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1 ABSTRACT

This technical note describes an implementation of the modal model which includes transverse
modes up to second order. This code is used to investigate the influence of mode matching on the
performance of LIGO. In section 2 the modal space representation of the mode mismatch operator
is derived. In section 3 a wavefront sensing scheme for mode matching using a circular
photodiode is developed. In section 4 the insertion of the mode mismatch operator into the
interferometer equations is presented, whereas in section 5 the mode matching is parametrized as
waist size and position mismatch. Section 6 calculates the sensitivity of the wavefront sensing to
mode mismatch and Section 7 calculates the gravitational wave signal induced by a mode
mismatch. Section 8 looks at the signal-to-noise loss due to errors in the radii of curvature of the
test mass mirrors.

It is shown that wavefront sensors measuring the reflected light from the interferometer and using
the non-resonant sideband pair are a good solution to mode match the input beam to the
interferometer. To prevent a degradation of the gravitational wave sensitivity of more than 0.5%, it
is required that the radius of curvature of the recycling mirror be matched to its nominal value
given by the arm cavity parameters with a precision of m.

2 MODE MISMATCH OPERATOR

A mode mismatch can be seen as a mismatch in either curvature or spot size between the
resonating eigenmode of a cavity and its input beam. In both cases the mismatch has a circular
symmetry and can be described in first order as an excitation of a ‘donut’ mode. This ‘donut’
mode is a linear combination of the TEM20 and the TEM02 (Hermite-Gaussian) modes.

(1)

In the modal space representation one can generally write a mode mismatch as a simple basis
transformation between a basis defined by the input beam and a basis defined by the cavity
eigenmodes. Hence, the mode mismatch operatorK is a unitary operator:

(2)

where  and  denote the old and the new basis vectors, respectively. As it turns out, the
calculation of the mode mismatch operatorK can be greatly simplified, if it is done at thez-
position , where the spot sizes of the two bases are equal. Such a position always exist, if the
two basis sets share the same optical axis. And it is always possible do make the calculation at this
position, since the propagation and the basis transformation commutates, i.e. it doesn’t matter, if a
beam is first propagated fromz to zw and then changed into the new basis or if it is first
transformed into the new basis and then propagated fromz to zw:

(3)
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where  and  propagate the beam fromz to zw in the old and the new basis,
respectively. Since the spot size  is equal for the two bases at positionzw, the new basis
vectors can be written as the old ones times a factor given by the curvature mismatch only,

(4)

and the bra-ket product of eqn. (2) reduces to

(5)

with and (6)

where  and  are the radii of curvature at position  for the old and the new basis vectors,
respectively, and  is thez-independent generator of the mode mismatch operator. Notice,
that the right hand side of eqn. (5) only involves the old basis vectors.

Multiplying the operator  by  and using the recursion
relations for the Hermite polynomials (see appendix A of ref. [1]) the mode mismatch generator
can be written as:

(7)

where  denotes the Kronecker delta. Applying the mode mismatch operator on the
fundamental mode excites in first order only a donut mode:

(8)

As seen from the above equation, a curvature mismatch also changes the phase of the fundamental
mode in first order. Sometimes, the mode mismatch operator  which describes a beam coming
from the other direction is needed,

(9)

It is important to recognize that this operator is not the inverse of the operator . Propagating
backwards is changing the sign of thez-coordinate and the order in which the curvature mismatch
is calculated, but it is also changing the sign of the radii of curvature, i.e.

, hence . (10)
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The propagators also stay unchanged, since both the sign of the direction and the sign of thez-axis
flip. However, they have to be applied in the reverse order, i.e.

(11)

where the coordinates  and  together with the operators ,  and  are meant to be the same
as the ones in eqn. (3).

