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1 INTRODUCTION

This document describes the modal model representation of a LIGO-type interferometer
consisting of two arm cavities and a recycled Michelson interferometer. It includes a list the
necessary conventions for naming, signs, etc. Additionally, the resonance condition of a cavity
and the dark port condition of a Michelson interferometer are discussed.

2 CONVENTIONS

2.1 NAMING

We are using two conventions for naming the optical components; they are either called by their
name (abbreviation) or by their number. A list of these conventions is found in Table 1.

2.2 COORDINATE SYSTEM

Thez-axis of the coordinate system which is used for the modal model calculations is always
pointing in the direction of the beam propagation. For the optical systems we are interested in the
beam direction can always be oriented in the horizontal plane. They-axis is the defined to be
vertical and upward. This then makes thex-axis horizontal and perpendicular to beam propagation
direction. Since the beam splitter mirrors the image in the horizontal direction, but not in the
vertical direction, the coordinate system for the off-line arm is left-handed for the incident beam.
After reflection at the ETM mirror, the coordinate systems becomes again right-handed. A
summary of the axes orientation can be found in Table 2.

Table 1: Naming Convention

Name Abbreviation Type No.

on-line arm arm cavity 1

off-line arm arm cavity 2

input test mass for the on-line arm ITM mirror 1

end test mass for the on-line arm ETM mirror 2

input test mass for the off-line arm ITM mirror 3

end test mass for the off-line arm ETM mirror 4

recycling mirror RM mirror 5

beam splitter BS mirror 6
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2.3 ANGLE ORIENTATION

Since the we are concerned about angular misalignment, we have to define rotation vectors for the
tilts of the mirrors. As usual, a positive misalignment angle corresponds to a right-handed rotation
around the axis defined by the rotation vector (see Fig. 1).

Table 2: Coordinate system orientations.

incident reflected

input laser beam right-handed left-handed

on-line arm right-handed left-handed

off-line arm left-handed right-handed

antisymmetric port right-handed

Figure 1: Sign convention of the misalignment angles.
Shown are the rotation axes (vectors) for both horizontal and vertical misalignments. The

coated mirror surfaces are drawn with bold lines.
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We are defining common ( , ) and differential ( , ) angles of the input and
end test masses, respectively, as follows:

(1)

where the  are the angles of the individual mirrors. The matrix of Eqn. (1) is a true
rotation matrix. Both the recycling and the beamsplitter angle are not affected by this rotation.

All angles are measured in units of the beam divergence angle in one of the arm cavities :

(2)

with  and  the beam waist size and the Rayleigh length, respectively.

2.4 AMPLITUDE REFLECTION COEFFICIENTS

We follow the convention that the amplitude reflection coefficients carry a negative sign, if the
reflection happens from the coated mirror surface, and a positive sign, if the reflection happens
from the substrate side (see Fig. 1).

2.5 RADIUS OF CURVATURES

Surfaces with curvatures where the center of tangent circle lies behind the incident beam have a
negative numerical value. For a LIGO-type interferometer this means, in general, that the
recycling mirror has a negative curvature, whereas the ETM mirrors have positive curvatures.

2.6 CAVITY AND MICHELSON LENGTHS

The lengths of the arm cavities are denoted by  and , whereas the Michelson lengths are
denoted  and . It is convenient to define common and differential lengths, they are defined as
follows:

(3)

The differential Michelson length  is also called asymmetry. With the convention from Eqn. (3)
a positive asymmetry makes the on-line Michelson length longer than the off-line one.
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2.7 ANGULAR MISALIGNMENT OPERATORS

The modal space representation of the operators for propagation and misalignment are given in
Ref. [1]. The only uncertainty comes from the fact that one has to specify when to used the mirror
matrix  and when to use its Hermitan conjugate . We are using  when reflecting from the
substrate surface and  when reflecting from the coated surface. This is different from the
convention in Ref. [1].

2.8 INPUT BEAM MISALIGNMENT OPERATOR

A misalignment of the input beam to a cavity can be understood as a tilt and shift of the incident
laser beam relative to the eigenmode of the cavity. In the modal space representation a misaligned
input beam can be calculated from a perfectly aligned beam by applying a rotation and a shift:

(4)

whereM andO are rotation and lateral shift operators as defined in ref. [1],  and  are the
angles around they- andx-axes between the input beam and the optical axis, respectively, and
and  are the lateral shifts of the input beam in thex andy direction. For small input beam
misalignments the order in which the rotation and shift operator are applied doesn’t matter. The
signs of the input beam tilts are the same as for the recycling mirror angles, whereas the direction
of the shift is determined by the coordinate system alone (see Fig. 1).

