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Abstract

We report on experimental demodulation of non-stationary shot noise,
associated with strongly modulated light. For sinusoidal modulation and
demodulation, measurements confirm theoretical predictions of 1.8 dB excess
noise in the signal quadrature and 3 dB noise reduction in the opposite
quadrature, relative to the standard quantum limit. Demodulation with a
third harmonic produces noise correlated with that due to the fundamental.
Reduction of excess noise by 0.8 dB in the signal quadrature, by combining the

fundamental and third harmonics in a 2:1 ratio, is shown to be feasible.
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Optical modulation is commonly employed to enhance small signal
sensitivity in interferometric sensors and homodyne detection systems!2. In
quantum noise limited systems, however, modulation may also lead to
observable non-stationary shot noise. An unwanted side-effect in simple
demodulation and synchronous detection schemes is excess noise in the

signal quadrature.

Non-stationary shot noise has been implicated in the anomalously high noise
floor observed in the Garching prototype gravitational wave detector3, and
has recently been demonstated experimentally by both Mio et al4 and Meers et
all. In the latter experiment, sinusoidal modulation and demodulation
caused the noise level to vary by about 2.5 dB (peak-peak) with demodulation
phase. In our expen'xﬁent, we observed 4.8 dB (peak-peak) phase dependence,
close to the maximum predicted for fully sinusoidally modulated light, using

a Michelson interferometer with high fringe contrast.

. The excess noise in the signal quadrature may be cancelled by using more
advanced modulation and demodulation schemes!-3. In this letter we
demonstrate that the addition of a third harmonic in the demodulation
waveform introduces correlated noise, allowing partial cancellétion of the

excess noise in the signal quadrature.

Quantum noise is associated with any optical intensity measurement, and
appears as flat spectrum photocurrent fluctations with variance proportional
to photocurrent i(t). Non-stationary quantum noise in(t) in the photocurrent

i(t) is characterised by a time-dependent autocorrelation:

<ip(t) in(t + 7> = ei(t) 8(t) (1
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where e is the electronic charge and 3(t) is the Dirac delta function.

Optical modulations shift the signal spectrum to higher frequencies.
Baseband signals are generally recovered by feeding the photocurrent (signal
+ noise) into a mixer where it is multiplied by a periodic demodulating
function D(t). The autocorrelation of the quantum noise yn(t) at the mixer

output is
<ynl®) yalt+7> = e D) i(t) 8(r) @

The instantaneous power spectral density can be determined from the Fourier

transform of (2).

Experimentally, signals are extracted by tuning a receiver, with a finite
integration time T, to the desired signal frequency f. To resolve spectral
information, T must be much greater than the demodulation period. The
quantum noise power spectral density (assuming a single sided power

spectrum) is then

PE) = 2eDM) i(t) | @3)

where the bar denotes an average performed over the integration time T of
the receiver. This spectrum is flat (indepéndent of frequency f) but the

average on the RHS may vary slowly compared to T.

Of particular interest is an interferometer, with high fringe visibility, set to a

dark fringe, and subject to deliberate internal phase modulation. In the
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absence of other signals, sinusoidal phase modulation at a frequency fm

produces a photocurrent
i = io[1- coséntnt)] @)

where i, is the mean photocurrent. Demodulation with any periodic
waveform with a fundamental frequency fim will recover the baseband signal

spectrum. The simplest demodulation waveform is :
D(t) =  V2sin[2mfmt + (1) ] )

" where (1) is the offset phase (constant for synchronous demodulation). The

noise power spectrurﬁ is obtained by substituting Eqgs. (4) and (5) into Eq. (3):
Paf)= Pog[1+1/5c08([20()]] ©)

where Pgqi = (ﬁ eiy / T) is the noise power at the standard quantum limit for a
constant phétocurrent ip. The phase dependence is caused by intensity
modulation resulting from the deliberate optical phase modulation. (Typical
signals have negligible effect on shot noise.) Maximum signal demodulation
requires @ = 0, which corresponds, unfortunately, to an increased noise power
of 3Psq1/2. Likewise, setting the demodulation phase in quadrature with the
signal (¢ = x/2) results in a reduced noise floor of Psq1/2.

The reason for the phase dependence in Eq. (6) can be seen in a heuristic
picture of the time domain process of demodulation (see Fig. 1): A
modulated noise function is multiplied by in-phase (¢ = 0) and quadrature (¢

= 1/2) waveforms. The in-phase waveform "picks out” non-stationary noise
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better than the quadrature waveform. Egs. (3) - (5) imply that any modulated
photocurrent exhibits phase-dependent shot noise when demodulated at half

of the intensity modulation frequency.

The arrahgement shown in Fig. 2 was implemented to demonstrate the phase
dependence in Eq. (6). A Michelson interferometer was locked midway
between dark and bright fringes, and a resonant phase modulator in one arm
produced almost complete intensity modulation at 75MHz. The
interferometer was locked by minimising the second harmonic (150 MHz) in
the intensity spéctrum, via a piezo mounted mirror in one arm. The
maximum detected optical power at 1064nm was - around 5mW, with a

minimum of 0.17mW, a fringe visibility of 0.935.

To observe phase dependent noise, a demodulation frequency of 37.5 MHz
was required. Offsetting the frequency slightly from 37.5 MHz produces a
slow monotonic variation in the phase in Eq. (6), effectively‘ scanning @(t)
through all values between 0 and 2x repeatedly. The RMS noise will
oscillate_betWeen the two extremes allowed by Eq. (6) at a rate equal to twice

the demodulation frequency offset.

