice of filter for detecting the signal A{t)
is

(20)

§(f) = kA(F)/S(f), (21)

where k is any constant. With this filter, if the output contains a signal, then ¢(t) will reach a maximum
at a time t that corresponds to the time in the output stream at which the signal reaches the point
' = 0 in the waveform A(t'). Of course, noise will distort the form of c(2), but the expected amplitude
signal-to-noise ratio S/ in c(t) (ratio of maximum value to the standard deviation of the noise) is given

by the key equation
5\ _, [P
(%) =2 [ Sare (z2)

It can be shown that this is the largest S/V achievable with a linear filter. Moreover, given a waveform
h(t) that one wants to look for, and given a seismic cutoff frequency f,, one can ask what value of the
knee frequency fi one should take in Sy(f) in Eq. (22) to maximize S/N. For coalescing binaries, one
can use the explicit expression for A(f) given in Eq. (13) to show that this value, as mentioned earlier, is
(Thorne 1987, Krolak 1989)

foomt = L44S,. !
Naturally, in a real experiment one does not know if a signal is present or not. One then uses the size
of S/N to decide on the likelihood of the cocrelation being the result of noise. A widely used criterion is
the Neyman-Pearson test of significance (Davis 1989), based on the likelihood ratio, defined as the ratio
of the probability that the signal is present to the probability that the signal is absent (false alarm). If
the noise is Gaussian, then the Neyman-Pearson "best* criterion is just to calculate the chance of a false

~

alarm in the matched filter given by Eq. (21), exactly a3 described in Sec. (2.2.1.1) with /¢ replaced by
S/N.

If the noise is not Gaussian (and we do of course expect thar there will be a non-Gaussian component to
the noise) then matched filtering does not necessarily give the best discrimination against false alarms.
If experiments show that the noise is predominantly non-Gaussian, then we shall have to look at other
filtering methods.

Searches for coalescing binaries can therefore be carried out by applying threshold criteria to the corre-
lations produced by filtering. The false-alarm probabilities for detecting a coalescing binary have to be
calculated with some care, however, because we must allow for the fact that we have in general to apply
many independent filters, for different values of the mass parameter M, and this increases the chance of
a {alse alarm. I will consider the necessary corrections in Sce. (2.2.2.4) belaw.

In practice, one only samples the data stream al a finite rate, not continuously. It is clear from Eq. (22)
that onc must sample at least as fast as is required to determine A(f) at all frcquencxcs that contribute
to the integral significantly: at least twice as fast-as the largest required frequency in h\f) _For the
coalescing binary, whose transform is givea approximately by Eq. (13), the power spectrum [ A(f) [? is
falling off as f~7/9, and the recycling shot noise multiplies a further factor of f~% into this. Thus, when
f rises to, say, 4 times f,, the integrand in Eq. (22) will have fallen off to about 0.005 of its value at f,.
Truncating the integration here should be enough to guarantee that the filter comes within 1% of the
optimum signal-to-noise ratio. This would require a sampling rate of 8f,, or 800 Hz if we take f, = 100
Ha.

2.2.2.3 Determining the time-of-arrival of the signal. It is important for gravitational wave
experiments that, by filtering the data stream, one not only determines the presence of a signal, but one
also fixes its “time of arrival®, defined as the time t,,, at which the aignal reaches the t' = 0 point in the
filter A(t'). The standard deviation in the measurement of 4., is 8t,rr, which is given by an equation
similar to Eq. (22) (Srinath & Rajasekaraa 1979; Dhurandhar, et al, 1989):

o [T PB0E [P IKDR,
'.T,T"s / 50 ”"2/0 Y0 (23)

where ;‘(f) is the Fourier transform of the time derivative of h(t). If either the signal or the detector’s
sensitivity is narrow-band about a frequency fo, then a reasonable approximation to Eq. (23) is

1 1 .
Jtarr - m;'s—/l‘v" (24)

where 5/NV is the optimum signal-to-noise ratio as computed from Eq. (22). Thisisa good approximation
as long as S/N is reasonably large compared to 1. If we use Eq. (13) for A(f) then it is not hard to show
that, for coalescing binaries (Dhurandhar, et al, 1989)

lOOHz 1

btarr = 0.84( 7 WNN
.

(25)

For example, if the signal-to-noise ratio is 7 (the smallest for detection by a single detector) and the
seismic limit is 100 Hz, then the timing accuracy would be 0.1 ms. If the signal-to-noise is as high as 30,
which could occur a few times per year (see below), then the signal could be timed to 30 us. Considering
that the time it takes the wave to travel from one detector to another will typically be 15-20 ms, this
timing accuracy would translate into good directional informiation. I will explain below how this can be
done. However, in pru:uce it will turn out that these numbers are too optimistic, perhaps by a factor
of two, The reason is that the presence of noise will also make the determination of the mass parameter
uncertain to some degree, and this turns out to affect the timing accuracy: Schutz (1986) has shown that
a small change in the mass parameter can masquerade as a displacement in the time-of-arrival of the
signal. It may also be that errors in the determination of the waveform phase @ will do the same. This
effect will have to be quantified before realistic estimates of the timing accuracy can be made.




It may seem paradoxical that, if detector physicists succeed in lowering the seismic barrier to, say, 50 Hz,
the arrival-time-tesolution given by Eq. (24) appears to get worse as f;-1! This is not a real worsening,
of course: the increase in S/N due to the lower seismic cutoff (gaining as f; I8 it fi remains optimized
to /,) more than compensates the 1/f, facter, aud the timing sccuracy imptoves. Our temarks earlier
about the importance of sampling at the correct rate apply here as well: if the sampling rate is smaller
than twice the lazgest frequency at which the integrand in Eq. (23) contributes significantly, then in
the numerical calculation the artival time accuracy will be worse than optimum. This is an important
lesson: in choosing one’s sampling speed one should ensure that one can get good sccuracy in Eq. (23},
whose integrand falls off less rapidly with frequeacy than that of Eq. (22)° if one does sample at an
adequate rate, thea it is possible to determine the time of arrival of a signal to much greater precision
than the sampling time, provided the signal-to-noise ratio is much greater than unity. (See, for example,
the numerical experiments reported by Gursel & Tinto 1988.) For a coalescing binary, taking timing
accuracy into account does not significantly increase the sampling rate over that required for a good
signal-to-noise ratio. ' -

2.2.2.4 Threshold criteria for filtered signals. When searching a dats stream for coalescing
binary signals, we cannot presume ahead of time that we know what the mass parameter M will be: not
all neutron stars may have mass 1.4Mq, and some binaries may contain black holes of mass 15 or 20 Mg.
We therefore will have to filter the data with a family of filters with M running through tha range, say,
0.5 25M.

How many filters should there be? This question has not yet received enough study. The calculations
of Dhurandhar, et al (1989) show that two filters with mass parameters differing by a few percent have
significantly reduced correlation, so the filters in the family should not be more widely spaced than this.
However, it is not known whether they should be more closely spaced, to avoid missing weak signals. If
we take successive filters to have mass parameters that increase by 2% at each step, then we need about
200 filters to span the range (0.5,25) in M.

However, there is also another parameter in the filter, Eq. (8): the phase &, about which I have so far said
little. When the wave arrives at the detector with frequency f,, so that it is just becoming detectable,
its phase may be anything: this depends on the binary’s history. Filters with different phases must
therefore be used. This question has not received enough study either, but numerical experiments by S.
P. Lawrence (private communication) indicate that one might need about four differently phased filters
for each mass parameter in order not to lose signal-to-noise in the search. This increases the number of
filters to about 1000. In Sec. (2.2.2.6) we will lock at the computing demands that this filtering makes
on the data analysis system. In the present section we shall consider the signal-to-noise implications.

First it will be necessary to establish what the filtering equivalent of the sampling rate is, so that we can
calculate the probability of. say, one false alarm per year. In our original calculation of the false-alarm
probability, the sampling rate told us how many independent data points there were per year, on the
assumption of white noise, which meant that each data point was statistically independent, no matter
how rapidly samples were taken. In the present case, the output of the filter is the correlation given in
Eq. (16). It has noise in-it, but the noise is no longer white, having been filtered. The key number that
we want here is the “decorrelation time”, defined as the time interval r, between successive applications
of the filter that will ensure that the outputs of the two filters are statistically independent. The analog
here of the sampling rate in the burst problem is 1/7,, which I will call the effective sampling rate. This
is the rate at which successive independent data points arrive.

