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We derive formula for the calibration accuracy required for the initial LIGO detectors for classical

matched �ltering purposes. The (happy) conclusion is that to �rst order, amplitude and phase errors

in the calibration do not change the measured Signal-to-Noise Ratio (SNR). Thus, the requirements

placed on calibration accuracy by the detection problem (in a single detector, using matched �ltering)

are not severe. However such errors could a�ect the correlation of signals between di�erent detectors.

I. INTRODUCTION

The LIGO IFO has a voltage output v(t) which in the Fourier domain can be written as ~v(f). The range of
frequency here is f 2 (�1;1). This is related to the di�erential displacement �L(t) of the interferometer arms via
the calibration equation:

~�L(f) = LR(f)~v(f): (1.1)

Here L = 4 km is the length of one arm, and R(f) is the calibration function, whose units are 1=voltage or equivalently

strain=voltage. Because both the voltage and the arm displacement are real, this satis�es ~R(�f) = ~R�(f). This
function is simply the transfer function of the interferometer. The di�erential strain may be written in frequency
space as ~h(f) = ~�L=L = R(f)~v(f).
Let us distinguish between the amplitude and the phase of R(f) by writing

R(f) = �(f)ei�(f); (1.2)

where � > 0 and �� � � < � are real functions. The reality condition above implies that �(f) = �(�f) and
�(f) = ��(�f)
Let us now consider the ways in which errors in R, or equivalently, errors in � and �, a�ect the SNR achievable in

matched �ltering experiments. Let us denote the error in measuring R by

�R = ��ei� + �ei�i��; (1.3)

where both �� and �� are functions of frequency. Once again, the reality conditions imply that ��(f) = ��(�f) and
��(f) = ���(�f).
These errors a�ect both the estimate of the signal, and the estimate of the noise. Note that we assume here that

the IFO is stable over time, in other words, that there is a measured transfer function R(f) that does not change with
time, and that the error in this transfer function �R(f) arises because the calibration process is not perfectly accurate
(for example, the geometry of a driving coil or the �eld gradient of a permanent magnet are not exactly determined).
We will let R(f) denote the true value of the response function, and R(f) + �R(f) denote the measured value of the
response function. In general, if W is any quantity, we will use

�W �Wmeasured �Wtrue (1.4)

to denote this di�erence.
The signal output of a matched �lter may be written as

S =

Z
df~h(f) ~Q(f); (1.5)
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where here and elsewhere all frequency integrals are from �1 to 1. The optimal �lter for the waveform that we are
searching for is denoted by ~Q. Let us assume that this waveform is known exactly (it is already known to high-enough

post-Newtonian accuracy for the \detection" problem, so this is a reasonable approximation) and denote it by ~hI(f),

where the subscript \I" stands for \inspiral". This waveform satis�es the reality condition ~hI(f) = ~h�
I
(�f).

The optimal choice of �lter function is given by

~Q(f) =
~h�I(f)

P (f)
(1.6)

where P (f) is the noise power spectrum of the interferometer (in units of strain2=Hz). (Note that shifting the

coalescence or arrival time of the inspiral waveform to t = t0 simply introduces a factor of exp(�2�ift0) into ~Q, and
the signal S then depends upon t0). Here and elsewhere all power spectra are \two-sided". This noise power spectrum
is determined experimentally from a precise measurement of the IFO output voltage power spectrum, and therefore
any error in R(f) gives rise to an error in the estimate of P (f). Since j~h(f)j2 = jR(f)j2j~v(f)j2 = �2(f)j~v(f)j2 this
arises only from errors in determining the magnitude of R and not from errors in the phase. (Raab has pointed out
that if the interferometer response is not stable, as I have assumed, then a changing phase response with time might
also a�ect the estimates of the power spectrum.) In particular,

P (f) = �2(f)Pv(f); (1.7)

where Pv(f) denotes the voltage power spectrum of the IFO output.
Using these relations, the signal that is experimentally determined, using the measured (but erroneous) calibration

to construct both the measured strain and the optimal �lter may be expressed in terms of the IFO output as

Smeasured =

Z
df
ei(�(f)+��(f))~v(f)~h�I(f)

(�(f) + ��(f))Pv(f)
: (1.8)

In comparison to the true signal which would have been constructed if there were no measurement errors, this di�ers
by an amount

�S =

Z
df

�
i�� �

��

�

�
ei�(f)~v(f)~h�I(f)

�(f)Pv(f)
: (1.9)

The expected value of this quantity, in the presence of the signal, may be easily determined. In the presence of a
signal the expected value of the IFO output is given by �(f)ei�(f)h~v(f)i = ~hI(f). Thus, in constructing the expected
value of the error h�Si one may set

h~v(f)i =
~hI(f)

�(f)
e�i�(f): (1.10)

Note that this equation holds for h~vi in both \true" and \measured" quantities; the universe does not care about the
errors �R! So in the presence of the signal, the expected error arising from errors in calibration is

h�Si =

Z
df

�
i�� �

��

�

�
j~hI(f)j

2

�2(f)Pv(f)
: (1.11)

We will make use of this equation shortly.
The quantity which is actually measured in an experiment is the ratio of signal to noise. The noise is de�ned by

N � S � hSi; (1.12)

and has variance

hN2itrue =

Z
df

j~hI(f)j
2

�2(f)Pv(f)
: (1.13)

Errors in the calibration a�ect the noise, though only through the amplitude �. Because of the calibration error, the
measured noise2 is
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hN2imeasured =

