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1 INTRODUCTION

This document discusses the gravitational wave strain calibration in LIGO. Section 2 shows that
requirements of ~2% in amplitude and  in the determination of the arrival time will be of
sufficient accuracy for most of the physics derived from early detections. Section 3 summarizes
the interaction of a gravitational wave with the LIGO interferometer and gives formulas which
connect the measured antisymmetric port signal with the strain of a gravitational wave. Section 4
includes the longitudinal servo system in the analysis and Section 5 describes a possible
calibration actuator based on the momentum transfer of photons. Section 6 works out three
different calibration procedures: swept sine, permanent calibration lines and the addition of a
wide-bandwidth pseudo-random signal.

2 CALIBRATION  REQUIREMENTS

The requirements for the gravitational wave strain calibration in LIGO are based on the
assumption that if one detects a few events ( ) with reasonable signal-to-noise ratios
( ), the deduced (astro-) physical results should not be limited by systematic uncertainties
in the detector, but rather by the random noise sources of the interferometer — i.e., seismic noise,
thermal noise and photon count statistics. As shown below an amplitude calibration with an
accuracy of  and an absolute timing precision (relative to world time) of  would
most likely be adequate.

2.1 AMPLITUDE CALIBRATION

2.1.1 Distance from the Source

Since one can extract the chirp mass of a binary system from the rate the frequency changes with
time, one is able to make a prediction of the binary’s absolute gravitational luminosity [1]. That
means that a measurement of the amplitude of the signal measured on Earth is enough to
determine the distance to the source. Because the measured amplitude is inversely proportional to
the distance, a relative amplitude measurement error will directly propagate into an uncertainty of
the distance. A gain calibration error would enter as a system error. Requiring a 2% calibration
accuracy guarantees that the statistical uncertainty dominates the error budget for signal-to-noise
ratios at and below ~30.

2.1.2 Matched Filter Analysis

The measured signal-to-noise ratio of the classical matched filter analysis turns out to be first
order insensitive in the calibration of the gain [2]. This can be readily understood by recognizing
that a calibration error will affect both the signal level and the noise level the same way and,
therefore, cancel out in the signal-to-noise ratio.

~10µsec

1 10–
10 100–

2%± 10µsec±
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2.2 TIMING CALIBRATION

2.2.1 Coincidence

For detectors far away the coincidence interval for a signal coming from an arbitrary direction is
determined by the light travel time between the detectors. The two LIGO sites are separated by
10ms which is much larger than any sensible timing resolution.

The signal-to-noise ratio of a sinusoidal signal of duration  can be estimated by

(1)

where  and  are the signal and the noise amplitudes respectively. If the frequency of the
signal is  the timing uncertainty approximately becomes

(2)

For two nearby interferometers tuned to detect correlated events with a signal-to-noise ratio of 10
or better at frequencies around 150Hz the systematic timing error should be well below 100µsec.

2.2.2 Localization on the Sky

Fig. 1 shows a gravitational wavefront propagating through two detectors separated by a distance
L. The incident angle  (angle of the cone in 3 dimensions) is given by the difference in the time
of arrival  as follows:

(3)
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Figure 1: Gravitational wavefront as seen by two detectors.
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and the angular uncertainty becomes

(4)

For a separation of  and a timing error of 10µsec the angular uncertainty close to
normal incidence is roughly 3arcmin. Using eqn. (2) to estimate the required signal-to-noise ratio
of such an event yields, e.g.,  at 150Hz, or  at 1kHz.

2.2.3 Periodic Sources

The search for periodic sources involves long observation times, but as long as the signal-to-noise
ratio is not significantly larger than the detection threshold the requirements placed on the gain
calibration accuracy are not severe. Contamination of the arm cavity mirrors over time will reduce
the arm cavity storage time and, therefore, move the arm cavity pole to higher frequencies. This in
turn will introduce a phase shift in the measured signal at the antisymmetric port. On a short time
scale this effect will be small enough, so that the signal-to-noise ratio is not significantly
deteriorated. On longer time scales the periodic calibration runs can be used for correcting the
phase if necessary. Absolute timing accuracy is not as relevant as for faster events, since the
position on the sky can be deduced from the applied Doppler corrections rather than the time of
arrival.