To develop a criterion for statistical independence, we consider the autocorrelation function of the flter
output when the detector output o(t) is pure noise n(t): ’

»

a(r) = / : e(t)e(t + r)dt. ‘ (26)

We shall take the decorrelation time to be the time 7, such that a(r) is small for all 7 > 7,. We can
learn what this is by noting that it is not hard to show that the Fourier transform of a(r) is, when the
optimal filter given in Eq. (21) is used,
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For coalescing binaries, we have already discussed some of the properties of this function at the end of
Sec. (2.2.2.2). It is strongly peaked near f,, and in particular the seismic barrier cuts it off rapidly below
fie If follows that for times 7 3> 1/f, the autocorrelation function is nearly zero: the effective sampling
rate is about f,. To play it safe, I will work with a rate twice this large, or an effective sampling time of
0.005 s. This gives effectively 6 x 10° samples - statistically independent filter outputs — per year,

Now, assuming that the noise is Gaussian, the calculation of the false-alarm probability for any size
network looks similar to our earlier one in Sec. (2.2.1.2). What we have to allow for la that there will
be some 1000 independent filters, each of which could give a false alarm. Of course, the false alarm
occurs ouly if each detector registers an event in tho same filter, so it is like doing 1000 independent
expen'ment:a with no filter a¢ all and a sampling time of 0.005 s, or one experiment with no filter and a
samp!mg time of § x 10~% 5. This increases the number of points by a factor of 200 over the number we
used in Sec. (2.2.1.1), but this factor makes only a modest difference in the level of the thresholds. For
example, for one false alarm per year, and no correction for time-delay windows, the thresholds are: for
one detector, 7.4; for two, 5.1; for three, 4.0; and for four, 3.4. For example, the three-detector threshold
is 12% higher than for unfiltered data taken at 1 kHz.

These ﬁgu:'u should not be taken as graven in stone: they illustrate the consequences of a particular set
of. assumptions. A better calculation of the poise properties of the filters is needed, and in any case one
will have to ensure that the detector noise really obeys the statistics we have assumed.

2.2.2.5 Two ways of looking at the improvement matched filtering brings. The discussion
of fna'.ched filtering so far has been fairly technical, with the emphasis on making reliable and precise
utunatg of the achievable signal-to-noise ratios and timing accuracy. In this section I will change the
empyasu and try to develop approximate but instructive ways of looking at the business of matched
filtenng. The emphasis will be on understanding how matched filtering improves the sensitivity of an
interferometer beyond its sensitivity to wide-band bursts. We will look at two points of view: comparing

the sensitivity of the detector to broad-band and narrow-band signals that have either the same amplitude
or the same total energy.

First let us consider two signals of the same amplitude 4, one of which is a b: iati

e 82 . road-band burst of radiation
centered at fo and t.he other of which is a relatively narrow-band signal with n cycles at roughly the
frequency f;. The signals are observed with different recycling detectors optimized at their respective

frequencies, fo and fy, possibly contained in the same vacuum system i isi i
1 ' as is envisioned
designs. The broad-band signal has v # ‘ i some present

(S\ _ L [P IMnR
\ (7) = [ S
2 Rl 2
~ ot HOrY
1 bad :
~ EGJLNMMP&' (28)

Now, the integrand in Eq. (28) for a burst lasts typically only for a time 1/f;, so we have
h
SIN % ., 29
a1(fo)fs"? =9

Etor the narrow-band signal. we obtain again Eq. (28), but with f5 replaced by fi. Now, however, the
signal lasts n cycles, a time n/f;. This leads immediately to :
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Comparing Eqs. (29) 2nd (30), we sec that a narrow-band signal has an advantage of /7 over a burst of
the same amplitude and frequency, provided we have enough understanding of the signal to use matched
filtering. For the coalescing binary one may approximate n by 3/, and this can be large {of order 200).
Coalescing binaries gain further when compared to supernova bursts because of their lower frequency:
because oy depends on f as f1/3, there is a further gain of a factor of fo/f1, which can be 7 or so.
Therefore, a coalescing binary signal might have something like 100 times the S/N of a supernova burst
of the same amplitude! This exaggerates somewhat the advantage that coalescing binaries have as a
potential source of gravitational waves, since their intrinsic amplitudes may be smaller than those from
supernovae, but it does show why they are such interesting sources.

The other way of looking at filtering is in energy terms. This is very instructive, because it shogs “why”
matched filtering works. We have just seen that a narrow-band signal with n cycles has a higher S/NV
than a broad-band burst of 1 cycle that has the same amplitude and frequency, by a factor of /. But
the energy in the narrow-band signal is n times that in the burst. This is because the energy flux in a
gravitational wave is

4 “
Fro ™ ;C-;h'fi. (31)

and thus the total energy E in a signal passing through a detector during the time n/f that the burst
lasts is given by the proportionality

Ex 3 (n]f) = nfhd,

If we solve this expression for nA? and put it into Eq. (30), we find

(32)

Since this is independent of n, it applies to broad-band and narrow-band signals equally. It shows that
if two signals send the same total energy through ai interferometric detector, and if they have the same
frequency, then they will have the same signal-to-noise ratio, again provided we have enough information
to do the matched filtering where necessary. This provides a somewhat more realistic comparison of
coalescing binaries and supernovae, since a coalescing binary radiates a substantial amount of energy in
gravitational waves, of the order of 0.01 M. This is similar to the energy radiated by a moderate to
strong gravitational collapse. The advantage that coalescing binaries have is that they emit their energy
at a lower frequency. The factor of fo; o f3/3 in Eq. (32) gives them an advantage of a factor of roughly
20 over a collapse generating the same energy at the same distance. If laser interferometric detectors
achieve a broad-band seusitivity of 10~22, as current designs suggest will be possible (see the article by
Winkler in this volume), then they will be able to see moderate supernovae as far away as 50 Mpe. This
volume includes several starburst galaxies, where the supernova rate may be much higher than average.
They will therefore also be able to see coalescing binaries as far as 1 Gpe.

2.2.2.6 The technology of real-time filtering. In this sectior I will discuss the technica) feasibility
of performing matched filtering on a data stream in “real time”, i.e. keeping up with the data as it comes
out of a detector. Since coalescing binaries seem to make the most stringent demands, I will take them as
fixing the requirements of the computing system. We have seen that we need a data stream sampled at a
rate of about 1 kHz in otder to obtain the best S/ and timing information, so I will use this data rate
to discover the minimum requirements. It is likely that the actual sampling rates used in the experiments
will be much higher, but they caa easily be filtered down to 1 kHz before being analyzed. If the seismic
cutoff is 100 Hz, then the duration of the signal, at least until tidal or post-Newtonian effects become

’
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important, will be less than 2 seconds in almost all cases. This means that a filter need have no more
than 2000 2-byte data points.

The quickest way of doing the correlations necessary for filtering is to use fast Fourier transforms (FFT's)
to transform the filter and signal, multiply the signal transform by the complex conjugate of the filter
transform, and invert the product to find the correlation. The correlation can then be tested for places
where it exceeds pre-set thresholds, and the resulting candidate events can be subjected to further analysis
later. This further analysis might involve: finding the best value of the mass parameter and phase
parameter; filtering with filters matched to the post-Newtonian waveform to find other parameters that
could determine the individual masses of the stars; looking for unmodelled effects, such as tides or mass
transfer; looking for the final burst of gravitational radiation as the two stars coalesce; and of course -
processing lists of these events for comparison with the outputs of other detectors. Since the number of
significant events is likely to be relatively small, the most demanding aspect of this scenario is likely o
be the initial correlation with 1000 coalescing binary filters.

One way the processing might be done is as follows. The discrete correlation between a data set containiag
the IV values {d;, j =0,...,N ~1} and a filter containing the N values (hy, £ =0,..., ¥ -1} is usually
given by the circular correlation formula: .

N-1
ch=(doh)a = dihjyu, k=0,...,N =1, (33)
j=0

where we extend the filter by making it periodic:
hien = hy V4.

The circular correlation formula has a danger, because the data set and filter ace not really periodic.
In practice, this means that we should make the data set much longer than the (non-zero part of the)
filter, so that only when the filter is “split” between the beginning and the end of the data set does the
circular correlation give the wrong answer. Thus, even if each filter requires only Ny < 2000 points, it is
more efficient to split the data set up into segments of length ¥ > Ny points, and to use a filter which
has formally the same length, but the first NV — N, of whose elements are zero. (I am grateful to Harry
Ward for bringing this point to my attention.) The “padding” by zeros ensures that the periodicity of h
corrupts only the last IV, elements of the correlation. This can be rectified by forgetting these elements
and beginning the next data segment Ny elements before the end of the previous one: this overlap ensures
that the first Ny elements of the next correlation replace the corrupt elements of the previous one with
correct values. Since this procedure involves filtering some parts of the data set twice, it is desirable to
make it a small fraction of the set, namely to make Ny small compared to . This efficiency consideration
is, however, balanced by the extra numerical work required to calculate long correlations, proportional
to N'lnN. This arises as follows.

The fastest way to do long correlations on a general-purpose computer is to use Fourier transforms (or
related Hartley transforms). For a discrete data set {dj, i =1,...,N =1}, the discrete (circular) Fourier
transform (DFT)'is the set {d}, £ =1,...,N — 1} given by

N-1

\ dy = Zdje-lrijk(N’ (34) -
. j=0
with the inverse transform
QN
dy = 5 Y dictitiN, (35)
k=0

Thea the discrete version of the convolution theorem Eq. (17) is as follows. Given the (circular) correlation
{c;} of two sets {d;} and {h;} as in Eq. (33), its DFT is :



& = (da)* Ay (36)

where an asterisk denotes complex conjugation.

