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Introduction

The purpose of this document is to describe the wavefront sensing alignment scheme for the
Optics Mode Cleaner (IOOMC). Sensing signals are calculated and the design of the Guoy
telescopes is specified. The design entails calculation of the Guoy phase correspond
maximum sensitivity to each degree of freedom and then determining the focal lengths
positions of lenses and the positions of the detectors which give this Guoy phase shift. Final
sensing matrix is cast into the basis of the actuators and control gains are specified.

Alignment sensitivity matrix

The mode cleaner alignment sensitivity matrix is calculated using the Modal Model [1
convenient basis in which the alignment degrees of freedom can be expressed is common
and differential tilts of the input and output mirrors. It should be noted that because the m
cleaner is a three-mirror ring cavity, the antisymmetric spatial modes of the cavity hav
additional Guoy phase shift in the horizontal plane (due “spatial flips” upon reflection from
odd number of mirrors), which leads to a different Guoy phase shift for detection of horizo
and vertical misalignments. For the mode cleaner parameters listed in the Appendix
alignment sensitivity matrix is given in Table 1:

Port Degree of Freedom

∆IOx IOx

reflection 3.53 (3.52) −2.25 (−2.25)

I (I) 90˚ (90˚) I (I) 0˚ (0˚)

∆IOy IOy

reflection −2.25 (−2.25) −1.44 (−144)

I (I) 0˚ (0˚) I (I) 90˚ (90˚)

Table 1: Alignment sensitivity for the 4 km and 2 km (in
parentheses) configurations. The upper entry is the signal
strength per divergence angle, the lower left entry is the RF
phase and the lower right entry is the Guoy phase shift for
maximal detection of the signal.
page 2 of 10



LIGO-T970098-01-D

tter and

m, so

xceed

iodes
,
LI

G
O

-D
R

AF
T

Telescope layout and definitions

A schematic of the layout for the mode cleaner photodetection is given in Figure 1.

Design constraints

The following practical considerations have driven the design choices:

• The nearest accessible position to the reflection port is about 4 m away, so .
• Separation between lenses must be large enough to accommodate the electro-optic shu

two beamsplitters, so .
• The total distance between the telescopes and the detector should not exceed 2.5

.
• The electro-optic shutter has a clear aperture of 8 mm so the spot size on it should not e

5 mm in diameter.
• The optimum spot size on the detector is determined by the size of the quadrant photod

[2]. The EG&G YAG 444-4 have an active area of 1 cm2, which gives detector radius

electro-optic
shutterlens1 lens21

lens22

lens
zport

z1 z2

z2

to light level
trigger photodiode

WFS1

WFS2

Figure 1: Schematic layout of mode cleaner photodetection.zport is the location of the
mode cleaner input mirror, which is also the reflection port. Since the beam waist
occurs atzport, we setz = 0 there.z1 is the position of the first lens, with focal length,
f1; z2 is the position of the second lens, with focal length,f2; and zdet is the position of
the detector.

zdet

zdet

z1 4.0 m≥

z2 z1– 0.5 m≥

zdet z1– 2.5 m≤
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.The ratio of the spot size on the detector,w, to the detector radius,R, which
ensures that less than 1% of the signal is lost due to the finite detector size is
corresponds to .We use .

• We use commercial off-the-shelf lenses; their focal lengths must be accordingly chosen

Lens selection

To minimize spherical aberrations, we use a plano-convex lens for lens 1 and a bi-concave le
lens 2. The CVI lenses we choose have good surface quality and figure, with a small error
focal length. Specifically, for CVI lenses

• Surface quality: 10-5 scratch-dig (cf. 40-20 for same Newport lens)
• Surface figure: l/10 at 633 nm (cf.λ/4 toλ/2 at 546 nm for Newport)
• Focal length tolerance:±0.5% (cf.±2% for Newport)
The part numbers for the lenses used in the design of the Guoy phase telescopes (below) 

CVI PLCX-25.4-515.1-C withf(1064 nm) =+1016.7 mm
CVI BICC-25.4-77.6-C withf(1064 nm) =−76.3 mm

Telescope design

The focal lengths and positions of the lenses and the position of the detector head for the
phase telescopes is given in Table 2.

The Gaussian beam propagation, along with Guoy phase shift along the telescope train is
Figure 2 for the 4 km and in Figure 3 for the 2 km configuration.

Detector
Guoy phase

Configura-
tion

f1 (mm) z1 (mm) f2 (mm) z2 (mm) zdet (mm)

180˚ 4 km +1016.7 4000.0 −76.3 5299.4 5637.5

90˚ 4 km +1016.7 4000.0 −76.3 4945.8 5951.7

180˚ 2 km +1016.7 4000.0 −76.3 5300.6 5595.9

90˚ 2 km +1016.7 4000.0 −76.3 4945.2 6077.4

Table 2: The Guoy phase telescopes for two wavefront sensors for the 4 km and 2 km
configurations.

R 5.64 mm=
w R⁄ 0.6≤

w 3.4 mm≤ w 3.0 mm=
page 4 of 10



LIGO-T970098-01-D
LI
G

O
-D

R
AF

T

z-position (m)

sp
ot

 s
iz

e 
(m

m
)

Beam profile for 4 km configuration
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Figure 2: Beam profiles for the 4 km configuration for detectors at 0˚ (180˚)
and 90˚ Guoy phase shift.
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Error propagation

The dominant source of Guoy phase error in this two-lens design is error in the position o
second lens. In fact, for an error of±10 mm in the placement of the second lens corresponds
Guoy phase error of±6˚ for both detectors at 90˚, and a guoy phase error of less than±1˚ for both
detectors at 0˚. All other errors contribute less than±0.5˚ to the Guoy phase error and less th
0.1 mm to the spot size on the detector.