3 CIRCULAR PHOTODETECTOR

A possible detection scheme is based on the Pound-Drever-Hall technique adapted for sensing a
wavefront. In this scheme the amplitude of the ‘donut’ mode on the reflected light is detected by
measuring the beating between a carrier ‘donut’ mode and the fundamental mode of the sidebands
and between a sideband ‘donut’ mode and the fundamental mode of the carrier. Since this
problem has a circular symmetry the effect is best measured with a circular photodetector (see
Fig. 1).

Since we need a good common mode rejection ratio, i.e. the photodetector should be insensitive to
the beating between the fundamental modes of carrier and its sidebands, the photodetector must
consist of at least two segments: an inner disk and an outer ring. The signal of these two segments
are subtracted from each, thus, giving maximum sensitivity for the detection of the beating
between a ‘donut’ and a fundamental mode which has opposite signs in the inside and the outside
region. The signal can be written as:

(12)
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Figure 1: Circular Photodiode.
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where  is the beam spot size on the detector andR the radius which separates the inner disk
from the outer ring.  has a maximum at  of .

However, a good common mode rejection (CMR) is not necessarily achieved at the radius of
largest sensitivity. Indeed, a common mode signal on a detector with a shape as described in
eqn. (12) reads:

(13)

This common mode signal is zero at  which is a slightly smaller radius
than the one with the maximum sensitivity. But, the signal reduction is only about 6%.

4 COUPLING OF OPTICAL SYSTEMS

The mode mismatch operator plays an important role, whenever two optical system are coupled
together which have different eigenmode structures, or when an (input) beam with given
parameters has to be coupled into an optical system which has preferred eigenmodes. Such
situations occur most often between cavities, since the eigenmodes of a cavity are its resonant
modes and any practical mode decomposition of the cavity field is best done in its eigenmode
basis.

4.1 INPUT BEAM COUPLING

A special case of coupling two optical systems is a mode mismatch between an input beam to a
cavity and the eigenmodes of this cavity. The input beam might be characterized, e.g., by the spot
size and the radius of curvature at the input mirror, or alternatively by the waist size and its
position on the optical axis. In both cases a mode mismatch operator can be used to transform the
given input beam into a representation of the cavity eigenmodes.

(14)

where  and  are the waist size and the waist position, respectively. The prime is used to
denote the parameters of the input beam, whereas parameters without a prime are used for the
(recycling) cavity modes.

4.2 COUPLING OF CAVITIES

If two cavities with different eigenmodes are coupled together, one has to define the two mode
mismatch operators for the light traveling in opposite directions. For the LIGO interferometer the
two arm cavities have to be coupled to the recycling cavity. If the reflected, the transmitted and the
circulating field of an arm cavity with indexi are written as (see section 3.1 of ref. [2])

, and (15)
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the mode mismatching is introduced by

, (16)

and (17)

Eqn. (16) defines new arm cavity operators which can then be used as new ‘rear mirror’ operators
 and  in the Michelson interferometer equations (see section 3.2 of ref. [2]).

4.3 LIGO ARM CAVITIES

The asymmetry in the LIGO interferometer — together with the fact that the arm cavities have
identical properties — poses an interesting problem for mode matching. Since the two ITM
mirrors are placed at a slightly different distances from the recycling mirror, there exists no mode
structure in the recycling cavity which would match to both arm cavities simultaneously. The
solution is then to calculate the mode structure in the recycling cavity assuming that the two ITM
mirrors are place at the average recycling cavity length and by including an intrinsic (differential)
mode mismatching at the interfaces between recycling and arm cavities. This mode mismatch is
usually a very small effect and can be neglected for most practical purposes (for numbers see the
next section).

