New Folder Name SHOT Noise Comparison

Comparison of Non-recombined and Recombined Interferometer Shot Noise Sensitivity

R. E. Spero

11 January 1991

~robert/memos/shot-sens2.tex

Non-recombined Fabry-Perot

The displacement sensitivity for the system in its present, non-recombined configuration is 1

$$\tilde{x}_{NR}(f) = \frac{L}{\pi \tau_e} \sqrt{\frac{3}{8}} \sqrt{\mathcal{M}} \left[\frac{\lambda h}{cP} \left(1 + [f/f_k]^2 \right) \right]^{1/2} \tag{1}$$

with the modulation function defined by

$$\mathcal{M} = \frac{1}{3} \left[\frac{M^{-1} + A^2 J_0^2 - 2A J_0^2 + 2A J_0 J_2}{M A^2 J_0^2 J_1^2} \right]$$

Here λ is the optical wavelength, P is the total bright-fringe power, f= gravity wave signal frequency, M is the mode matching fraction (in the absence of modulation and mirror coupling mismatches), A represents the field inside the cavity and is given by $A=2/(1+\mathcal{L}/T_1)$, L is the length of one arm, $\tau_t=L/c$, τ_e is the cavity energy storage time, $f_k\equiv 1/(4\pi\tau_e)$, with $\tau_e=2\tau_t\left[T_1+\mathcal{L}\right]^{-1}$, and the Bessel functions J_0,J_1,J_2 are evaluated at the modulation index.

Recombined Sensitivity

The sensitivity for recombined but not recycled interferometers in Fabry-Perot and delay-line configurations is²

$$S_{h_{FR}}(f) = \frac{2\hbar c\lambda}{P} \left(\frac{1}{2BL}\right)^2 \left[1 + (2\pi BLf/c)^2\right]$$
 (2)

$$S_{h_{\rm DL}}(f) = \frac{2\hbar c\lambda}{P} \left(\frac{1}{2BL}\right)^2 \left[\frac{2\pi BLf/c}{\sin(2\pi BLF/c)}\right]^2$$
 (3)

where $\lambda = (\text{optical wavelength})/2\pi$, $\tilde{x}(f) = L\sqrt{S_h(f)}$, $2\pi BL/c \equiv 1/f_k$. For the Fabry-Perot, $1/2BL = 1/4c\tau_e$, and for the delay-line, B is the number of round trips in each arm.

¹Shot Noise in the Caltech Gravitational Wave Detector—The mid-1984 Configuration,, Stanley E. Whitcomb. There is a copy on file with annotations by R.S., draft dated 23 January 1990. The dependence on modulation index and mode matching is in agreement with a paper to be published by Niebauer et. al., Phys. Rev. A

²From the Article by Kip S. Thorne in 300 Years of Gravitation, eds. S.W. Hawking and W. Israel, Cambridge University Press, p. 330 (1987) page 424, Equation 115.