2.2.4 Matched Filter Analysis

The measured signal-to-noise ratio of the classical matched filter analysis turns out to be first
order insensitive in the calibration of the phase [2]. Since these filters are scanned over all arrival
times to find the best match, a simple time delay is irrelevant. On the other hand a dispersive effect
due to a frequency dependent phase error will change the shape of burst signals or chirp signals
and, thus, give rise to a (second order) change in the signal-to-noise ratio.

∆β
1

βcos
------------

c∆τ
L

---------=
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3 GRAVITATIONAL  WAVE INTERACTION WITH AN 
INTERFEROMETRIC DETECTOR

3.1 THE COORDINATE SYSTEM

We chose the coordinate system to be aligned with the two arms of the interferometer, where the
origin is positioned at the beamsplitter and the z-axis points vertically upwards (see Fig. 2). 

Spherical coordinates are defined by 

with (5)

We then define the rotation operator  which rotates the z-axis in the direction of :

(6)

where and (7)

3.2 ROUND-TRIP PHASE CHANGE

We write the phase of the light which it acquires in one round-trip in one of the interferometer
arms as

(8)
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Figure 2: Coordinate System.
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where  is the length of the arm,  is the angular frequency of the light and  the time the
photon leaves the origin. We now change the integration over time into one over length by using

with (9)

where  is the Minkovski metric and  is the space-time ripple due to the gravitational wave
[3]. For a gravitational wave traveling along the z-axis  in the transverse-traceless gauge
becomes

with (10)

where  is the angular frequency of the gravitational wave, k is its wave vector,  and  are
the wave amplitudes for the “+” and the “×” polarization, respectively.

For arbitrary directions one has to rotate both z and  in the direction of the wave vector k.

with (11)

(12)

For an integration along the x-axis or the y-axis  and  are the only relevant matrix elements,
respectively.

(13)

(14)
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Fig. 3 shows the angular dependence of  for both polarization and the average. Using
eqn. (9) we rewrite eqn. (8) as

(15)

Similarly,  can be obtained by integrating along the y-axis. Since  we can Taylor
expand the square root of eqn. (15). Performing the integration, keeping only time-dependent
terms, time-shift from departure to arrival, and changing to a complex notation where the absolute
value denotes the amplitude and the argument denotes the phase shift, one gets:

(16)

where . The approximation yields the exact solution for a gravitational wave
traveling along the z-axis. From eqn. (16) one sees that the signal delay for photons arriving at the
origin is  times half the round-trip time. The finite time a photon spends in a Michelson
arm also leads to a small correction of the signal amplitude which would otherwise be determined
by  only. Fig. 4 shows the amplitude correction and time delay of the round trip phase of a
gravitational wave as function of  relative to one of normal incident and strength . These
effects are generally small and in most cases negligible.
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Figure 3: h sensitivity as function of angle for the “+” polarization, the “×” polarization and the averaged polarization.
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3.3 ARM CAVITY RESPONSE AND ANTISYMMETRIC PORT SIGNAL

To calculate the response of a cavity to a gravitational wave of a certain frequency  we write the
electric field as a three-component vector denoting the carrier field, the upper audio sideband and
the lower audio sideband. The round-trip operator  can be expressed as [4]

(17)

where we neglected the factor  which is unity when the cavity is on resonance (with
 the Guoy phase shift). The reflected field operator for a cavity then becomes

(18)

where  and  are the amplitude reflectivity and transmission coefficients of the input mirror
and  is the total round-trip loss (including the reflectivity of the rear mirror). Using a carrier only
the input field , the reflected audio sidebands are

and (19)

with (20)

and with the cavity pole at . (21)

The audio sideband signal can be simplified to

(22)

The signal at the antisymmetric port is then given by

(23)

where  and  are the amplitude reflectivity and transmission coefficients for the beamsplitter,
respectively,  and  are the losses in the (short) inside Michelson arms for the incident carrier
light and the reflected gravitational wave signal,  and  denote the signals from the in-line and
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the off-line arm cavities, respectively, and  is the carrier field incident on the beamsplitter. We
now write the rf sideband signal at the antisymmetric port as

(24)

where  is the field strength of either rf sideband and  is the angular modulation frequency.
Down-converting the signal yields

(25)

On the last line we returned to the complex notation where the absolute value denotes the signal
amplitude and where the argument denotes the signal phase shift.  is the transimpedance gain of
the mixer/filter/amplifier circuit,  is the efficiency of the photodetector,  and  are the
carrier power on the beamsplitter and the total sideband power at the antisymmetric port,
respectively.

