New Folder Name Status of Experiment

Status of the fixed-mass interferometer coupled cavity experiment

DHS, PF, RW 8 Oct 90

Alignment

- fixed some problems with HV amplifiers, got some more practice
- with very good alignment ($< 3\mu$ rad error)
 - o sensitivity to beam motion diminishes
 - o locking cavities (starting with AC (arm cavity)) gets easier
 - o cavities about 4 times more sensitive to misalignment when recycling

Recycling gain

- can measure losses, matching by looking at visibility of fringes from FPs
- A coherent set of figures emerges
 - M = 0.9 for each cavity
 - \circ 8 % loss in RC, 8 % loss in AC (on resonance) (same by coincidence)
 - \circ T_{RC}=28%
 - $\rightarrow G_{rec} = 5.4$ calculated, 5.2 measured.

Arm cavity error signal at 15 MHz

- works when very well aligned
- crosses 0 when cavities at maximum of power
- locking loop using 15 MHz error signal works fine
 - o gives offset if not well aligned, but
 - o still holds cavity well (but away from max. power)

Cavity narrowing

- can measure transfer functions for mirror motions up to 1 MHz
 use 15 MHZ or 5.38 MHz error signals well above UGF of servos
- see rolloff in phase and amplitude,
 - \circ $f_{3dB} \approx 80 \text{ kHz}$,
 - o phase shows drop and levels off at about 60°
- predicted combined cavity FWHM is 170 kHz ($\rightarrow f_{3dB} = 85$ kHz) • irrelevant for our servos of UGF $\approx 1...10$ kHz

Plans

- mismatch input beam to system, measure 'mode cleaning'
- make deliberate mode mismatch to AC
 - change length of AC
 - o measure recycling gain
- put in 'new' old mirrors for AC; get back to 2.8% loss?
- form short RC to demonstrate 'reasonable' recycling factor
 - o new mirrors for AC ordered
 - eliminate folding mirrors
 - eliminate pickoffs temporarily
 - sacrifice 15 MHz locking
- install second arm, with short or long RC
 - o use (at least initially) If (80 kHz) lock for arms