Fast Fourier transform (FFT) algorithms may require typically 3V log, IV real floating-paint operations

(additions and multiplications) to compute the transform of a set of N real elements, provided N is |

an integer power of 2 (which can usually be arranged). (I neglect the overhead of integer arithmetic
concerned with the index manipulations in such routines.) To compute the correlation of two such scts,
then, would require three transforms — two to produce dy and h, and a third to invert the product & —
and the multiplication of the two original tzansforms, giving a total of 9N log, IV 4 4N real foating-point
operations. This is to be compared with the 2N? — N operations required to calculate the correlation
directly from Eq. (33). As long as iV > 16 it will be quicker to use FFTs.

In practice, one would compute once and store the DFT of all 3 filters, so that in real tigge the data
would have to be transformed only once, and then M products of data and filter calculated and inverse-
transformed. This would require 3V (M + 1)log; N + 4N M floating point operations.

We must now remind ourselves that in order to achieve the economies of the FFT algoritbm, we must
use the circular correlation, which has an extra cost associated with the overlaps we are required to take
in successive data sets. For a given filter length (say Ny < N pon-zero points in the filter time-series),
we can reduce the fractional size of these overlaps by making N larger, but this increasss the cost of
the FFT logarithmically in V. Is there an optimum ratio N;/N? The total cost of analysing a data set
containing a very large aumber Ny, 33 iV of elements, split up into segments of length & is

Nptprops = xvhﬁ:‘v, (BN(M + 1) log, ¥ + 4N M).

We want to minimize this with respect to variations in N holding ¥; and M (the number of filters)
fixed. It is more convenient to introduce the variable z = Ny /N, which measures the fractional overlap
of successive data sets. In terms of z the expression is:

Nio Ny -
Nptprops(2) = 7222 (0(M + Vlogy ~L +48). (7

As long as the number of filtets M is large, the optimum z will be independent of M: it will depend only
on Ny, the “true” length of the filter, If we take Ny to be 2000, thea the optimum z is .057; if Ny = 1000
then the best z is .061. But the minimum in Ny peopo is & flat one, and one can increase the value
of z quite a bit without compromising speed. This is important, because each stored filter transform
must contain IV points, so the larger we make z, the smaller will be our core memory requirements.
This is illustrated in the following table, which gives z and Nyt s ops /N M, the number of floating-point
operations per data point per filter, as required by various strategies, always taking Ny, to be an integer
power of 2.

From this it is clear thalt choosing an overlap between successive data sets of around 25% gives a CPU
demand that is only slightly higher than optimum and reduces storage requitements to a minimum.
Based on this, and assuming a data rate of 1000 2-byte samples per second with a 2-second filter length
(¥; = 2000), it follows that doing 1000 filters in real time requires a computer capable of 60 Mflops
(where 1 Mflop is 10° floating-point operations per second), and storage for 1000 filters, each of length
16k bytes. This is not far from the capabilities of present-day inexpensive (< $100k) workstations with
add-on array-processors, or of stand-alone arrays of transputers or other fast microprocessors. In Ave
years it should be trivial.

There are many possible ways to speed up the calculation if CPU rates ate a problem. It may be that
special-purpose digital-signal-processing chips would be faster than general-purpose microprocessors for
this problem. It might be possible to do the calculation in block-integer format rather than foating-point,
with filters that consist of crude steps rather than accurate representations of the waveform (Dewey 1986).
These should be analyzed further. Another possible CPU-saver is described in the next section.
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Ny, N 2 Nytptops/ NeaM
1000 2! 488 72

1000 213 244 53
1000 2} 122 49
1000 24 .061 49
1000 2!% 031 50
2000 2'* 488 78
2000 213 244 57
2000 2M (122 52
2000 2'% 061 52
2000 218 031 54

Table 1: The cousequences of various strategies for applying filters of “true” length Ny, padded out with
zeros to a length IV, to very long data sets. See text, especially Eq. (37), for details.

2.2.2.7 Smith’s interpolation method for coalescing binaries. An alternative strategy for co-
alescing binaries has been proposed and implemented by Smith (1987). This clever idea is based upon
the following observation: if two coalescing systems of diffcrent mass parameters happen to have the
same time of coalescence, then their signals’ frequencies will remain strictly proportional to one another
right up o the moment of coalescence. This follows from the fact that df/dt is proportional to a power
of f, so that, as remarked after Eq. (11), there is a constant a independent of the masses such that
Teoalascance = af/f. If two signals with present frequencies f; and f; have the same Teoqtescances then it
follows that ’

@b h

dfy I’'e I
Since if their times to coalescence are equal at one time then they are necessarily equal for all later times,
this equation can be integrated to give fi/fs = const.

" Now suppose that the data stream is sampled at constant increments of the phase of signal 1, i.c. it is

sampled at a rate that accelerates with the frequency f;. Then if a Fourier transform is performed on
the sampled points, the signal will appear just as a pure sinusoid, allowing it to be identified without
sophisticated filtering. Moreover, and this is the key point, every other signal with the same time to
coalescence will have been sampled at constant increments of its phase as well, since its frequency has
been a constant times the first signal’s frequency. So signals from any binary coalescing at the same time,
oo matter what its mass parameter, will be exposed by the single Fourier transform. Thus, one Fourier
transform would seem to have done the work of all 1000 filters!

The situation is not quite that good, however, because a signal with a different coalescence time will not
be visible in the transform of the points sampled in the manner just described. Therefore, data must be
sampled over again at the increasing rate ending at cach possible time of coalescence of the binary. If this
is done, then every possible signal will be picked up.

One way of implementing this method would be to sample the detector output at a constant rate (c.g.
1000 Hz) and then interpolate to form the data sets that are given to the FFT routine. If we compare
this interpolation method with the filtering described earlier, one trades the work of doing 1000 Fourier
transforms on a stretch of data for the work of interpolating many times. The actual comparison depends
on the number of operations required by the interpolation algorithm, but in general Smith’s method with
interpolation becomes more attractive as the number of filters one must use increases.

Another way of implementing Smith’s method — and the way she herself used — would be to sample the
detector output very fast, say at 10 kHz, and then to extract a data set at a slower rate (perhaps 500 -
1000 Hz) by selecting from the sampled points those points closest in time to the places one ideally would
wish to sample. This is a far faster procedure than interpolating, and it seems to me that it would not
necessarily be less accurate than a simple interpolation algorithm. I will call this stroboscopic sampling;
we will meet it dgain when we discuss searches for pulsars. I do not know of any theoretical analysis of
it; in particular, one would like to understand what it does to the noise background. The idea, at least
in astronomy, seems to go back to Horowits (1969), who devised it for optical searches for pulsacs.



It may well be that for 1000 filters, Smith’s method will be more efficient than filtering. Howeaver, it bas
at least two significant disadvantages over filtering:

1. It is restricted only to looking for the Newtonian coalescing binary signal: even any corrections
(such as for post-Newtonian effects) will bave to be searched for by Altering the sampled data sets,
and the sets are essentially useless in searches for other kinds of signals that we may wish to filter
from the data. :

2. Signals with the same coalescence time but dificrent mass parameters will enter the observing
window (say, f > 100 Hz) at different times, aad this presents a possible problem that was first
pointed out by Harry Ward. If one decides to break the data stream into sets of length, say, 2-3
s, appropriate to coalescing 1.4 neutron stars starting at 100 Hz, then the set will be much too
long for a signal from a binary system of two 14{g. black holes that will coalesce at the same time.
The black hole system will have frequency 24 Hz when the data set begins, and will be buried in
the low-frequency detector noise. When the data are transformed, this noise will be includ™ in the
transform, and the signal-to-noise ratio will accordingly be reduced. The matched filtering mechod
does not suffer from this drawback, since it filters out the low-frequency noise. It might be possible
to avoid this problem by pre-filtering the data stream before it is sampled ot interpolated, removing
the low-frequency aoise (and signal).

Given our present uncertainties about sources, my ows peejudice is to use filtering because of its inherent
flexibility; but Smith's method may become impostaat if fltering places too great demands on the
computing system.

2.2.3 Looking for pulsars and other fixed-frequency sources

2.2.3.1 Why the data-analysis problem is difficult. There are many possible sources of gravi-
tational radiation that essentially radiate at a fixed frequency. Pulsars, unstable accreting seutron stars
(the Wagoner mechanism), and the possible long-term spindown of a newly-formed neutron star are
examples. In some cases, such as nearby known pulsars, we will know ahead of time the frequency to
look for and the position of the source. But most continuous sources may have unknown frequencies:
indeed they will only be discovered through their gravitational waves. I will first discuss the detection
problem for sources of known frequency, and then consider searches for unknown sources. Throughout
this discussion, the word “pulsar” will stand for any continuous source. The most complete discussion of
this problem of which I'am aware is the Ph.D. thesis of Livas (1987).