4 SERVO SYSTEM RESPONSE

4.1 QUANTIZATION EFFECTS

An analog-to-digital converter will generally add a time delay of half the sampling period. In
order to keep the uncertainty in this correction negligible, the sampling period must not be
significantly larger than the desired timing resolution. Anti-aliasing filters or a slow settling time
of the preceding amplifier may contribute to additional delays.

4.2 CROSSCOUPLING FROM OTHER DEGREES-OF-FREEDOM

The beamsplitter clearly separates differential from common mode changes. Hence, we only have
to consider the small inside Michelson length as a possible source of crosscoupling. Since for the
initial LIGO the unity gain frequency of the small Michelson loop will be below the gravitational
wave detection band a small Michelson length change will couple unattenuated into the
antisymmetric port signal. For a gravitational wave this coupling is suppressed by roughly a factor
equal to half the finesse of the arm cavity times the ratio of the length between beamsplitter and
input mirror over the cavity length.

(26)

For the present configuration this factor is of order .

4.3 RECONSTRUCTING THE GRAVITATIONAL  WAVE SIGNAL

The unity gain frequency of the differential arm length servo may be lying inside the gravitational
wave detection band. In principle, the gravitational wave signal is best determined from the
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control signal below the unity gain frequency, from the error signal above the unity gain frequency
and from a combination of both signals around the unity gain frequency. However, for a digital
servo the transfer function between the error signal and the control signal is known to a very high
precision and, therefore, no additional information is gained by looking at the control signal.
Since the crosscoupling from the Michelson servo is negligible, one can perform the
reconstruction of the gravitational wave signal with a one dimensional servo model (see Fig. 5).
The closed loop response of the measured antisymmetric port signal  as function of the
gravitational wave induced round-trip phase  then becomes

(27)

Above the unity gain frequency the second term of the denominator in eqn. (27) is small
compared to unity and the gain error is mainly given by the uncertainty in the optical/sensing gain

;. On the other hand, below the unity gain frequency the denominator is getting large and the
gain error is dominated by the uncertainty in the controller gain .

5 PHOTON ACTUATORS

5.1 MOMENTUM TRANSFER OF LIGHT

One way to calibrate the response of the interferometer is to apply a known force to the test
masses and compare it to the measured signal at the antisymmetric port. One way is to use the coil
drivers presently implemented in the suspension controllers. Since the bandwidth of the controller
is fairly low, corrections for both the amplitude and the phase of the actuating signal have to be

Figure 5: Servo loop model for differential arm length control. The gravitational wave signal
 is added to the signal  coming from the suspended test mass  to give

the error signal e which is turned into the antisymmetric port signal  by the
interferometer . The controller is described by  and produces the control
signal . The constants  are additional gains; they are mainly introduced to account
for gain errors and are nominal unity.
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taken into account. An other way to apply the force is to use an independent wideband actuator
such as a laser beam. The recoil of the photons bounced off the mirror surface pushes the test
mass by a small amount backwards. If the incident angle is  the applied force is

(28)

where  is the number of photons hitting the mirror per time. Expressing the photon rate in units
of the light intensity  yields

(29)

Treating the test mass as a simple pendulum and writing the light intensity as

(30)

the displacement amplitude of test mass can be written as

 for (31)

where  and  are the angular resonance frequency and the Q of the pendulum. As an example
we take a laser with intensity , an incident angle close to normal and a test mass of

, the displacement amplitude at 100Hz then becomes .
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Comparing this with eqn. (17) — the round-trip operator for a gravitational wave — one can see
that the time delay of the dithering signal of the rear mirror exactly corresponds to the one of a
gravitational wave propagating along the z-axis and the following amplitude relation holds

(33)

Calculating the response to dithering the input mirror is more involved, since it introduces phase
shifts both for the input field and for the round-trip field. Considering only the change of the
cavity length the result is the same as for a rear mirror dither except an additional phase shift of

. This can be naively understood by observing that moving the input mirror will
immediately change the interference between the prompt reflected field and the transmitted field
leaving the cavity. Additionally, dithering the input mirror changes the length of the small
Michelson and, therefore, will generally produce an immediate signal at the antisymmetric port. 