Control Signals

For the purposes of actuating the steering mirrors which align the input beam to the mode c
axes, it is more convenient to express the alignment sensing matrix given in Table 1 in ter
shifts and tilts of the input beam. The alignment sensitivity (in the horizontal plane) for the 2
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Beam profile for 2 km configuration

Figure 3: Beam profiles for the 2 km configuration for detectors at 0˚ (180˚)
and 90˚ Guoy phase shift.
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configuration in terms of input beam shift and tilt at the mode cleaner cavity waist,∆xIB andφIB,
respectively, is

∆xIB is normalized to the beam waist,w0, while φIB is normalized to the beam divergence ang
θD. An identical matrix can be written for beam shifts and tilts in the vertical plane,∆yIB andθIB,
respectively.

To convert these sensor signals, , into voltages at the demodulator outputs, , we use

and

where

Using the above values for the wavefront sensing photodetection,
. The steering mirror actuators have a tilt sensitivity

, which must, in turn, be converted into input beam sh
and tilt at the mode cleaner cavity waist. If the distance between steering mirrors is an

Sensor ΦGuoy ∆xIB φIB

WFS1x 90˚ 1.59

WFS2x 0˚ 1.59

Parameter Value Unit Description

0.1 Modulation index

7.5 Watt Input power

0.002 Fraction of reflected light to WFS

0.7 Photodiode geometrical factor

0.45 Amp/Watt Photodiode efficiency

103 Ω Photodiode transimpedance

8 Demodulator gain

186 µrad Divergence angle

1.818 mm Beam waist

Table 3: Parameters for wavefront sensing photodetection [4].

Ai Si

Sφ Si φIB( ) 2J0 Γ( )J1 Γ( )Pin f splitkPD
10 ηPDZPDGdemod

Ai φIB( )
φD

------------------=≡

S∆x Si ∆xIB( ) 2J0 Γ( )J1 Γ( )Pin f splitkPD
10 ηPDZPDGdemod

Ai ∆xIB( )
w0

----------------------=≡

Γ

Pin

f split

kPD
10

ηPD

ZPD

Gdemod

θD

w0

Sφ 3.2 10
4× volt/radian=

S∆x 3.3 10
3× volt/meter=

SSM1 SSM2 1.7 10
5–× radian/volt= =

d1
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distance from second steering mirror to the mode cleaner cavity waist is , then matrix w
converts input beam tilts and shifts into steering mirror tilts is:

An identical matrix can be written for tilts and shifts in the vertical plane. There is an uncerta
in the overall sign of the matrix, since the direction of the reflective surface of the steering m
was not known at the time of writing.

For the 2 km configuration, the distances and are 2.102 m and 2.572 m (2.537 m
mode cleaner input mirror and 0.035 m from the input mirror to the mode cleaner wa
respectively. This gives the basis transformation

A block diagram of the sensing system is shown in Figure 4. The control voltage to each ste

mirror is then given by the inverse transformation matrix times the overall gains of the contr
and . We require that the DC gain in the wavefront sensing loop is about 10. U

, we get

⇒

d2

∆xIB

φIB

2 d1 d2+( ) 2– d2

2 2
±

θ1x

θ2x

=

d1 d2

∆xIB

φIB

8.348 5.144–

2 2
±

θ1x

θ2x

=

∆xIB

φIB

Sφ

S∆x G∆x

Gφ

2 d1 d2+( ) 2– d2

2 2
±

1–

2 d1 d2+( ) 2– d2

2 2
±

Gpz

Gpz

SSM1

SSM2

∆xIB

φIB

VSM1

Vφ VSM2

θ1

θ2

V∆x

Figure 4: Block diagram of sensor and control voltages. Input beam shift and tilt
are converted to sensor voltages via matrix elements,S∆x and Sφ; G∆x and Gφ are
overall controller gains; multiplication by the inverse transformation matrix
gives steering mirror control voltages,VSM1 and VSM2; Gpz is the gain in the
steering mirror PZT driver; SSM1 and SSM2 are the steering mirror sensitivities,
which give steering mirror angles,θ1 and θ2; the transformation matrix converts
these into input beam shift and tilt.

G∆x Gφ
Gpz 15=

G∆x 3.3 10
3×( )× 1.7 10

5–×( ) 15×× 8.348 5.144–

2 2

1–

×± 10= G∆x 12≈
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⇒

Consequently, the voltage outputs from the controller to the steering mirror piezo driver,
and , respectively, are

where and are the wavefront sensor inputs to the controller. Again, an identical co
matrix is needed for tilts/shifts in the vertical plane.
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Gφ 3.2 10
4×( )× 1.7 10

5–×( ) 15×× 8.348 5.144–
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×=

S∆x Sφ
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Appendix

The relevant parameters for the mode cleaner for the 4 km and 2 km configuration are giv
Table 4. These parameters are derived from reference [3].

Parameter Unit input mirror output mir-
ror

third mirror

length (round-trip) m 24.510 (30.540)

power transmission 0.002 0.002 10-5

power reflectivity 0.998 0.998 1−10-5

radius of curvature m ∞ ∞ 17.25 (21.50)

beam waist mm 1.628 (1.818)

modulation frequencies MHz 33.289 (27.717)

modulation depths G 0.015

wave length µm 1.064

refractive index 1.44968

Table 4: Mode cleaner parameters for the 4 km and 2 km configurations. Values for the
2 km configuration are given in parentheses, unless same for both.
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