5 MODE PARAMETRIZATION IN THE LIGO INTERFEROMETER

If one or both of the systems which have to be coupled together are cavities, the waist size and the
waist position are functions of the radii of curvature of the two mirrors forming the cavity. The
radius of curvature is given by:

with the Rayleigh length (18)

where  is the mirror position relative to the waist position. A deviation of one of the cavity
mirrors from its ideal curvature then induces a waist size and a waist position deviation. Or
conversely, a mismatch in waist size and position can be understood as an error in curvature. One
can then write:

with and (19)

For a LIGO arm cavity  and  would be the radii of curvature of ITM and ETM, respectively,
 would stand for the arm cavity length  and the matrix  would be:

and (20)
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In the LIGO configuration the recycling mirror does not introduce a new degree of freedom for
mode matching, since (by the definition used in this document) the nominal interferometer modes
are the eigenmodes of the recycling cavity defined by the radius of curvature of the recycling
mirror , the average radius of curvature of the ITMs and the average (common) length
between recycling mirror and the ITMs . One can therefore express (in first order) an error in
the curvature of the recycling mirror as a common waist size and position error of the arm
cavities,  and , respectively:

with and . (21)

where  and  are theg-factor and the radius of curvature of the ITM mirrors as seen by
the recycling cavity.

For the LIGO configuration the vector  becomes . (22)

It is therefore possible to characterize curvature errors of the interferometer mirrors as deviations
of from idealg-factors. Ag-factor error is related to an error in the radius of curvature with the
following equation:

(23)

The factors  are equal to 52.9 km and 13.7 km for ITM and ETM, respectively. For the
recycling mirror the factor  becomes 24.3 km, and for the ITM as seen by the
recycling cavity the factor is 24.5 km.

We now rewrite the individual waist sizes and positions of each arm cavity as differential and
common ones:

(24)

For a LIGO interferometer the waist size and the Rayleigh length of an arm cavity are given by

and . (25)
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Sometimes it is convenient to use a 6-component vector  to denote the additional degree-of-
freedoms coming from the waist size and position of the input beam. In the new variables the
errors in theg-factor can be written as

with and (26)

The matrix  is singular, indicating that there are only three independent degree-of-freedoms. The
only allowed ratio of common waist size over common waist position mismatch which can be
achieved by deviations of the mirror curvatures is 0.867. Generally, it is about a factor of 150
more critical to match the curvature of the recycling mirror to the common curvature of the ITMs
than it is to match the common curvatures of ITMs and ETMs.

6 MODE MISMATCH SENSITIVITIES

The signal of a wavefront sensor dedicated to measure mode mismatching reads:

(27)

whereP is the input laser power,  and  are the Bessel functions which describe the amplitude
of the carrier and its sidebands for a given modulation depth ,  is the amount of power
which is split off for the mode mismatch sensor,  is a factor which describes the exact shape
of the photodetector and is unity for the detector described in section 3,  are the signal
amplitudes, is the Guoy phase of the fundamental mode between the extraction port and the
photodetector,  are the intrinsic signal Guoy phase shifts,  is the modulation frequency and

 are the intrinsic signal rf phase shifts. From eqn. (27) one can easily obtain the photocurrent
induced in the detector by multiplying with the photodiode efficiency. Also notice, that the Guoy
phase dependence includes a factor of 2, because we are looking at a beating between
fundamental and second order modes.

Table 1 list the mode mismatch signals at the dark port, in reflection, at the recycling cavity pick-
off, in reflection of the on-line arm cavity and in reflection for the non-resonant sideband. The
variablesδWi are either the deviations from the ideal waist size or the deviations from the ideal
waist position. A positive value indicates a larger waist size and a waist position which is further
away from the input mirror.

The mode mismatch between the recycling cavity and the two arm cavities is a property of the
interferometer and can’t be changed without changing its configuration. On the other hand, the
input beam might be injected into the interferometer through a system of lenses which can be
adjusted to optimize the power coupling into the interferometer. Detectors for such a control
system are best placed in reflection using the non-resonant sidebands.
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In the LIGO interferometer there is a small intrinsic mode mismatch due to the asymmetry. This
effect produces a signal in Q-phase at the dark port of the order of  in the units of
Table 1 with a guoy phase shift of 90 degree. The signals at the other ports are even smaller and
completely negligible.

