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1 HORIZONTAL MOTION OF SUSPENSION POINT
Let us think about the pendulum system shaken horizontally as shown in Fig. 1 The mass (M in
mass) is suspended by the wire (l in length) at the release point above the center of mass by d, and
x1, x2, θ, andθ’ denotes the horizontal displacement of the suspension point, horizontal displace-
ment of the center of the mass, the pitch angle of the mass, and the pitch angle of the wire, respec-
tively. The mass is assumed to be pseudo-critically damped by the suspension’s sensor.

The equation of motion of the mass for x2 andθ are, respectively:

,

where I is a normalized moment of inertia (moment of inertia divided by mass),g is the accelera-

tion of gravity,  and  are low-pass-filter operators for damping force along x andθ, respec-

tively, and  is the geometrical relation. It should be noted that the damping

term for x comes from x2-x1, whereas that forθ comes from onlyθ, because the suspension’s sen-
sors moves together with the suspension point. The wire resonances are not incorporated here.
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Figure 1: Response of the pendulum system to the horizontal motion of the
suspension point.
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By taking the Laplace transform on the equations, we obtain the following transfer functions:

,

,

where X1(s), X2(s),Θ(s), Kx(s), and Kθ(s) are the Laplace transforms of x1(t), x2(t), θ(t), ,

and , respectively.

The parameters in our case are:

•  (D=0.25m: diameter, L=0.1m: Thickness)

•  (The pendulum frequency is 0.74Hz.)

•  (The pitch frequency is 0.60 Hz.)

• ;

, , , ,

, , (Chebychev 10 pole, 1 dB, 12Hz; Gain at DC is 4 for
pseudo-critical damping.)

• ;

, , , ,

, , (Chebychev 10 pole, 1 dB, 12Hz; Gain at DC is 0.005 for
pseudo-critical damping.)

Because of the extreme complexity of the equations, the transfer function was calculated using the
“Block diagram method” in simulink of matlab. Fig. 2 shows the block diagram which reflects the
two equations of motion for x andθ. Inport, Outport, and Outport1 represent X1, X2, andΘ,
respectively.Θ is multiplied by 0.01 (1cm) at the last stage to produce the cavity length change.
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The two transfer functions are shown in Fig. 3. It should be noted that the shallow slope below 12
Hz is caused by the suspension’s sensor which moves as x1.

Figure 2: Block diagram reflecting the equation of motion of the pendulum system
with horizontal motion of the suspension point.
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2 VERTICAL MOTION OF THE SUSPENSION POINT
Let us think about the pendulum system shaken vertically as shown in Fig. 4. The mass (M in
mass) is suspended by the wire (l in length) at the release point above the center of mass by d and
horizontally off the center of mass by r. The mass is then held up right by the torque Mgr. z1, z2, θ,
and MT denotes the vertical displacement of the suspension point, vertical displacement of the
center of the mass, the pitch angle of the mass, and the tension of the wire, respectively. The mass
is assumed to be pseudo-critically damped in pitch angle by the suspension’s sensor. It should be
noted that the center of mass doesn’t move horizontally to the first order, because the wire is up
straight to the first order.
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Figure 3: Transfer function from the horizontal displacement of the suspension position
to the cavity length variation via the horizontal motion (Upper) and via the pitch angle

change with assumed d of 1 cm (Lower).
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The equation of motion of the system for z2 andθ are, respectively:

,

where I is a normalized moment of inertia (moment of inertia divided by mass),g is acceleration

of gravity,  is a low-pass-filter operator for damping force alongθ, respectively, and

 is the geometrical relation.

By taking the Laplace transform on them and approximating the convolution term as
, we obtain the following transfer functions:
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Figure 4: Response of the pendulum system to the vertical motion of the
suspension point.
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,

where Z1(s), Z2(s),Θ(s), and Kθ(s) are Laplace transforms of z1(t), z2(t), θ(t), and , respec-

tively.

The actual transfer functions should also contain a pair of poles due to the vertical resonance of

the pendulum, the resonance frequency of which is , where A is the cross section of

the wire and Y is Young’s modulus of the wire. Therefore the overall transfer functions are:

,

,

where Qv is a quality factor of the vertical resonance.

The parameters in our case are:

•  (D=0.25m: diameter, L=0.1m: Thickness)

•  (The pendulum frequency is 0.74Hz.)

•  (The pitch frequency is 0.60 Hz.)

•  (The initial misbalance is 1mrad.)

• ;

, , , ,

, , (Chebychev 10 pole, 1 dB, 12Hz; Gain at DC is 0.005 for
pseudo-critical damping.)

•

•

The transfer function was calculated using the “Block diagram method” in simulink of matlab
again. Fig. 2 shows the block diagram which reflects the equations of motion and the vertical res-
onance. Inport, Outport, and Outport1 represent Z1, Z2, andΘ, respectively. Z1 is multiplied by
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 (0.31 m rad) to convert vertical motion to cavity length change due to the earth’s cur-
vature.Θ is multiplied by 0.01 (1cm) at the last stage to produce the cavity length change.

The two transfer functions are shown in Fig. 6.

3.1 10
4–×

Figure 5: Block diagram of the pendulum system with vertical motion of the
suspension point.
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3 YAW MOTION OF THE SUSPENSION POINT
The yaw motion of the suspension point naturally causes the yaw motion of the mass with a sim-
ple pendulum response: the transfer function is given as follows:

,

whereΦ1(s) andΦ2(s) are Laplace transforms of the yaw angle of the suspension point and mass,
respectively,ωy is the resonance frequency of the yaw mode and Qφ is the quality factor.

The parameters in our case are:

•

• ;

, , , ,

, , (Chebychev 10 pole, 1 dB, 12Hz; Gain at DC is 3 for
pseudo-critical damping.)

Φ2 is multiplied by 0.01 (1cm) to produce the transfer function from the yaw angle of the suspen-
sion point to the cavity length change as shown in Fig. 7. Since it is unlikely that the yaw motion
of the suspension point exceeds (the horizontal motion of the suspension point) divided by (1 m),
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Figure 6: Transfer function from the vertical displacement of the suspension position to
the cavity length change via the vertical motion coupling with the earth’s curvature

(Upper) via the pitch angle change with assumed d of 1 cm (Lower).
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it is fair to say that this mechanism is negligible compared with the simple horizontal-horizontal
pendulum response.

4 OTHER MOTIONS OF THE SUSPENSION POINT
The other motions of the suspension point do not cause significant changes in the cavity length.

5 CONCLUSION
It was found that in our case the cavity length change caused by motion of the suspension point is
dominated by the simple horizontal-horizontal pendulum response except the vertical resonance
frequency of the pendulum system.
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Figure 7: Transfer function from the yaw angle of the suspension point to the cavity
length change via the yaw angle change with assumed d of 1 cm.