Z
df

j~hI(f)j2

(�(f) + ��(f))2Pv(f)
: (1.14)

The di�erence between these is the error in the noise2 arising from the calibration error:

�hN2i =

Z
df

�
�2

��

�

�
j~hI(f)j2

�2(f)Pv(f)
(1.15)

From here on, we drop the angle brackets - which denote ensemble averages - to simplify the notation in what follows.
The (expected value of the) loss in the signal-to-noise ratio due to calibration errors may now be determined. It is
given by:
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=

�
S

N

� R
df (i��) j

~hI(f)j
2

�2(f)Pv(f)R
df

j~hI(f)j2

�2(f)Pv(f)

(1.16)

Now consider the numerator of this expression. This integral in the numerator vanishes because the integral is from
f = �1 to 1, ��(f) is an odd function of frequency, and j~hI(f)j2=�2Pv(f) is an even function of frequency! Thus,
to lowest order in �� and ��, the errors in SNR arising from calibration errors vanish. These errors only appear at
second order:

�

�
S

N

�
= O(��)2 +O(

��

�
)2 +O(��

��

�
): (1.17)

The good news is as follows: To lowest order, the errors in the calibration amplitude �� and phase �� drop out of
the S/N ratio. Since these errors only enter at second order, the constraints on the calibration for the binary inspiral
detection problem are probably not very severe or di�cult to achieve. For example, suppose that we do not wish to
lose more than 10% of the expected event rate, as a result of calibration errors. Because the event rate is proportional
to the volume of the universe which is observed by the detector, and the SNR is inversely proportional to the distance
to the source, this requirement implies that we should not lose more than 3:5% of the SNR, which in turn implies
that ��=� <

�
p
0:035 = 19%, and �� <

�
p
0:035 = 0:19 radians = 11 degrees. So for the detection of binary inspiral,

errors in the calibration are probably not a signi�cant concern.
Let me temper this optimism slightly. Although the amplitude and phase errors do not a�ect the detection problem

to lowest order, they do have an e�ect on the subsequent science at linear order; in particular the amplitude errors
linearly a�ect our ability to infer the distance to a source. Ideally, these errors should be small enough (a few percent)
so that the distance to a source can be determined with at most a few percent error. This would help to locate
sources, and also to pin down the Hubble expansion rate.
The phase errors �� also have a linear e�ect on the subsequent science, and a�ect the detection problem in a di�erent

way. The matched �ltering to search for binary inspiral will maximize the output of a pair of �lters corresponding to
coalescence phases of 0 and �=2, by maximizing over the coalescence phase. The e�ect of this maximization is that
any constant phase error �� will not reduce the SNR to lowest order, but it will result in an error in the determination
of the coalescence phase and could reduce the likelyhood of recognizing the signal in a correlation experiment with
another detector. In similar fashion, a phase error for which �� is a linear function of frequency will also not reduce
the SNR to lowest order, but will result in a shift in the coalescence time t0 of the binary system. Although it does
not reduce the detection probability in a single detector to lowest order, it does increase the odds that the chirp will
fail to correlate correctly in time with the same chirp observed in a di�erent detector. This type of phase error will
also decrease the precision with which a given source can be located on the sky; the sky location lies on a cone de�ned
by the di�erence in arrival times at two separated detector sites.
For these reasons, it would be desirable if the errors in the phase �� have no constant o�set, and no linear trend.

Although this does not (to lowest order) increase the SNR, it will assist correlating the signals with those of other
detectors.
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In this short memo, I have only examined the e�ects of calibration errors on the detection problem for binary
inspiral. Let me conclude with a few (less rigorous) comments about the e�ects of calibration error on searches for
other types of sources:

1. Stochastic background detection: In this case, the optimal �lter has a bandpass from about 40 Hz to 300 Hz.
Calibration errors outside of this range are not important. Because these experiments are done by correlating
the outputs of a detector pair, what matters most is the relative error in the calibration of the pair. For example,
in correlating two signals at angular frequency ! with the optimal �lter, the ratio of measured signal-to-noise
(proportional to h1h2) to true signal-to-noise is cos(��1 � ��2) which is second order in the phase di�erence
��1 � ��2. In similar fashion, the loss of signal-to-noise due to magnitude errors is second order in the error of
�1�2.

2. Searchs for CW (pulsar) sources: In this case, the frequency range of interest is extremely narrow; of order
one Hz. Errors in the magnitude and phase do not matter, provided that these errors do not vary signi�cantly
over a 1 Hz bandwidth. In other words, what is important here is keeping the variations of �� and �� small over
a 1 Hz bandwidth; their actual values are irrelevant.

3. Searches for binary inspiral using time-frequency methods: In this case, once again, errors in the
calibration probably are not terribly important. Typically these methods construct points in time-frequency
space and then use pattern recognition techniques to detect curves in the sets of points which might correspond
to binary inspiral. These methods should not be very sensitive to either phase or magnitude errors. In fact, one
can often reconstruct the SNR of the optimal �lter from a properly weighted set of the time-frequency space
measurements, which suggests that the errors in these techniques might also be second order in the calibration
errors.

4. Searches for transient sources: The waveforms of these types of sources (supernovae, for example) are not
well understood. Hence the techniques that will probably be used are not likely to be signi�cantly a�ected by
calibration magnitude or phase errors.

5. Searchs for black-hole coalescence and ringdown: The search for black-hole ringdown is a special case
of optimal �ltering, so the errors should only enter at second order. The coalescence signal is poorly enough
understood so that this should just be a special case of the \transient source".
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