5.3 IMPLEMENTATION

A possible setup is shown in Fig. 6. The beam reflected from the mirror surface is guided to a
photodetector which measures both amplitude and phase of the modulated laser light. This setup
has the advantage that the precision of the applied force depends on the photodetector calibration
and the incident angle only. In particular, the timing of the displacement dither can measured
without unwanted signal delays if a higher bandwidth photodetector is used.
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6 CALIBRATION  PROCEDURES

We distinguish calibration procedures which take place during data runs and ones which take
place when the detector is off-line. The first class of procedures will add additional signals to the
gravitational wave detection band and, therefore, either degrade the overall sensitivity slightly or
render certain discrete frequencies inaccessible. They have the advantage that they are performed
concurrently with the data runs and, hence, are best suited when the sensitivity varies over time.
Off-line calibration procedures, on the other hand, will add to the down-time of the detector, but
will not degrade the gravitational wave sensitivity. They are best suited if the detector sensitivity
is very stable over time and calibration runs are only required occasionally.

A calibration signal which is added during data runs has to be small enough not to deteriorate the
gravitational wave sensitivity significantly. This can be achieved either by adding fixed frequency
calibration lines or by adding a wideband pseudo-random signal. In both cases the actuation is
known and can subsequently be subtracted from the measured antisymmetric port signal. The
remaining uncertainty is proportional to the calibration uncertainty at the time of the measurement
multiplied by the amplitude of the applied calibration signal.

6.1 SWEPT SINE

Swept sine calibration is best suited for calibrations between data runs. During such a calibration
run a sine wave displacement signal is applied to one of the test masses when the interferometer is
locked. The frequency is then slowly swept over the gravitational wave detection band measuring
the error signal at the antisymmetric port as function of the displacement. This directly determines
the closed loop transfer function as given in eqn. (27). Since the detector is off-line the signal-to-
noise ratio of the calibration signal can be large and the measurement time can be kept short.

6.2 FIXED FREQUENCY CALIBRATION  LINES

A fixed frequency calibration line allows to monitor short-time gain fluctuations. A calibration
line below the unity gain frequency of the differential arm length servo is mostly sensitive to gain
changes of the suspension controller, whereas a calibration line above the unity gain frequency
will monitor both the optical and the sensor gain. One could try to subtract the calibration line
from the data, but it is unlikely that the calibration frequencies will still carry convincing
information about gravitational waves. By giving up the information at the calibration frequencies
the amplitude of the displacement signal can then be made large compared to the noise and,
hence, gain fluctuations can be monitored on very short time scales (~seconds).

6.3 WIDE-BANDWIDTH PSEUDO-RANDOM SIGNAL

Adding a pseudo-random displacement signal to a test mass with an amplitude well below the
noise level avoids the disadvantages of the fixed frequency calibration lines by distributing the
energy over the whole gravitational wave band. Since the disturbances of the system are small and
without any frequency preferences the degradation of the gravitational wave sensitivity is
negligible for all practical purposes. Furthermore, the calibration stretches over the whole band at
once and by using different pseudo-random series, in principle, all four test masses can be
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actuated independently to give a simultaneous calibration of both arms. Since the maximum
amplitude of the added signal is preferable below the noise level, a certain amount of integration
time (usually between several minutes and a few hours) is required to extract the calibration
signal.

6.3.1 Generating a Pseudo-Random Calibration Signal

The generation of the pseudo-random signal is schematically shown in Fig. 7. A random
generator generates a random sequence of zeros and ones at the sampling frequency which is first
band-pass filtered to select the calibration signal bandwidth and which is then filtered with the
GW-sensitivity transfer function to give a constant signal-to-noise ratio over the whole bandwidth.
Finally, the gain is adjusted to yield the needed displacement signal.

