Beam Tube Qualification Test

LIGO-T960125-00-D

• Vacuum test results

- >> Outgassing rates after bake out
- >>Temperature dependence of outgassing post bake
- >>Sensitivity of air signature leak assay pre and post bake
- >>Power required and temperature distribution during bake
- >>Time required for bake
- >>Upper limits for weld leak statistics
- >>Upper limits to hydrogen bursts
- Ancillary test results
 - >>Optical properties of the beam tube
 - >>Vibrational transfer functions of the beam tube

QT System Parameters

• Geometric

Volume	5.12×	10 ⁴ liters
Area	1.71×	10^{6}cm^{2}
Vacuum		
Pumping speeds	s H ₂	570 ±30 liters/sec
	N_2	246 ±15
	H ₂ O	690±35 (LN ₂ trapped)
RGA sensitivity	H ₂	$2.5\pm0.3\times10^{-15}$ torr/(count/sec)
	N_2	$9.7 \pm 1.0 \times 10^{-15}$
	He	$3.9 \pm 0.2 \times 10^{-15}$
Absolute calibration:	N_2 , H_2 le	aks
Relative calibration:	CO, CO ₂	, Kr

QT Outgassing Data

PREBAKE OUTGASSING RATES

H ₂ O	$\frac{1.2 \times 10^{-8}}{t(hours)}$ torr liters/sec cm ²
H ₂	$2.9 \pm 0.2 \times 10^{-14}$
CO	< 2×10 ⁻¹³
CO ₂	< 3×10 ⁻¹³
CH ₄	$< 1 \times 10^{-13}$
• BAKE AT 140 - 150	C for 670 hours
POST BAKE OUTGA	SSING RATES
H ₂ O	< 8×10 ⁻¹⁸
H ₂	$8.6\pm0.2\times10^{-14}$ (increase from welds)
CO	$2.5 \pm 0.1 \times 10^{-16}$

QT Outgassing Data (cont)

CO_2 1.6±0.3×10 ⁻¹⁰ torr liters/sec cm	n²
---	----

 CH_4 3.0±0.3×10⁻¹⁶

Sum amu > 45 < 4×10^{-18}

POST BAKE OUTGASSING TEMPERATURE DEPENDENCE

• Temperature increase to double outgassing at 300K

H ₂ :	From room temperature fluctuations	4.9 K
	From outgassing ratio 413K/300K	8.9
H ₂ O		4.8
CO_2		6.5

Initial Interferometer Noise Budget

LIGO-G952001-00-B

Advanced Interferometer Noise Budget

Advanced amplitude recycled interferometer parameters: $A_m = 10^{-5}$ $P_{in} = 100 W$ $P_{circ} \sim 1 MW$ $\epsilon_{opt} = 0.3$ $\lambda = 1.06 \mu$

SUMMARY

TEST RESULTS SATISFY THE LIGO REQUIREMENTS FOR INITIAL INTERFEROMETERS AND THE GOALS FOR ADVANCED INTERFEROMETERS

OTHER TEST RESULTS TO BE PRESENTED TOMORROW

QT Weld and Leak Statistics

- No He leaks measured $Q_{leak} < 10^{-10}$ torr liters/sec
- Leak rate confirmed by air signature assay

	m weld	repairs/m weld	leaks/ m weld	leaks/ m tube
circumferential	23	0.043	<4.3×10 ⁻²	<2.5×10 ⁻²
stiffening and support rings	188	0.027	<5.3×10 ⁻³	
spiral welds	377	0.12	$<2.6 \times 10^{-3}$	

QT Air Signature Limits

PREBAKE

LIGO requirement	Q _{leak}	<10 ⁻⁵ torr	liters/sec
QT demonstration requirement METHOD Air calibration LNT2: 77K 		<10 ⁻⁷	
Minimum of N ₂ , O ₂ , A		<8×10 ⁻⁸	
χ^2 minimization 21 gases, 42 amu		<1×10 ⁻⁹	$\frac{\chi^2}{\nu} = 2.1$
POSTBAKE			
LIGO assay requirement		<10 ⁻⁹	
LIGO localization requirement		<10 ⁻¹⁰	
QT demonstration assay requirem	ent	<10 ⁻¹¹	
QT demonstration localization requ	mnt	<10 ⁻¹²	

QT Air Signature (cont)

• METHOD

Air calibration LNT2: 300K

Total amu 28

 χ^2 minimization 21 gases, 42 amu

 χ^2 minimization 21 gases, 42 amu

$$<8 \times 10^{-12} \frac{\chi^2}{v} = 110$$

<10⁻¹¹

$$<2 \times 10^{-12} \frac{\chi^2}{v} = 3$$

CH₄ cracking fractions allowed to exceed literature uncertainties

Hydrogen Burst Limits

log(N), molecules/pulse

Water Burst Limits

log(N), molecules/pulse

Beam Tube Optical Properties at 6328A

Back scatter

$$\frac{dP_{scat}/d\Omega}{P_{inc}} \sim 10^{-2} \text{sr}^{-1} \qquad \text{grazing angle} < 1.7 \times 10^{-2} \text{radians}$$

• Forward scatter

 $\frac{dP_{scat}/d\Omega}{P_{inc}} \sim 3.5 \times 10^2 \text{sr}^{-1} \quad \text{grazing angle} < 1.7 \times 10^{-2} \text{radians}$

 $\Delta \theta_{\rm hw} = 0.08 \, \rm radians$

Absorption

$$A = 0.49 \pm 0.04$$
 grazing angle = $\frac{\pi}{2}$

