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1 ABSTRACT

This document reports the results of the modal model simulations extended to many modes and
applied at large angular misalignments. Three main topic are investigated: the modal
decomposition of the electric fields (section 3), the servo-stability of the length sensing signals
(section 4) and the linearity of the wavefront sensing signals (section 5). The investigations are
made along the axes which are diagonal for the degradation of the gravitational-wave readout [5].

Table 1 summarized the findings. Even so the angles for which the power in the recycling and the
in-line arm cavity has dropped by factor of two and the stability boundaries for longitudinal and
angular misalignments are vastly different in different directions, they are usually very similar in
absolute values for each of the above effects. The smallest limit for a stable alignment is obtained
for a misalignment in the direction of M5: ~ rad. This misalignment involves only the
recycling mirror and the ITMs, hence, suggesting that during lock acquisition the recycling cavity
should be aligned before the arm cavities are brought into resonance.

2 DEFINITIONS AND PARAMETERS

The basic principles of the simulation code (modal model) are derived in Ref. [1]. The necessary
conventions and the interferometer equations are further outlined in Ref. [2]. The parameters used
in the present simulations (see Table 2) are based on Ref. [3]. The effects of small misalignments
are reported in Ref. [6] for angular misalignments and in Ref. [7] for mode/curvature mismatch
and are not repeated here again.

In the present work angular degree of freedoms are expressed in the basis which is diagonal for
the degradation of the gravitational-wave sensitivity at the dark port [5], called the M-basis. In
Table 3 the basis vectors are listed in terms of the usual differential and common misalignments
angles of the test masses. The results of present work were obtained by computing 21 transverse
modes.

Table 1: Power degradation and decrease of servo stability due to angular misalignments.
For each principle angular direction the angle for which the power has degraded by half and the
angle for which the length and alignment sensitivities have decreased by half are shown. The
values are given in units of the arm cavity divergence angle.

Direction
Recycling cavity power Power in arm Stability (half gain point)

sidebands carrier carrier LSC ASC

M1 > 1 > 1 > 1 > 1 > 1

M2 0.7 0.6 0.5 0.6 0.65

M3 0.3 > 0.6 > 0.6 0.15 0.15

M4 0.15 0.06 0.06 0.04 0.04

M5 0.015 > 0.1 > 0.1 ~0.01 ~0.01

1 7–×10
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3 MODE DECOMPOSITION FOR LARGE ANGLES

When an interferometer is misaligned higher order transverse modes are excited in the cavities.
Generally, the number of significant modes and the amplitudes of these modes are increasing with
larger and larger angles. Since it is numerically costly to compute the large number of necessary
modes for large misalignments, we restrict the investigation to the angular degree of freedoms
which were found to be diagonal for the degradation of the gravitational wave sensitivity (M-
basis). The justification for this choice lies in the observation that more sensitive degree of
freedoms for the gravitational wave sensitivity are also the more sensitive degree of freedoms for
the degradation of the cavity power and the degradation of the length and alignment sensitivity
matrices.

Table 1 summarizes the values of angles (in the M-basis) where the cavity power in the arms and
in the recycling cavity have dropped by half compared to the power in the perfectly aligned case.
In the recycling cavity the values are given for the carrier and the resonant sidebands separately.
Because the sidebands are not resonant in the arm cavities, only the carrier values are listed. Fig. 1
shows the absolute electric field amplitudes as a function of the misalignment angle in the

Table 2: Interferometer parameters. LIGO 4km configuration.

Parameter Unit arm (ITM) arm (ETM) recycl. (RM)

length (common / differential) m 3999.01 9.38 / 0.21

power transmission % 3 0.0015 2.44

power reflectivity % 96.995 99.9935 97.5

radius of curvature m –14571 7400 –9998.65

modulation frequencies MHz 23.971             35.956

modulation depths Γ 0.45                0.045

wave length µm 1.064

refractive index 1.44968

Table 3: Basis vectors for expressing large angular misalignments

Vector
angular degree of freedom

M1 0.000 0.000 0.392 –0.747 –0.537

M2 0.000 0.000 0.920 0.317 0.231

M3 –0.421 0.907 0.000 0.000 0.000

M4 0.907 0.421 0.000 0.000 0.000

M5 0.000 0.000 –0.002 –0.585 0.811

∆ETM ∆ITM ETM ITM RM
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direction of M4 for the dark port of the Michelson, in reflection of the recycling cavity, inside the
recycling cavity and inside one of the arm cavities. The input field is a pure TEM00 with
amplitude 1 and the results are given for the lowest six modes in one transverse dimension:
TEM00 through TEM50. The plots include the lowest six modes for both carrier and sideband
fields. The sign of the value for the carrier field is determined from the sign of its real part. From
the second row in Fig. 1 one can then see that the carrier field in reflection has a zero crossing at
~0.35 and changes its sign; thus, going from an overcoupled system to an undercoupled one with
increasing angular misalignment in the M4 direction.

4 LONGITUDINAL SENSITIVITY AT LARGE ANGLES

For the length sensing and control system to be able to servo the longitudinal degree of freedoms
in the presence of a large angular misalignment, the measured error signals must still be a ‘good’
measure of the longitudinal deviations. For a single-input-single-output longitudinal servo system
it is straight forward to define the ratio of sensitivities between the angular misaligned and aligned
case as a criterion of stability. If this ratio is unity, the angular misalignment obviously does not
interfere with the longitudinal degree of freedom and we say that the system is stable. If this ratio
grows larger than unity, the longitudinal error signal is over-estimated and it is expected that the
system is still able to find zero point of longitudinal deviation. If the ratio becomes smaller than
unity, the servo loop gain will decrease, until, ultimately, for negative ratios the longitudinal error
signal has the wrong sign and the system becomes unstable.