7 GW-SIGNAL DUE TO MODE MISMATCH

Since a mode mismatch introduces a phase shift to the fundamental mode in first order (see
eqn. (8)), the gravitational wave signal at the dark port shows a first order dependence on the
mode matching.

(28)

Considering only mode mismatching of the input beam, the coefficients of  and  are of
order m (per mismatch in relative units) or lower. If we require that the gravitational wave
signal at 150 Hz due to jitter in the mode matching is smaller than , then the
mode matching jitter at 150 Hz has to be smaller than  for the waist size/position
mismatch in relative units.

Table 1: Mode mismatch sensor signals.Top entry in each cell isMi (with significant values in
boldface), lower-left is rf-phase, and lower-right is the guoy phaseη0i. TheMi are in units of
for the waist size mismatch and in units of  for the waist position mismatch. The units of the rf-
and the guoy phases are degrees.

mode mismatch degree-of-freedom

input beam differential arm common arm

Port w0 zw ∆w0 ∆zw w0 zw
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< 10–4 < 10–4 –10.1 –2.91 < 10–3 < 10–3

Q 60 Q 150 Q 90 Q 90 Q 134 Q 132
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0.21 –0.12 0.89 –0.73 –4.90 4.15

I 39 I 129 Q 45 Q 45 I 43 I 45
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cavity / 1000

3.8 × 10–2 –2.1 × 10–2 0.12 –0.10 –0.67 0.57

I 15 I 105 I 45 Q 45 I 43 I 45

On-line arm
reflection /
1000

1.9 × 10–2 –1.1 × 10–2 ~ 3 × 10–2 ~ 2 × 10–2 –0.34 0.29

Q+5 15 Q+5 105 n.a. n.a. Q+5 43 Q+5 45

Reflected
(non-resonant
sideband)

1.88 1.05 < 10–3 < 10–3 –1.03 –0.30

I 150 I 60 n.a. n.a. I 90 I 90
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8 GW-SENSITIVITY LOSS DUE TO MODE MISMATCH

8.1 SIGNAL SENSITIVITY

To obtain the loss of gravitational wave detection sensitivity we closely follow the derivation for
the loss of sensitivity due to angular misalignment in ref. [4] and write the signal sensitivity as:

(29)

The eigenvalues of the matrix  considering only the mode matching of the input beam are
listed in Table 2. In order to prevent a degradation of the gravitational-wave detection sensitivity
of more than 0.5%, the waist size of the input beam has to be adjusted within a precision of 7% of
the arm cavity waist size and the waist position has to be adjusted within 12% of the arm cavity
Rayleigh length.

8.2 LIGHT INTENSITIES

One possible way to match the input beam to the interferometer — apart from using a wavefront
sensor — is to maximize the power level in the recycling or the arm cavities, or alternatively, to
minimize the power in reflection. As one would expect the power levels in the interferometer
depend on the mode matching in second order only and can be written as:

(30)

Table 2 lists the eigenvalues of the matrix  at the dark port, in reflection, inside the
recycling cavity and inside one of the arm cavities. For these calculations only the mode matching
of the input beam was considered. Not surprisingly, it can be seen from Table 2 that the
gravitational-wave detection sensitivity closely follows the power level in the arm cavities.

As it turns out the power level of the reflected beam is most sensitive to the mode matching of the
input beam. Minimizing the power in reflection with a precision of 10% is sufficient to prevent a

Table 2: Gravitational-wave sensitivity and power loss due to mode mismatch.The matrices
and  and, therefore, also  are diagonal in the basis of the waist size and

position. Hence, only the eigenvalues are listed. They are in units of  for the waist size
mismatch and in units of  for the waist position mismatch, respectively.

input
beam

s/n. sens. power levels

dark dark dark reflect. recycle. arms

∆w0 –1.88 –2.50 –1.23 49.7 –2.36 –2.50

∆zw –0.59 –0.78 –0.38 15.5 –0.74 –0.78

Ssens δW( ) Ssens 0( ) 1
1
2
---δW Hsens

MM δW+=

Hsens
MM

P δW( ) P 0( ) 1
1
2
---δW Hpower

MM δW+=

H power
MM

Hsens
MM

H power
MM

Hs/n
MM

w0
2

z0
2
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loss of gravitational-wave detection sensitivity of more than 0.5%. On the other hand, the power
optimization in one of the arm cavities has to be done with a precision of 0.5%.