If we were on an observing platform that had a fixed velocity relative to the stars, and therefore to any
pulsar we might be looking for, then finding the signal would be just a matter of taking the Fourier
transform of the data and looking for a peak at the known frequency. This is a special case of matched
filtering, since the Fourier integral is the same as the correlation integral in Eq. (18) with the filter
equal to a sinusoid with the [requency of the incoming wave. Therefore, the signal-to-noise ratio for an
observation that lasts a time Ty, would increase as T:,l,z, just as in Eq. (30).However, the Earth rotates
on its axis and moves about the Sun and Moon, and these motions would Doppler-spread the frequency
and reduce its visibility against the noise.

How long do we have to look at a source before it becomes necessary to correct for the Earth's motion?
If we consider only the Earth's rotation for the moment, then in a time T.,, the detector’s velocity
relative to the source changes by an amount Av = Q4 RaTus,, where Ry is the Earth's radius and Q25
its angular velocity of rotation. In a source of frequency f, this produces a change Afpeoppier = vf/c.
But the frequency resolution of an observation is Afobservaste = 2/To,. The Doppler effect begins to
be important if Afpoppier = Ofobsarvabte. Solving this for Toi, gives Tmass the maximum unconecte’d
observing time: . ’

2c
3 fRe

W 70(_1.&)"/’min. (38)

Tmas = (

Using the same formula for the effects of the Earth’s orbit around the Sun gives a time roughly 2.4 times
as long. The Earth’s motion about the Earth-Moon baryceater also has a significant effect. Since any
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serious observa.nion is likely to last weeks or months, the Doppler effects of all these motions must be
removed, even in searches for relatively low-frequency signals (10 Hz).

2.2.3.2 Angular resolution of an observation. The Doppler corrections one b
: ‘ ! . s to apply depend
on the location of the source in the sky. Since the spin axis of the Earth is not parallel tzpitys ort\))ital

angula.r momentum vector, there is no symmetry in the Doppler problem, and every location on the sky
needs its own correction.

It _i.s .of interest to ask how close two points on the sky may be in order to have the same correction;
this is th'c same as asking what the angular resolution of an observation might be. Let us first imagm;
for ‘slmpllcxty that our detector participates in only one rotational motion, with angular velocity Q and
mdm.s R. If two sources are separated on the sky by an angle A8 (in either azimuth or altituds), then
the difference between the Doppler corrections for the two sources depends on the difference between the
cb{mgm in the detector’s velocities relative to the two sources. For small A8 this is Av = A0QL RaT,
Usms this velocity change, the argument is otherwise identical to that given in the previou: se‘z{i:)‘r;'
pr?vxfied that Top, < 1/Q. For longer T.u,, the frequency shift begins to decrease again, so the maximun;
shift is given at least roughly by setting Toi, equal to 1/Q in this argument. The result is that

ad= T:u: max(ﬂ’, I/To’h)' (39)

th:n looking at & source with a frequency of 1 kHz, then for the Earth’s rotation, and an observation
lasting longer than a day, this gives

= [y '
Abrotation = OI(Tk—H‘; rad, ) (40)
:hich is about half a degree fox: a millisecond pulsar. For the Earth’s motion about the Earth-Moon

arycenter, and for‘ an observation lasting longer than one moath, the angular resolution improves to
0.01 rad, or approximately half a degree. For the Earth’s orbit around the Sun, we have

— -8 l - Tah -

Ao,ru. =1x10 (ITHZ- ‘(m) 'rad, (4’.)
which is about 0.2 arcsec for a millisecond pulsar. The Earth’s orbital motion therefore affords the
bett?r angular resolution, but it also makes the most stringent demands on applying the corrections. In
‘parf.mflar, uncertainties in the position of the pulsar being searched for, orbital motion of the pulsar
in a bmax:y system, proper motion of the pulsar (e.g., a transverse velocity of 300 km/s at 200 pc)
or fﬂ)predxcted changu in the period [anything larger than an accumulated fractional change A f/f o,f
10~19(£/1kHz)~!] will all require special techniques to compensate for the way they spread the frequency
out over more than the frequency resolution of the observation.

2.2.3.3 ] The tgchno!ogy of performing long Fourier transforms. We shall see that there are
several dxﬂ'exex}t ?trategm one can adopt Lo search for pulsars, whether known ahead of time or not, but
all q[ Ltsem will involve performing Fourier transforms of large data sets. It will help us compa:e; the
efficiencies of different strategies if we first look at how this can be done.

If one imagines that the observation lasts 107 s with a sampling rate of 1 kHz, then one mus

FF:I‘ with roughly 101° data points. This requires roughly 35 lgg, N operatio;xs for N = 2:* ;pff;‘:ll!:)'a;
Thm‘evaluatu to 1'.7 % 10'? operations per FFT. Given the 50 Mfops computer we required eatlier for
filtering for coalescing binaties, this would take about 10 hours. This is not unreasonable: over 200 FFTs
could be computed in the time it took to do the observation.

The real difficulty with this is the memory requirement: FFT algorithms require access to the whole data
set at once. To achieve these processing speeds, the whole data set would have to be held in fast memory,
all‘ 20 Qbytes of it. Unless there is a revolution in fast memory technology, it does not seem likely thatI
this will be possible, at least not at an affordable level. One could imagine being able to store the data
on a couple of 10-Gbyte read/write optical discs, and then using a mass-store-FFT algorithm, which uses
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clever paging of data in and out of store. This would still be very slow, but its exact speed would depend
on the computer system.

An alternative method of calculating the Fourier transform would be to split the data set up into Af

cbunks of length L, each chunk being small enough to fit into core. By performing FFTs on data sets of

length L it is possible to calculate the contribution of each subset to the total transform. It is not hard
to show that the work needed to construct the full transform from these individual sets is about M times
the work needed to do it as a single set. With a memory limit of 200 Mbytes and a machine capable
of 50 Mflops, it might be possible to do one or two Fourier transforms in the time it takes to do the
observation. With the same memory in a machine capable of 1 GHop, one could do 40 Fourier transforms
in the same time. These are big numbers for memory and performance, but they may be withia reach of
the interferometer projects by the time they go on-line. The numbers become even more tractable if we
are looking for a pulsar under 100 Hx: with a data rate of only 100 Hz, say, the wotk for a given number
M of subsets goes down by a factor of about 11, It is clear that it is possible to trade off memory against
CPU speed; the technology of the time will dictate how this trade-off is to be made. .

If it proves impossible to compute the full transform exactly, there are approximate methods available,
such as to subdivide the full set into M subsets as above, but then only to compute the power spectrum
of each subset and to add the power spectra together. This reduces the frequency resolution by a factor
of M, with a proportionate decrease in the spatial resolution and in the number of different positions
that an observation might need to search. It also reduces the signal-to-noise ratio of the observation. It
may be possible to use techniques developed for radio pulsar searches (Lyne 1989).

2.2.3.4 Detecting known pulsars. The earliest example of using a wide-band detector to search
for a known pulsar is the experiment of Hough, et al (1983), which set an upper limit of A < 8 x 10~?} on
radiation from the millisecond pulsar, PSR 1937+214. Future interferometers could better this limit by
many orders of magnitude, but they will have to do long observing runs (some 107 s) to achieve maximuin
sensitivity, The analysis of the vast amount of data such experiments will generate poses greater problems
for analysis than those we addressed for coalescing binaries.

Let us assume that we know the location and frequency of a pulsar, and we wish to detect its radiation.
We need to make a correction for the Doppler effects from the known position, or from several contiguous
positions if the position is not known sccurately enough ahead of time. As for coalescing binaries, we
can do this either by filtering, or by interpolation or stzoboscopic sampling.

- Let us consider filtering first. In this context a filter is just a sinusoidal signal Doppler-shifted to give the
expected arrival time of any phase at our detector. If only one rotational motion of our detectors were
present, and if the observation were to last several rotation periods, then only points separated in the
polar direction would need separate filters: points separated in azimuth have waveforms that are simply
shifted in time relative to one another, and so correlating the data in time with only one filter would take
care of all such points.

However, our detectors participate in at least tAree rotational motiona about different centers, and the
observations will probably last only a fraction of a period of the most demanding motion, the solar orbital
one. This means that filters lose one of their principal advantages: searching whole data sets for similar
signals arriving at different times.

Filtering requires that at least three FFTs of long data sets must be performed: of the filter, of the
sampled data, and of their product to find the correlation. Even for a well-known soutce, there will
have to be several filters, because the phase of the wave as it arrives will not be predictable, nor will
its polarization. The phase of the wave depends on exactly where the radiating “lump” on the pulsar

is. A given detector will respond to the two independent polarizations differently as it moves in orbit ’

around the Sun; the polarization will generally be elliptical, but the proportion of the two independent
polarizations and the orientation of the spin axis are unknown. Each of these variables must be filtered
for, and each filter needs two more FFTs (the data set needs to be transformed only once).