In the case of a multi-dimensional longitudinal servo system the situation is a little bit more
complicated, since the longitudinal deviations are now related to the measured error signals via a
matrix, called the length sensitivity matrix:

(1)

where  denotes the measured error signals and  denotes the longitudinal deviations. For
small deviations in length the error signals are then obtained by:

(2)

Going from the perfectly aligned state to state with large angular misalignment, the length
sensitivity matrix will change. Since it is a matrix the change might be more complicated than a
simple ‘gain’ reduction, the decrease (or increase) of sensitivity can happen differently for each
longitudinal degree of freedom. Furthermore, the matrix might undergo a rotation. It is therefore
not possible to just look at individual degree of freedoms separately, but rather one has to define a
new stability criterion which gives a measure how well the measured longitudinal error signals
represent the true deviations in length. If one defines LSM as the length sensitivity matrix for the
perfectly aligned interferometer, one can obtain an estimation of the deviations in length for an
interferometer in an ‘unknown state’ as follows:

(3)

Lifo ∆L( )∂
∂ Serr

ifo

≡

Serr ∆L

Serr Lifo∆L=

∆L' LSM 1–
Serr LSM 1–

Lifo∆L= =
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Mode Decomposition

Figure 1: Electric field amplitudes. The fields are plotted as a function of the misalignment
angle in the direction of M4 for both carrier (first column) and sidebands. The following points
are used: at the dark part (first roe), in reflection, inside the recycling cavity and inside the in-line
arm cavity (last row). The angles are given in units of the arm cavity divergence angle. The plot
points for increasing mode order are: diamond, triangle (up), star, circle, square and triangle.
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Figure 2: Stability Criterion for Length Sensing. The absolute values of the eigenvalues of the
length sensing convergence matrix are shown for misalignments in the direction of M1 (a)
through M5 (e). Small values indicate a good behavior of the length sensitivity matrix, whereas
for values above unity longitudinal error signals may have the wrong sign (for details see text).
The misalignment angles are given in units of the divergence angle.
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We can then define a stability criterion by demanding that the difference between the estimated
deviation in length and the true one is smaller than the deviation itself, i.e.:

 for all small . (4)

Using Eqn. (3) in (4) gives:

(5)

where 1 is the identity matrix.

Because Eqn. (5) must be valid for all small deviations in length , one can formulate the
condition (4) independent of the deviations in length by looking at the eigenvalues of the operator
in the bra-ket. By defining the convergence matrix as

(6)

all its eigenvalues must lie inside the unity circle in order for the length sensitivity matrix  to
be called stable, i.e.

(7)

Alternatively, one could formulate a weaker condition and only ask that  and  point
‘overall’ in the same direction.

 and thus (8)

This condition can again be expressed as an eigenvalue equation:

(9)

For most cases of misaligned interferometers Eqns. (7) and (9) give the same stability boundary,
since the boundary is mostly determined by a ‘sign-flip’ in the length sensitivity matrix and not by
an excessive increase of ‘gain’. Fig. 2 shows the absolute values for the eigenvalues of the
convergence matrix as a function of an angular misalignment in the directions of M1 to M5.
Table 1 summarizes the angular values where the first eigenvalue of the convergence matrix
exceeds 0.5 and therefore indicating a gain loss of about 0.5.

5 WAVEFRONT SENSING AT LARGE ANGLES

Similarly to the longitudinal degree of freedoms, one can ask whether the measured wavefront
sensing signals are still a good measure of the physical misalignment angles assuming one would
make a large angular misalignment, but would not know the exact alignment state of the
interferometer. Since the present work only investigates misalignments along the axes of the
M basis, a stability criterion can be written as:

(10)

∆L' ∆L– ∆L' ∆L–〈 | 〉 ∆L ∆L〈 | 〉< ∆L

∆L〈 | 1 LSM
1–
Lifo–( )

2
∆L| 〉 ∆L ∆L〈 | 〉<

∆L

CL 1 LSM
1–
Lifo–=

Lifo

max eigenvalues CL 1<

∆L ∆L'

∆L ∆L'〈 | 〉 0> ∆L〈 |LSM 1–
Lifo ∆L| 〉 0>

Re eigenvalues LSM
1–
Lifo( ){ } 0>

CWFS
∆Θ' ∆Θ– ∆Θ' ∆Θ–〈 | 〉

∆Θ ∆Θ〈 | 〉
----------------------------------------------------- 1<=
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where  is the physical misalignment angle and  is its estimation using the alignment
sensitivity matrix of the perfectly aligned interferometer (ASM),

(11)

where  denotes the measured error signal of the wavefront sensors.

Fig. 3 shows the estimated misalignment angles as function of the physical ones when the
interferometer is misaligned in the directions of M4 or M5. Additionally, the stability criterion

 is computed along these axis. M4 and M5 are the two degree of freedoms which are most
sensitive to angular misalignments. The corresponding figures for the M1 to M3 are generally
showing weaker dependencies and fewer ambiguities. Table 1 summarizes the angular values
where the stability criterion exceeds 0.5 and thus indicating a gain loss of about 0.5.

∆Θ ∆Θ'

∆Θ' ASM 1–
WFS=

WFS
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Figure 3: Alignment Signals and Stability Criterion. The estimated misalignment angles are
plotted against the physical ones (first row) in units of the arm cavity divergence angle and in the
direction of M4 (first column) and M5. Diamonds, triangles, stars, circles and squares are used to
denote basis vectors M1 through M5. The second row shows the stability criterion for the
wavefront sensing scheme (see text for details).
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