LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T960063-00- D  Apr.2,96

TRANSFER FUNCTION OF
DOUBLE PENDULUM

Seiji Kawamura

Distribution of this draft:

This is an internal working note

of the LIGO Project.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS 20B-145
Pasadena CA 91125 Cambridge, MA 01239

Phone (818) 395-2129 Phone (617) 253-4824
Fax (818) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

file /home/seiji/DETsuspen/doublepend/doublepend.fm - printed April 2, 1996



LIGO-T960063-00-D

1 INTRODUCTION

In the process of considering the best method for connecting the suspension assembly to the
optics platform, the idea of suspending the suspension assembly from the optics platform was
brought up into focus. This will make the system so-called double pendulum. The first question
regarding this system is whether or not the motion of the support structure should be damped with
regard to the optic platform. In other words, the question is whether the suspension’s damping
system for the relative motion between the test mass and the support structure is effective enough
to damp all the relevant mode. In this document, as the first step of investigating the question, the
transfer function of the ideal double pendulum with the lower mass damped with respect to the
upper mass will be analyzed.

2 TRANSFER FUNCTION

Let us think about the double pendulum system as shown in Fig. 1 The upper mass (m; in mass) is
suspended by the wire (/; in length), and the lower mass (m, in mass) is suspended from the upper
mass by the wire (I, in length). X, X{, and x, denote the displacement of the suspension point, the

upper mass, and the lower mass, respectively. The upper mass and the lower mass get the same
amount of damping force with opposite sign, that is linear function of the relative position of the
two masses. The damping force is mainly simple derivative of the relative position up to 12 Hz,
then is steeply rolled off in gain for higher frequencies.
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Figure 1: Ideal double pendulum system with damping force.

page 1 of 4




LIGO-T960063-00-D

The equations of motion of the upper and the lower masses are, respectively:

2

(x, =X,) (X;=X,) ~ d d"x,
————17—0 (ml+m2)g—ll—ng—ak{c—i—t(xl—x2)} =m—
1 2 dt
(X, =X%;) d d’x
27 - 2
—Tng—ak{d—t(xz—xl)} = ngt"z“,

where g is the acceleration of gravity, k is the low-pass-filter opérator for the damping force, and
a is the coefficient of the damping force.

By taking the Laplace transform on the equations, we obtain the following equations:

(X -Xp) (X, -X,) 2
—-—lll—o (m; +m,)g- 112 2 m,g-aKs (X, -X,) = m;s X,
(X,-X))

2
] m,g-aKs (X, -X,) = m,s X,,

2

where X(s), X;(s), X,(s), and K(s) are the Laplace transforms of xq(t), X1(t), X,(t), and k (v,
respectively.

Instead of solving this complicated equations, we calculate the transfer function X,/X, numeri-
cally using the “Block diagram method” in simulink of matlab. Fig. 2 shows the block diagram
which reflects the two equations of motion described above. Inport, Outport, and Outport1 repre-
sent X, X4, and X, respectively.
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Figure 2: Block diagram reflecting the equations of motion of the double pendulum

system.

The following parameters are realistically fixed:
* I, =045m

* M, = 10.7kg

» K: Chebychev 10 pole, 1 dB, 12Hz

We obtained the transfer functions for the following free parameters:
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e [, =05m, M, 14kg, a=30
l1 = 0.2m, Ml 14kg, a=50
* I, =05m, M, = 43kg, a=30
l1 = 02m, M1 = 43kg, a=40

The gain a is optimized for each case so that the bump in the transfer function is minimized. The
transfer functions for each case are shown in Fig. 3.
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Figure 3: Transfer functions from x1 to x3 in the double pendulum system. Bold line:
[, = 0.5m, M, = 14kg, a=30, Dashed line: /;, = 0.2m, M, = 14kg, a =150, Dotted
Line: l1 = 0.5m, M, = 43kg,a= 30, Long-short dotted line: l1 = 0.2m,

M1 = 43kg, a=40.

3 CONCLUSION

In the ideal double pendulum with the damping force between the upper mass and the lower mass,
the transfer function from the top suspension point to the lower mass shows only a mild bump
(Iess than a factor of 10) around resonance frequencies with some realistic parameters of the pen-
dulum system. This is promising enough to further analyze this system, incorporating the effect of
pitch, yaw, etc.
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