If the source's position and/or frequency are not known accurately, then even more filters will be required,
each adding two further FFTs. Given the problems we saw we might have with FFTs, this could be a
costly procedure.
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Let us therefore turn to interpolation, or its even more efficient cousin, stroboscopic sampling {defined
in Sec. (2.2.2.7)). Given a position on the sky, one samples the data at intervals of time that represent
the arrival of constant increases in the phase of the expected signal at the detector. A simple Fourier
transform of the data set thus produced will find the signal, including its phase. The changing response
of the rotating antenna to the polarization of the signal will cause a small modulation of the signal.
spreading out the Fourier transform slightly.

Moreover, strobescopic sampling would be particularly easy and fast in this case, since the sampling rate is
always nearly constant in the Earth’s rest frame. Consider a case where 10 kHz data are stroboscopically
sampled at an average rate of 1 kHz. Normally one takes every tenth point, but occasionally one must skip
to the ninth or eleventh point to keep in synchronism with a clock in the inertial frame. The calculation
of these “leap points” is the only floating-point operation necded for this case.

Even if the frequency of the pulsar is not known well enough, there is no real problem: the exact frequency
will come out of the Fourier transform. If the position is not known well enough, then different samplings
must be made for different positions, even those separated oaly in azimuth. This might require more
positions to be analyzed separately than with filters, where some of the azimuthal ambiguity can be
resolved by a single filter. Each position requires a data sampling and a Fourier transform; this is to be
compared with two Fourier transforms for each filter used.

Sampling has two advantages over filtering. First, stroboscopic sampling is much faster than an FFT
of the full data set, and it makes no special demands on fast memory. Second, filters must be matched
in phase and polarization to that of the signal, and even for known sources these parameters will not
usually be known in advance. Therefore, several filters will be needed for each position and frequency,
while the Fourier transform of a sampled data set will determine the phase and polarization directly.
Against this is the possibility that filtering will take care of a number of azimuthally-separated positions,
while sampling can handle enly one at a time.

It may well be that, on balance, sampling will be the method of choice for this problem. But the choice
will depend to some degree on the pulsar being looked for: on how accurately its position and frequency
are known in advance, and on other factors such as its slowing down rate, its stability, its proper motion,
or its possible membership of a binary system.

2.2.3.5 Searching for unknown pulsars. One of the most interesting and important observations
that interferometers could make is to discover old nearby pulsars or other continuous wave sources. There
may be thousands of spinning neutrons stars — old dead pulsars — for each currently active ope. The
nearest may be ouly tens of parsecs away. But we would have to conduct an all-sky, all-frequency search
to find them. We shall see in this paragraph that a single detector cannot do this job with foreseeabie
computer technology. However, when we study cross-correlation methods among several detectors in
Sec. (2.4.3) below, we will find that three detectors working together can perform an efficient all-sky

search, albeit at lower sensitivity than one could achieve if the methods examined below could be made
practical.

The filtering method described above for detecting known pulsars works only if the frequency of the
radiation is known in advance. If we try to use filters to search all the sky, how many will we need?
Let us again assume that the observation will last 107 seconds and that the data rate will be 1 kHz.
The motion about the Sun is the most important, requiring different filters for positions spaced 10-$
radians apart {Eq. (41)]. In the polar direction, this means we need of order 3 x 10% angles. In the
azimuthal direction, we might not need so many: as we noted above, if there were no other motions and
if the observation lasted several years, then we would need only. one filter for an entire 2x azimuthal
strip. But there are other motions, so I will approximate their effect by demanding a resolution in the
azimuthal direction corresponding to that required in the polar direction by the Earth’s motion about
the Earth-Moon barycenter, 1 x 10~2 radians [Eq. (40)}, This would give 600 angles azimuthally, leading
to a total of 2 x 10° angular positions.

Let us also assume, somewhat optimistically, that we nced four filters to cover different phases and four
for polarizations. Since each filter is constructed for a given frequency, and we have as many frequency
intervals in the Fourier transform as we have data points before the transform (10'9), we need 3 x 102°
filters to do an all-sky, all-frequency search with filters! Of course, pulsar searches are likely to take




19

place in interferometers which are being run in a narrow-banding mode, such as resonant recycling. This
enhances their sensitivity in a bandwidth that is some 1% or less of the full detector bandwidth. This
would reduce the number of filters needed for any observation to something like 10! or so, but this is
still huge. And the cost is that pulsars outside the bandwidth of the detector canuot be found.

The alternative method, stroboscopic sampling, improves the situation, but not enough to be tractable.

For this a different data set has to be extracted for each angular position, even in the azimuthal direction, |

requiring about 103 data sets. Each one will, when Fourier transformed, search all frequencies, phases,
and polarizations for us, so this method is better than filtering by a factor of 107 or more, but it still
makes impossible demands of the computing machinery. Even a 1 Tflop computer which could hold the
whole data set in store would take some 10% years to perform all the FFTs!

This number scales as (T4, £)3, so that observations at lower frequency or of shorter duration might
be possible. For example, an observation at 100 Hz lasting oaly 1 day would take a 1 Gflop computer
half a year to analyze with stroboscopic sampling. It becomes clear that seasitive all-sky, all-frequency
searches using the data of only a single detector will be difficult, and pecthaps impossible for long data
runs. {n Sec. {2.4.3) below we will see that using cross-correlations between different detectors improves
the situation dramatically.

[ do not believe we have henrd the lnst word on this subject, however. The importance of the problem
means that it may be rewarding to look at it more deeply to see if some special features of it can be
exploited to make it tractable. B

2.3 Combining lists of candidate events from different detectors

Uatil now 1 have kept the discussion to the analysis of one detector’s data, but it is clear that for the
best signal-to-noise tatio and for the extraction of complete astrophysical information, detectors must
operate in coincidence. I will consider in this section the simplest method of coordinated observation:
exchanging lists of events detected in individual detectors. [ have elsewhere (Schutz 1989) called this the
“threshold mode” of network data analysis, because each detector’s criterion for an “event” is that its
amplitude crosses a pre-set threshold.

We have seen in Sec. (2.2.1.2) how the thresholds can be determined. Once events have been identified
by the on-line computer — either in the time-series of data directly or by filtering — it is important
that the data from these events be brought together and analyzed as quickly as possible. If the event
is a supernova, we have considerably less than a day before it might become bright enough to be seen
optically, and optical astronomers need to be told of it as quickly as possible. If the event is a coalescing
binary, there may be even more urgency: the absence of an envelope around a neutron star means that
any radiation emitted may come out with much less delay than in a supernova. Since we know so little
about what such events look like, it would be valuable to have optical telescopes and orbiting X-ray
telescopes observe the region of the event as quickly as possible.

The rapid exchange of data is certainly possible: with modern electronic mail systems, it would be easy
to arrange that the on-line computers could automatically circulate lists of events and associated data
periodically, such as every hour. We should bear in mind that, if the threshold is set so that a network
would have a four-way false alarm only once per year at a data rate of 1 kHz, then each detector will
see a spurious noise-generated event three times per second! It will be impossible Lo distinguish the real
events from the spurious until the lists of events from the various detectors are compared. The initial
lists need not contain much data, so links over the usual telephone networks will be fast enough at this
stage.

What sort of data must be exchanged? If the event is seen in a filter, the list should include the amplitude
of the event, the parameters of the best-fit filter, and an agreed measure of the time the signal arrived at
the detector (such as when a coalescing binary signal reached some fiducial frequency, e.g. 100 Hz). It will
probably also be necessary to include calibration data, as the sensitivity of interferometers will probably
change from time to time. If the signal has a high signal-to-noise ratio, thea it may be desirable to include
other information, such as its correlation amplitude with other filters, or even the raw unfiltered data
containing the signal. The feasibility of this will depend upon the bandwidth of availabie communication
channels.
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If the event is a broadband burst seen in the time-series, then it will be even more important to exchange
the raw data, along with timing and calibration information. If raw-data exchange is impossible, then
at least some description of the event will be needed, such as when it first crossed the threshold, when it
teached its maximum, and when ic went below threshold.

Once likely coincidences among detectors have been identified, it will then be useful to request the on-line
computers to send out more detailed information about the selected candidate coincidences. Since these
requests will be rarer, it will not overburden the communications networks to exchange raw data and
more complete calibration information for the times in question. If the events then still seem significant,
they should be broadcast to other astronomers and analyzed more thoroughly at leisure.

2.4 Using cross-correlation to discover unpredicted sources

The threshold mode of analysis is unsuitable for some sources, such as continuous waves or weak events
that we bave not predicted well enough ahead of tiine to construct filters for. In these cases, the “corre-
lation mode” is appropriate: using cross-correlations between the data streams of different detectors.

Cross-correlation has its own problems, however: its signal-to-noise relations are rather different from
filtering, and the different polarizations of different detectors mean that signals in two different detectors
from the same gravitational wave may not exactly correlate. In the next section I will give a general
discussion of cross-correlation, addressing the behavior of noise and assuming that the two data streams
contain the same signal. The problem of polarization has been solved by Gursel & Tinto (1989); I will
discuss their approach in the subsequent section.