In Fig. 3(a), the demodulated shot noise is plotted against time, for a
demodulation frequency offset of a few Hz. The observed peak-peak
variation is very close to the 4.8 dB predicted for completely sinusoidally
modulated light. The effect of sweeping the demodulation freQuency offset
through zero is shown in Fig. 3(b). The receiver pbst-detection bandwidth has
been deliberately reduced to average out oscillations above 100 Hz. When the
demodulation frequency is sufficiently far from 37.5 MHz, the observed noise
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averages to the standard shot noise level, highlighting the 1.8 dB noise

penalty in the signal quadrature.

This excess noise can be partially cancelled by demodulating with higher (odd)
harmonics3. The simplest waveform that achieves this consists of the

fundamental and third harmonics:
D) =V2 [ sin 2nfmt + o] + v sinl6nfnt+30®) +6]1]1 (7

where y and 6 are the relative amplitude and phase of the third harmonic
with respect to the fundamental. Substituting Egs. (7) and (4) into Eq. (3) gives

the demodulated shot noise power spectrum:
Paft) = Psg [1+1/;c0s [20(t)] + 2 - v cos[2 (t)+ 6]] 8)

. Again this spectrum is flat. The signal and non-signal quadratures are
defined by ¢ = 0 and n/2 respectively. Setting y=1/2 and 6 = 0 reduces the in-
phase noise to its minimum possible value, 1.25Psgq1, down from 1.5Psq1 using

the first harmonic only, a noise suppression of 0.8 dB3.

Again, a time domain description illustrates the process. Consider the
modulated noise shown in Fig. 1(a). Fig. 4 shows the resulting noise for
various demodulating waveforms consisting of combinations of the first and
third harmonics at different phases ¢ and . When 6 = 0, the phase
dependence in the demodulated noise disappears. (Signal demodulation still
requires ¢ = 0.) In contrast, when 8 = =, the resulting demodulating
waveform is much more peaked, and more efficiently picks out the increased

noise in the signal quadrature, greatly exaggerating the phase dependence.
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The effect of rapidly scanning ¢, while slowly varying 6 is plotted from Eq. (8)
in Fig. 5(a). This spectrum reflects the time domain predictions of Fig. 4. In
particular, the demodulated noise limits are +3.5 dB and -6 dB for 6 = & and

+0.97 dB (constant) for 8= 0.

Experimentally, a third harmonic is produced by doubling the fundamental
and mixing it with the original (inside dashed box in Fig. 2). The residual
fundamental is removed by a high-pass filter. The third harmonic is mixed
with the non-stationary shot noise in a separate mixer (to prevent mixer
saturation). The two mixer outputs are added at a signal combiner, and the
output fed to a receiver. This operation is equivalent to combining the

demodulation waveforms prior to mixing with the noise.

The demodulation phase ¢(t) is scanned by offsetting the demodulation
frequency from 37.5 MHz. One mixer output is delayed by 0.48us, enabling
the waveform i:hase 8 in Eq. (8) to be varied slowly by sweeping the receiver
frequency, f (A8/Af ~ 21 rad per 2.1 MHz). The third harmonic amplitude y

was set by a variable attenuator.

The experimental noise spectrum obtained with the combined harmonics is
shown in Fig. 5(b) and measured spectra due to each harmonic alone are
given in Fig 5(c) and 5(d). Good qualitative agreement is obtained with Fig.

5(a), in particular, strong undulations of ‘the envelope as 6 is varied,

confirming that the two mixer outputs are correlated. Filter-induced spectral

asymmetry is believed responsible for the incomplete nodes in the
experimental spectrum in Fig. 5(b). This as‘yi:nmetry also altered the

optimum choice of y. The use of optimised filters in future designs should
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allow the expected noise reduction of 0.8 dB to be attained using the third

harmonic.

In conclusion, we have demonstrated that fully sinusoidally modulated light
produces ﬁon-stationary shot noise statistics. Simple demodulation led to a
phase dependence of 4.8 dB peak-peak, including a 1.8 dB noise penalty in the
signal quadrature, in close agreement with theory. We also observed that
noise demodulated with the third harmonic was correlated with that due to
the fundamental. In so doing, we have confirmed a simple time domain
description of non-stationary shot noise demodulation, and demonstrated the
feasibility of excess noise reduction in the signal quadrature by including

| higher harmonics in the demodulation waveform.

This project was supported by a grant from the Australian Research Council.
M. Gray is a recipient of an Australian National University Graduate

Scholarship.
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Figure Captions

Fig. 1 (@) Non-stationary noise in(t) = white noise x sin2[2nfmt]. (b) i(t) x

D(t); (D(t) = sin[2nfmt].) (o) i(t) x D(t); (d(t) = cos{2rfmt].)

Fig. 2. Experimental arrangement for measuring phase dependence of

non-stationary shot noise.

Fig. 3. (a) Demodulated noise power at 10 MHz (using fundamental |
harmonic only). RBW = 100 kHz, VBW = 100 Hz. (b) As in (a), but sweeping ‘
demodulation frequency offset through 0 Hz.

Fig. 4. D(t) and demodulated noise in(t) x D(t): (@) ¢ =0,0 =0 (b) ¢ ==x/2,
80=09=0,0=n(do=nr/2,0=m.

Fig. 5. (a) Theoretical demodulated noise, in dB relative to Psql, Y= 0.5, |
¢(t) scanned rapidly, 8 varied slowly. (b) Experimental noise using 1st & 3rd ‘
harmonics, ¥ = 0.36. (c) Experimental noise using 1st harmonic (37.5 MHz)

only. (d) Experimental noise using 3rd harmonic (112.5 MHz) only.
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