8.3 SIGNAL-TO-NOISE

The signal to noise at the dark port for gravitational-wave detection can be written as:

(31)

Table 3 lists the eigenvalues and eigenvectors of the Hessian matrix . Since the shot noise is
non-stationary, the function  is the sum of the carrier power and 3/2 times the sideband power.

Since a common curvature mismatch dominantly produces a common signal  with a ratio of
waist size to waist position error of 0.867, it is interesting to see which linear combination of
eigenvectors would lead in such a direction

and . (32)

The eigenvector  and, hence, its eigenvalue makes only a small contribution. Or, in other
words,  is almost orthogonal to the dominant common mode mismatch ‘direction’ and,
therefore, its large eigenvalue has no importance.

Table 3: Gravitational-wave signal-to-noise loss at the dark port due to mode mismatch.
Both eigenvalues and eigenvectors of the Hessian matrix  are listed. The eigenvalues are in
dimensionless units, whereas the eigenvectors are given in relative units. It is worthwhile to note
that for all directions except  the signal loss dominates over the increase of noise, where for

 the increase of power at the dark port is the most important effect.
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8.4 RADIUS OF CURVATURE

One can now derive requirements for the radii of curvatures of the interferometer mirrors based on
the degradation of the signal-to-noise at the dark port. One important thing to notice is that a
curvature error of the recycling mirror or a common curvature error of the ITMs or ETMS can be
partly corrected for by reoptimizing the input beam parameters. For these cases the loss of
sensitivity can be minimized by replacing

and (33)

Since a readjustment of the input beam is a common change, it does have negligible influence on
differential curvature errors. Using eqns. (23), (26), (31) and (33), taking the values from Table 3
and demanding that the signal-to-noise ratio at the dark port must not be degraded more than
0.5%, one can derive requirements for the mirror radii of curvature (see Table 4). The table lists
maximum values for both the recycling mirror curvature error and the common ITM curvature
error. Theses requirements do not have to be meet simultaneously, only the differential curvature
error is of importance, whereas a common curvature error in both recycling mirror and the two
ITMs is much less sensitive to mode matching.

The values of Table 4 are obtained by a second order approximation around the perfectly mode
matched interferometer. However, for the recycling mirror this approximation does not hold for
the range indicated. Fig. 2 plots the loss of signal-to-noise for the gravitational wave readout at the
dark port as a function of the radius of curvature error of the recycling mirror. For each point the
input beam was reoptimized along the direction indicated in eqn. (33) to give the maximum
signal-to-noise ratio at the dark port. It can be seen that for positive error values the signal-to-
noise loss grows faster than expected, whereas for negative error values it grows slower than
expected. Also note that for error values above +40 m the recycling cavity becomes an unstable
resonator.

Table 4: Requirements on the radii of curvature due to loss of signal-to-noise.Requirements
are derived from the decrease in signal-to-noise ratio of the gravitational-wave read-out at the
dark port. A maximum loss of 0.5% yields each of the curvature errors below. The values are
given in meters.

|RITM2-RITM1 | |RETM2-RETM1| δRETM δRITM δRRM

~800 115 >1000 140 95

m̂ m̃ m̂ 0.273 0.7080 0 0 0
T

+≡→ m̃Hs/n
MM

m̃ 0.0118–=
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Figure 2: Gravity wave signal-to-noise loss as a function of the recycling mirror radius of
curvature. The recycling cavity becomes an unstable resonator, if the curvature is changed

by more than +40 m. At each point of the function the input beam parameters were
reoptimized to obtain maximum sensitivity.