2.4.1 The mathematics of cross-correlation: enhancing unexpected or unknown signals

It is useful to think of cross-correlation as the use of one data stream as a filter to find things in the other
data stream. Thus, if the first stream contains a signal that hasn’t been predicted, one can still find it in
the second. If we adopt this point of view, then we must face two important differences between matched
filtering and cross-correlation as a means of enhancing signal-to-noise ratios. These are:

1. The “filter” is noisy. In fact, in the case of most interest, the signal is below the broad-band noise
and the power in the filter is dominated by the noise. If we really had an instrument with an infinite
bandwidth, then the noise power would be infinite and we would never see the signal. In practice,
we will see below that we must filter the data down to a finite bandwidth before performing the
correlation in order to achieve an acceptable signal-to-noise ratio.

2. The “filter” also contains the signal we wish to find, of course, but the amplitude of this part of
the filter is not known a priori: it is the amplitude of the incoming signal. This means that if the
incoming signal is reduced by half, the response of the filter to it will go down by a factor of four.
We shall see that this leads to the biggest difference between matched filtering and cross-correlation
when they are applied to long wavetrains: the enhancement of signal-to-noise in cross-correlation
increases only as the fourth root of the observing time ot the number of cycles in the signal, not as
the square root we found in Eq. (30).

If we have two data streams 0y and 0y containing the same signal h but independent noise amplitudes
ny aad ny,

or(t) = h(t) + na(t),ox(t) = h(t) + na(t), | ()

their cross-correlation is
ojoog=hoh+nioh+hony+nyons. (43)

The “signal” is the expectation of this, which is just h o h. The variance of the correlation, however, is a
problem. The final term contributes :
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The presence of two delta functions in the integrand makes this expression infinite: if we allow all the
noise in the detectors to be cross-correlated, then the variance of the correlation will swamp the signal,
The solution is (i) to Alier the output down to a suitable bandwidth 8 before correlating, and (ii) to
perform the correlation only over a finite stretch of data lasting a time T'. If we use a superacript F to
denote the filtered version of a quaatity, then the analog of nyong is

T *
La(t) = / af (L +t)a. (44)
0
[ts variance is
T 4T
<Ua@>= [ [ < of (haf VInf 0 + 00 (3 +0) > . ™ (49)
(] (]
The key to evaluating this is the expectation
12
<nf@nl () >=2 / Sif)cosl2rf(t — ))df, (46)
h

whete f; and f; are the lower and upper limits of the filtered frequency band ( f2 = f1 + B), and where
the factor of 2 arises because negative frequencies must be included in the filtered data as wel] as positive
ones. It is a straightforward calculation to show that, assuming for simplicity that 5; (f) has the constant
value al?, over the bandwidth, then for the most important case 2rBT > 1,

< Ia(t) P> Ga'?langT. {47)

This part of the noise is proportional to the bandwidih of the data and the duration of the correlation. The
duration will usually be chosen so that the condition 27 BT > 1 is satisfied, for otherwise the experiment
would be too brief to detect any signal that fit within the bandwidth B. The remaining contributions
to the variance of the cross-correlation come from the second and third terms of Eq. (43) (strictly, from
their filtered and finite-time analogs). These are just like Eq. (19), and add to Eq. (47) a term equal to
(@ +o3 ) J5 1M at.

The case of most interest to us is where the “raw” signal A¥(t) is smaller than the time-series noise in
the bandwidth B in each detector, nf (t). Then the variance is dominated by Eq. (47) and we have the
following expression for the signal-to-noise ratio of the cross-correlation

o= Jo AT dt

SN — ratio = WI—,—. (48)
This bas considerable resemblance to the filtering signal-to-noise ratio given in Eq. (20), and this justifies
and makes precise our notion that cross-correlation can be thought of as using a noisy data stream as the
filter. To coavert Eq. (20) into Eq. (48), we must (i) replace the filter in the numerator with the signal
AF that is in the noisy “filter”, and (ii) replace the filter power in the denominator with the noise power
of the noisy filter, since we have assumed th%s power is the largest contributor to the nojse.

However, Eq. (48) does not give us the signal-to-noise ratio for the gravitational wave signal, since its
numerator is proportional to the square of the wave amplitude. This is the effect that we noted at the
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beginning of this section, that the “filter” amplitude is proportional to the signal amplitude. The true
amplitude signal-to-noise ratio is the square root of the expression in Eq. (48):

5 _ U I @R ans (49)
N~ (807,03 BTV _

There are two cases to consider here, long wavetrains and short pulscs.

Long wavetrains. The best signal-to-noise is achieved if we match the obser\‘wcion time T to the du-
ration of the signal or, in the case of pulsars, make T as long as possible. Lct us assume fo:
simplicity that the two detectors have the same noise amplitude, and let us denata by R the “t_aw
signal-to-noise ratio of the signal (its amplitude relative to the full detector noise in the bandwidth

B), )
R= (—2-—3-;)%-5‘—/7.
Then we find
" = (G, (50)

The signal-to-noise ratio increases only as the fourth root of the observation time. If we are looking
at, say, the spindown of a newly formed pulsar, lasting 1 s, and we filter to a bandwidth of 1 kHz
because we don’t know where to look for the signal, then the enhancement factor (BT/8)Y4 is only
3.3: short wavetrains are improved, but not dramatically. If we are looking at a pulsar, again in a
broadband search with 1 kHz bandwidth, but in an observation lasting 107 s, then the enhmcemcxtl.
of signal-to-noise is a factor of about 200. This is & lot less than can be achieved by filtering, but.'u.
is nonetheless significant. It shows that cross-correlation can be useful in pulsar searches. We will
see below in detail how an all-sky search may be conducted by these methods.

Short pulses. Here one would set the bandwidth B equal to that of the pulse; if the pulse has dum%ion
roughly T = 1/ B, and if again the two detectors have the same noise amplitude.'thcn Eq. (49) gives
a signal-to-noise ratio that is a factor of roughly 8!/4 ~ 1.7 smaller than the optimum that fltering
can achieve. For TB =3 1 some of our approximations are breaking down, but it is reasonable that
using this noisy filter would reduce the signal-to-noise by a factor of order 2'4 Sinf:e in tl’}is case
filtering does not enhance the signal-to-noise ratio, neither does cross-corselation: .lf the signal is
too weak to be seen above the broadband (bandwidth B) noise in one detector, it will not be found
by cross-correlation.

I will conclude this section by pointing out another difference between filtering and cross-cortelation. Since
for signals below the broadband noise (R < 1), we do not know where the signal is in the data stream
used as a filter, it follows that we cannot determine the time of arrival of the signal from th? corelation,
apart from a relatively crude determination based upon the presence or absence of correlatxons. between
given data sets of length T. The correlation also does not tell us the waveform‘and therefore it cannot
determine the true amplitude of the signal. It can, however, determine the time-delays between the
arrival of events at different detectors.

2.4.2 Cross—correlating differently polarized detectors

A more sophisticated approach to correlation has been devised by Gursel & Tinto (1989) in %heir approach
to the inverse problem, which I will describe in more detail in Sec. (3) below. .It. works if there are at
least three detectors in the network. I shall neglect noise for simplicity in describing the method. If we
let 8 and ¢ be the angles describing the position of the source on the sky anfi we use ai, Bi, and x; to
represent the latitude, longitude, and orientation of the 7'th detector respectively, and if we have some
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to have is 500 km. This may be achievable within Europe, but it seems .most unlikely that detectors in
the USA will be built this close together. The data analysis is exactly the same as for two detectors on
the same site. .

3 Interpretation of the Data: the Inverse Problem

The inverse problem is the problem of how to reconstruct the gravitstional wave from the observations
made by a network of detectors. A single detector produces limited information about the wave; in
patticular, on its own it cannot give directional information and therefore it canaot say what the intsinsic
amplitude is. With three detectors, however, one can reconstruct the wave entirely. Ia the last two or
three years there has been considerable progress in understanding the inverse problem: see Tinto (1987),
Dhurandhar & Tinto (1988), and Gursel & Tinto (1989). 1 will summarize the main ideas as [ understand
them at present, but this is an area in which much more developmeat is likely soon.

3.1 Bursis seen in several detectors

A gravitational wave is described by two constants — the position angles of ils source, (8, ¢) — and
two functions of time ~— the amplitudes of the two independent polasizations A4 (t) and Ax(t). Simple
counting arguments give us an idez of how much we can learn from any given number of dejectors. 1 will
ignore the effects of noise at first.

For signals that stand out above the broadband noise:
o A single detector gives its response r(t) and nothing else. Nothing exact can be said about the

waves unless non-gravitational data can be used, as from optical or neutrino detections of the same
event.