2.9 MODULATION AND DEMODULATION

The phase modulation of the incoming light is done with a cosine function only. The down-
converted signal then carries a factor of  from the demodulation with a cosine (I-phase) and
sine (Q-phase). This means that the amplitude of the rf photocurrent induced by the light hitting
the detector is a factor of 2 larger than one would expect from the photodetector efficiency alone.

2.10 CENTER OF BEAM OPERATOR

One can define the center point of a beam which is described by the field  as the center of
gravity (CoG) of the field with the following equation:

(5)

and similarly for they-position by exchangingx andy in the above equation. Eqn. (5) can written
in the modal space representation as

(6)
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with (7)

For a definition of  see ref. [1].

3 MATRICES FOR INTERFEROMETERS

3.1 ARM CAVITIES

Following the derivation given in Ref. [1] we write the cavity equation for the reflected field of the
on-line arm as:

(8)

and for the transmitted field:

(9)

The light inside the cavity is described by

(10)

The fields for the off-line cavity can be obtained from Eqns. (8), (9) and (10) by replacing  with
 and by replacing the subindices 1 and 2 with 3 and 4, respectively.

3.2 RECYCLED MICHELSON INTERFEROMETER

To simplify the equations for the recycled Michelson interferometer, one can write the arm
cavities as single operators  and  using the definition from Eqn. (8). By collapsing the two
Michelson arms into one operator, the recycled Michelson interferometer acts like a normal
cavity.

Defining the common Michelson operator

(11)

the reflected field at the symmetric port becomes:

(12)

The field inside the recycling cavity (just after the recycling mirror) one obtains:

(13)
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If one defines the differential Michelson operator  as:

(14)

the fields at the antisymmetric port becomes

(15)

With this definition for the field at the antisymmetric port it doesn’t really matter where the beam
splitter is positioned relative to the recycling mirror; however, the field is always calculated at a
distance equivalent to the one to the recycling mirror.

4 BEAMSPLITTER MATRIX

Up to now we assumed that the beamsplitter is always perfectly aligned. We now introduce the
beamsplitter distortion matrix  which rotates the beam splitter by an angle . This rotation
matrix affects the transmitted beam insignificantly (see Ref. [1] for a good argument), but the
reflected beam is tilted by the same rotation matrix as the other mirrors.

The Michelson interferometer equations are the easily modified by defining new operators for the
common and the differential Michelson operators of eqns. (11) and (14):

(16)

(17)

5 RESONANCE CONDITION

The resonance condition of a cavity (both arm cavities and the recycling cavity) can be expressed
as a condition on the round-trip operator

(18)

When the phase of an eigenmode is an exactly multiple of , the mode resonants. The resonance
condition is usually different for each eigenmode, i.e. higher order modes are not resonant, when
the fundamental mode is.

If a cavity must be resonant for a given eigenmode  and if we denote its eigenvalue for the
round-trip operator  by , the length of the cavity has to be adjusted by a length , so that

(19)
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Similarly, a condition for an eigenmode to be anti-resonant can be written as

(20)

6 DARK PORT CONDITION

The antisymmetric port of the Michelson interferometer in the LIGO configuration is usually the
dark port, i.e. no carrier light is leaving the interferometer through this port and all power is
reflected towards the recycling mirror. It is this condition which gives the recycling cavity a high
finesse. Let  be the eigenmode of the resonant eigenmode of the recycling cavity, then the power
at the antisymmetric port can be written as

(21)

The derivative can then be approximated by

(22)

(23)

where we neglected the terms coming from the recycling cavity resonance built-up. (These terms
are zero at the exact dark port condition, i.e. the dependence of the power in the recycling cavity
on the differential Michelson length  is second order only.) The dark port condition can then be
formulated as

(24)

If both the resonance condition of the recycling cavity and the dark port condition of the
Michelson have to be adjusted, it has to be done iteratively. First, the resonant is set and the
resonant eigenmode is used to calculate the differential Michelson length correction for the dark
port condition. This will slightly change the resonant mode, so the resonance condition has to be
applied again. These steps have to be repeated, until both the common and the differential
Michelson lengths have converged.
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