New Folder Name Design Issues

Interferometer Design Issues, Highlighted by a Strawman LIGO Beam Layout

AA 15 February 1993

Summary: While working on a strawman LIGO beam layout, several interferometer design issues, needing further investigation, have been flagged.

- 1. The average distance between the recycling mirror and the input test masses (recycling cavity length) is $\sim 50\%$ longer for the interferometer with the beam splitter residing in the diagonal chamber¹. Everything else being kept equal, the imbalance between the two arms has to be augmented by $50\%^2$, while the modulation frequency has to be decreased by one third.
- 2. The following aspects of light scattering need to be addressed in a systematic fashion:
 - a. ~ 15 mW of green light are scattered from each test mass reflective coating. About a third of this is large angle scattering, such that the light would end up at the walls of the test mass chamber. The concept for a tentative solution³ is presented in the enclosed sketch.
 - b. ~ 10 mW will be scattered from the bulk of each test mass that acts as an input mirror for the 4 km resonators.
 - c. Smaller, but still significant amounts of light are scattered from the reflective coating and the bulk of the beam splitter and the Mach-Zender pick-off, from the reflective coating of the recycling mirror, and from each anti-reflective coating inside the recycling cavity.

³ The nature of the problem needs to be better understood, though

¹ compared with the interferometer using the vertex chamber

² enough space is available in the TMC2 chambers

- 3. We identified the need to draw up a list of signals⁴ that have to be extracted. This will help answer questions like:
 - a. Which reflected beams need to be photodetected.
 - b. Which reflected beams have to be dumped.
 - c. What are the reflectivities of various anti-reflective coatings, at components inside the recycling cavity. This, in turn, will help draw up an accurate stray beam count.
- 4. The beam splitter was assumed to be 12" in diameter and 2" thick. A detailed study of the relationship between optical power, beam diameter, and the resonances of the beam splitter appears to be desirable.
- 5. Some of the beams in the strawman layout are dumped at black, flat plates, or black baffles. A sufficiently absorbent, vacuum compatible material has yet to be selected and certified.
- 6. The requirements for and the design of the conical beam dumps have to be worked out in detail.
- 7. The design of photodetectors and associated optics, for large diameter beams⁵, has yet to be carried out.

⁵ 6" in diameter, typically

⁴ for frequency servos and alignment systems