Two detectors yield two responses and one approximate time delay between the arrival of the wave
in one detector and its arrival in the other. Two functions of time and one constant should not be
enough to solve the problem, and indeed they are not. The time delay is only an approximate one,
because the two detectors will generally be responding to different linear combinations of A4(t) and
hx(t), so there will not be a perfect match between the responses of the two detectors, from which
the time delay must be inferred. The time delay will confine the source to an error-band about a
circle on the sky in a plane perpeadicular to the line joining the detectors. The antenna patterns
of the detectors can then be used to make some places on this circle more likely than others, but
the unknowa polarization of the wave will not allow great precision here. If the location of the
source can be determined by other means, and if noise is not too large, then the two responses can
determine the two amplitudes of the waves.

Three detectots cross the threshold into precision astronomy, at least when the signals stand out
against the broadband noise. Here we bave three functions of time (the responses) and two constants
(the time delays) as data, and this should suffice. As described in Sec. (2.4) above, correlations
among the three detectors can pin down the location of the source and, if noise is not too impostant,
the time-dependent amplitudes as well. In this case, there is redundant information in the data
that can be used to test Einstein's predictions about the polarization of gravitational waves: pure
transverse quadrupole.

If noise is so important that filtering is necessary, there isa completely different way of doing the counting.
A given filter yields only two numbers: the maximum value of the corselation and the time the signal
arrives (i.c. when it best matches the filter). We can only assume that the signal’s waveform matches
the “best” filter, so instead of two unknown time-dependent amplitudes we will have the response of the
filtee, the time of acrival, and a certain number of parameter constants that distinguish the observed
waveform from others in its family.

Let us concentrate on coalescing binaries. The signal from a coalescing binarf is an elliptically polarized,
roughly sinusoidal waveform. The filters form a two-parameter family, characterized by the mass param-
eter M and the phase of the signal &, as in Eq. (8). The parameters we should be able to deduce are:
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the amprlieudc k of the signal, the ellipticity ¢ of its polarization ellipse (1 minus the ratio of the minor
and major axes), an orientation angle ¥ of the ellipse on the sky, and the binary’s mass parameter M
From_ these daf.a we can not only determine the distance to the system, but also the inclination angle oi‘
the binary orbit to the line of sight (from ) and the orientation of the orbital plane on the sky ( \b)g.

The masa parameter M will ho determined {ndependently In each detoc ¢
\ e tor, and of courae thay w
agree if the event is real. Each detecter in addition contributes the respo'nse of the flter, tie :)ll::s!:

parameter, and the time of arrival; these data must be used to deduce the fi
Here is how various numbers of det'ectora can use their data:? e the five constants {6, 4 Me, ¥).

. ?x;e detector does not have enough data, 3o it can only make average statemeats about the ampli-
ude.

Two detectors have four uscful data: two responses, one phase difference, and one time

the differences between the phases and times of arrival matter; the pl'\ase nn‘:f ::ge g;l:ﬁisglnx
the ﬁ'rst. detector are functions of the history. of the source.) If the two detectors were identicall
polarized, l_he phase difference would necessarily be zero. A nonzero phase difference arises becaus:
the two principal polarizations in an elliptically polarized wave are 90° out of phase, so if the
detectors r.mpond to different combinations of these two polarizations, they will hav'e different
phases. With four data chasing five unknowns, the solution will presumably be a one-dimensional
curve on the sky, but the problem has not yet been studied from this perspective.

Three detf:ctors have seven data: three responses, two phase differences and two time delays
The two time delay:s are sufficient to place the source at either of the intersections of two circla'
on the _sky. For either location, the three responses determine A, ¢, and . Presumably the
phase differences would be consistent only with one of these positions, thereby solving the problem

uniquely and incidentally providing the phase differences as a test of ge ivi
and neral t !
the polarization of gravitational waves. general relaivity's model for

1 l:ve‘ pru‘ent.edA tw? different App.rou.hu to the inverse problem, but presumably in many situations the
Te situation will hF somew!‘xere in-between. As far as I know, no work has been done on solving the
inverse problem for intermediate cases, where noise is significant but not dominant.

3.2 The inverse problem for pulsars

We have_ already largely discussed how the inverse problem would be solved by cross-cortelations. For
observatxons. of a pulsar (or other continuous source) already known from radio data, the pOSitiOl‘l and
fx‘equency will be obtained from the filter or Fourier transform of stroboscopically sa;npled points that
gives the best response: this will determine the position of the source, its polarization, and its frequency

to very high accuracy. The amplitude of the waves will be d i
i, el e determined to an accuracy that depends on

Notice that if a relatively low-frequency si i i i i
2 gnal is detected by either filtering or sampling a much fast
;i:ta s.t.:‘eam (say 100 Hz samples from a 10 kHz data stream), then it would be possiblge to go baca: :;
e orsglnal data stream anfi refine the position and frequency by finding the filter that best fits a faster
sampling of the data. In this way, positional accuracies approaching 10 milliarcseconds may be possible.

Ol.\lt_:l: a signal has been idenciﬁed', higher frequency harmonics should be searched for as well, since it is
unlx ely that the mass deformatmfx giving rise to the gravitational waves will be such as to radiate at
only one frequency. These harmonics will contribute detailed information about the star’s structure.

Il:')epe:nd'ing on the particular pul?a:. there might be other inform;tion'in the gravitational waves. It might
e possible to see a proper motion, to measure the spindown rate or even its derivative, or (for pulsars
nearer than 10~100 pc) to measure the parallax and hence the distance.

VThis discussionis very different from i i
’ ’ previous onies [ have given, c.g. Schuta (1989). In these [ had not yet i
th:klm;?ortmx.:a of being able to determine the phase p independently of t(he lilllt of l.l:;:l]. ';'Tﬁ:oex{:t :,fz:::::
makes it possible to solve the inverse problem with fewer detectors than 1 had previously belicved.

!
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definition of polarization of the waves so that we can describe any wave by its amplitudes hy and Ay,
then the response r = 5¢/L of the 'th detector is a function of the form

Pi“) = E;,N-(O, d,a‘,ﬁ‘,xdfu[‘ - 1‘4(0. é)] + Eul(oo & oha‘vxl)hl“ - ﬂ(" ‘)]‘ (“')

where 1;(8, ¢) is the time-delay between receiving a wave coming from the direction .(B, o) at sorme standard 4
location and at the position of the detector. We shall define the *standard location” by setting n= 0.
We need not be concerned hete with the precise form of the functions Eaxiy Exy, 8nd i, nor with the
exact definitions of the various angles.

The response equations of the first two detectors may be solved for Ay u_:d h?‘ and substituted into th'e
tesponse equation for the third to predict its response, for an assumed direction to the source, Let this
prediction be ry_predt

°
r3-prea(t) = =[Daar1(t = ) + Dyiraft + 72 = 1))/ Dy, (52)

where D;; is the determinaat

Dij = EyiBxj— ExiEyy.

-

If there were no noise in the detectots, then for some choice of angles 8 and ¢ th.ere would be exact
agreement between ra.preq and the actual data from detector 3, ry_op,. Given the noise, the best one can
do is to find the angles that minimize the squared difference d(8, 4) between the predicted and observed
tespouses during the interval of observation:

-, _
d(8,$) = /o [racobs(t) = ra-prea(t)|? at. (53)

Hidden in the integral for d are the correlation integrals we began with, ¢.9. f;t;(t)r,(t — 13)dt, These
will normally be the most time-consuming part of the computation of d for various angles, and should
usually be done by FFT. Once the correlations have been computed for all possible time delays, they may
be used to find the minimum of d over all angles; this will determine the position of the source. Notice
that if the noise is small, this information can then be substituted back into Eq. (51') for the first two
detectors to find hy(t) and hx(t). This solves the inverse problem. But if the source is weaker than the
noise, then this substitution will give mostly noise.

The information we have gained about the unpredicted source, even if it is w.eal':. is thal.lt i{; there:
its position is known and its arrival time can be determined roughly by. restricting the hm.e-m.tcrval
over which the correlation integrals are done and finding the interval during which one g?ts sxg.n?ﬁcant
correlations. This is enough to alert other astronomers to look for something in the source’s position.

2.4.3 Finding pulsars by cross-correlation

The Gursel-Tinto method can determine the direction to broadband burst sources, Put it cannpt disc_over
them because, as we have already seen, cross-cotrelation does not cl.xhunce the s:gnal~to—r1_onse r.auo of
short bursts. But pulsars (and other continucus wave sources) are different: crloss-correlauon w.‘“ help
pull them out of the noise, and so we can expect that the three-detector analysis can be the basis of an
all-sky search for such sources. ’

However, befote we can be sure we can make this work, we have to ensure that the signals really (!o
have the same time-dependence in each detector. Since detectors at different pches on tl_le Earth wn'll
have somewhat different motions and hence redshifts relative to a given source, it is not ob\(lous that t?us
will be possible. On the other hand, detectors on the same site will cleatly al?uys keep in phase wu‘h
each other, so what we need to determine is the maximum separation over which detectors can remain
correlated. | am grateful to J. Hough and H. Ward for clarifying my thinking on what follows.
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The problem is closely related to that solved in Secs.(2.2.3.1) and (2.2.3.2). In a time T,y, we can tolecate
a relative frequency shift betweea the two detectors of at most 2/T,,, and therefore a difference in
velocity of v/c = 2/fT,,, when observing waves of frequency f. If two detectors are separated by a

distance R, then the Earth’s rotation produces a maximum velocity difference Rflg. This leads to the
conatralat

2¢ 1kHz
R € o & 200 ——km 54
n@fToh f ! ( )

where I have taken T,), equal to 1/2 day, to get the maximum velocity difference that the Earth’s

rotation can generate. The other motions of the Earth have smaller angular velocity and therefore make
less stringent demands on R.

1t follows that a network of detectors that searches for millisecond pulsars by cross-correlation must be no
more than a few hundred kilometers in size. A worldwide network could search for low-frequency pulsars
(tens of Hz). Note that a pulsar signal from directly above the Earth’s North Pole would experieace no
redshift in any detector at all. The constraint above gets weaker as 1/sind,, where 8p is the angular
position of the pulsar measured down from the pole.

The Gursel-Tinto correlation method completely changes the picture for an all-sky search for pulsars. [t
requires only a few Fourier transforms, and therefore can be done with an effort that is comparable to

or less than that required for detecting known pulsars by filtering. How is this possible? Are we getting
something for nothing?

The answer, of course, is no. The improvement in signal-to-noise is less than that for filtering, so the
search cannot go as deep as individual pulsars can be found. Moreover, all the correlation will tell
us about unknown pulsars is that there is a source at a particular position. Its frequency and other
characteristics (such as whether it is in a binary system) do not come out. Nevertheless, the position
is probably the most important datum: it allows intensive searches for pulsed electromagnetic radiation
from that direction, and reduces the amount of work that one would have to do Lo try to discover the
pulsar in the data of a single detector, using stroboscopic sampling.

2.5 Using cross-correlation to search for a stachastic background

Another very important observation that interferometers will make is to find or set limits upon a back-
ground of radiation. This is much easier to do than finding discrete sources of continuous radiation,

because there is no direction-finding or frequency-searching to do. This problem has been discussed in
detail by Michelson (1987).

The most sensitive search for a background would be with two detectors on the same site, with the same
polarization. Current plans for some installations envision more than one interferometer in one vacuum
systemn, which would permit a correlation search. One would have to take care that common external
sources of noise are excluded, especially seismic and other ground disturbances, but if this can be done
then the two detectors should respond identically to any random waves coming in, and should therefore
bave the maximum possible correlation for these waves. The correlation can be calculated either by direct
multiplication of the sampled data points (2V operations per time delay between the two data sets) or
by Fourier transform methods as in Sec. (2.2.3.3) above. We are only interested in the zero-time-delay
value of the correlation, but in order to test the reality of the observed correlation, one would have to
compute points at other time delays, where the correlation is expected to fall off. (How rapidly it falls
off with increasing time delay depends on the spectrum of the background.) The choice of technique —
direct multiplication or Fourier transform — will depend on the number of time delays one wishes to
compute and the capacity of one’s computer. )

If separated detectors are used, the essential physical point is that two separated detectors will still
respond to waves in the same way if the waves have a wavelength A much longer than the separation
between the detectors. Conversely, if the separation between detectors is greater than A/2, there is a
significant loss of cotrelation. It is important as well to try to orient the detectors as nearly as possible
in the same polarization state. In order to search up to 1 kHz, the maximum separation one would like




4 Data storage and exchange

Although tie amount of data generated by a four-detector network will be kuge, I would argue sirongly
that our present ignorance of gravitational wave sources makes it important that the data should be
archived in a form that is relatively unprocessed, and kept for as long & time as possible, certainly for

several years. It may be that new and unexpected sources of gravitational waves will be found, which -

will make it desirable to go over old data and re-filter it. It may also be that new classes of events
will be discovered by their electromagnetic radiation, possibly with some considerable delay after the
event would have produced gravitational waves, and a retrospective search would be desirable. In any
case, we have already seen that it will be important to exchange essentially raw data between sites for
cross-correlation searches for unknown eveats. Once exchanged, it is presumnably already in a form in
which it can be stored.

4.1 Storage requirements

We bave seen in the introduction that a network could generate 5000 optical discs or videotapes per year.
Data compression techniques and especially the discarding of most of the housekeeping data at times
when it merely indicated that the detector was working satisfactorily could reduce this substantially,
perhaps by as much as a factor of ten. The cost of the storage media is not necessarily“trivial. Even
videotapes will run at $2,000-$20,000 per year, a cost that is not likely to decrease substantially; and
optical discs of large capacity could cost 10-30 times as much at present prices (which will, hopefully,
come down). Added to this is the cost of providing a suitable storage room, personnel to supervise the
stote, and equipment to make access to the data easy,

4.2 Exchanges of data among sites

We have already seen how important it will be to cross-correlate the raw data streams. At a data rate of
some 100 kbytes per second, or even at 10 kbytes per second if the data are compressed as described above,
this is well above the present bandwidths of international electronic mail networks. But these bandwidths
are being constantly upgraded, and so in five years the situation may be considerably different: it may be
Possible, at reasonable cost, to exchange short high-bandwidth bursts of data regularly via optical-fiber-
to-satellite-to-optical-fiber routes. Alternatively, a cheaper solution might be to exchange optical discs
or videotapes physically, by airmail or international courier. This would be slower, but if lists of filtered
events were exchanged on electronic mail networks, then there may be less urgency about exchanging the
full data sets.

4.2.1 Protocols, analysis and archiving centers

It will be clear from our discussion that exchanging and jointly analysing data will require careful planning
and coordination among all the groups. Discussions to this end are in a rudimentary stage now, but could
soon be formalized more.. Besides decisions on compatible hardware, software, data formats and modes
of exchange, there are a number of “political” Questions that need to be resolved before observations
begin. We are dealing with data that the groups involved have spent literally decades of their scientific
careers to be in a position to obtain, and the scientific importance of actual observations of gravitational
waves will be momentous. Questions of faitness and proprietary. tights to the data could be a source of
considerable friction if they are not clearly decided ahead of time. A model for some of these decisions
could be the protocols adopted by the GRAVNET network of bar antennas, described elsewhere in this
volume. Other models might be international VLBI, or large particle-physics collaborations. g

Some of the questions that need to be addressed age:

¢ how much data needs to be exchanged;

¢ what groups have the right to see and analyze the data of other groups and what form of acknowl-
edgement they need to give when they use it;

~

* what powers of veto groups have over the use of their data, for example in publications by other
people;

¢ how long the proprietaty veto would last before the data become “public domain” (the funding
agencies will presumably apply pressure to allow ready access to the data by othe: sclentists after
some teasonable interval of time);

e how long the data need to be archived.

Given the volume of data and the logistical complications of multi-way exchanges of it, it may be attractive
to establish one or more data analysis and archiving centers, perhaps one in Europe and one in the USA.
These would collect the data and store it, and perform the cross-cotrelations that can only be done with
the full data sets on hand. They would be “facilities” for the use of the various groups, and would
coordinate the distribution of data — not just the event lists for immediate coincidence analysis but also
raw dats — to anyone who wanted it and had a right to it. They could also be the locations for the
massive computers that would be necessary to search for pulsars. They could serve other functions as well,
such as maintaining wider databases on-line (bibliographies, astronomical catalogues, etc.), distributing
newsletters and even scientific reports and papers electronically, or coordinating the development of
common software for data reduction. All of this could in principle be made available to all the groups
simply by allowing group members to log onto the centers’ computers remotely,

5 Conclusions

In this review I bave sel out what I understand about the data analysis problem as of December 1988,
Evidently, the field is covered very non-uniformly: coalescing binaries have received much more attention
than pulsars or stochastic sources so far, and protocols for data exchange are something mainly for the
future. The inverse problem is under intensive study right now.

Nevertheless, it is clear that questions of the type we have discussed here will influence in an impottant
way decisions about the detectors: how many there will be, where they will be located, what their
orientations will be, what weights one should apply to the various important parameters affecting their
sensitivity (e.g., length, seismic isolation, laser power) when deciding how to apportion limited budgets
to attain the maximum sensitivity. Other questions that I have not addressed will also be important,
particularly choosing the particular recycling configuration most suitable to searching for a given class of
sources.

From the present perspective, it seems very likely that in ten years a number of large-scale interferometric
detectors will be operating with a broadband sensitivity of around 10~32. The data should contain plenty
of coalescing binaries and at least a few supernovae; but the most exciting thing that we can look forward
to is the unexpected: will this sensitivity suffice to discover completely unanticipated sources? The best
way to ensure that it does is to make sure that our data-analysis algorithms and data-exchange protocols
are adequate to the task: given the enormous efforts being made by the hardware groups to develop the
detectors, and the considerable amount of money that will be required to build them, it is importaat that
development of thé data-analysis tools not be left too late. The data-analysis problem deserves much
more work than it has so far received.
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