6.3.2 Extracting the Calibration Information

If we denote the displacement signal induced by the pseudo-random calibration signal as  and
the measured antisymmetric port signal due to this signal and an additional noise term as

, one can approximate the gravitational wave transfer function by

(34)

where  is the calibration bandwidth. Using eqn. (27) one finds

(35)

The calibration error is then solely determined by the second term in eqn. (35). If the total
calibration time is denoted by , the number of independent frequencies within the calibration

Figure 7: Pseudo-random signal generation.
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bandwidth is given by . Using  for the signal-to-noise ratio between the  and
 one can approximate the calibration error by

(36)

where  is a random phase. Finally, we calculate the individual gain and timing errors:

and (37)

Requiring a gain error of 1% or less, a signal-to-noise ratio of  and a calibration
bandwidth of , the measurement time for the calibration becomes . The
corresponding timing error at  is then . As can be seen from these
numbers reducing the signal-to-noise ratio to a more favorable 10%, would increase the
measurement time by two orders of magnitude, i.e. beyond practical limits. Of course, a high
signal-to-noise ratio of order unity will require that the calibration signal has to be subtracted
from the measured antisymmetric port signal before proceeding with the gravitational wave
analysis.

7 ERROR ANALYSIS

The error analysis is divided into actuation uncertainties, the uncertainties in determining the
interferometer response function and the statistical measurement error.

7.1 ACTUATION UNCERTAINTIES

The uncertainties of a photon actuator can be directly derived from eqn. (31); an estimate is
presented in Table 1. The largest uncertainty will be in the measurement of the absolute laser
power.

Neglecting the angular dependence of the gravitational wave signal the gravitational wave strain is
related to the displacement by eqn. (33). Since the arm cavity length is known within , its

1. Air pressure correction of order 8g.

Table 1: Actuation Uncertainties.

Description variable nominal value estimated error unit

Laser power P 1 – 100 1% mW

Test mass M 10 0.0011 kg

incident angle α 0 – 0.1 0.01 rad

Speed of light c 299792458 0 m/s

Frequency ωc 50 – 1000 negligible Hz

Arm cavity length L 4000 0.01 m

T ∆f RS/N Φps f( )
Φn f( )

∆GWcal f0( )
GWcal f0( )-----------------------------

e
iα

RS/N
----------

1
T ∆f
----------≈

α

∆GWcal f0( )
GWcal f0( )-----------------------------

1
RS/N
----------

1
2T ∆f
-------------≈ ∆t

∆GWcal f0( )
GWcal f0( )----------------------------- 

  1
2πf0 RS/N
-----------------------

1
2T ∆f
-------------≈

RS/N 1≈
∆f 1Hz≈ T 90 min≥

f0 100 Hz= ∆t 15µsec≈

1 cm±
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contribution to the total error is not significant. The crosscoupling of the small Michelson length
into the gravitational wave signal was estimated in eqn. (26) to be negligible.

7.2 RESPONSE FUNCTION UNCERTAINTIES

Calibrating the antisymmetric port signal by means of eqn. (27) will then give a relation between
the measured signal and the gravitational wave strain. Fluctuations in the interferometer or the
servo compensation can lead to additional uncertainties. We estimate these fluctuations by taking
the derivative eqn. (27) in respect to the optical gain  and in respect to the (suspension)
controller gain . To further simplify the calculations we assume

, and . (38)

where the unity gain frequency is at . Using  we then obtain

(39)

From the above eqn. one can see that the optical gain error dominates above the unity gain
frequency, whereas the controller gain error dominates below the unity gain frequency. Fig. 8
shows the relative contribution of an error in the optical gain and in the controller gain,
respectively, to the gain error and timing error of the calibration function. As can be seen
fluctuations of  and  have to be monitored to better than 0.5%, in order to not deteriorate the
overall calibration accuracy of 1% in gain and 10µsec in time.

7.3 INTERNAL AND VIOLIN RESONANCES

Internal resonances of the test masses and violin modes of the suspension wires will produce
distinct peaks in the interferometer actuation response function. Phase shifts and gain changes due
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to these resonances should be well contained around the resonance frequencies, since their  is
extremely high. To improve the calibration accuracy for nearby frequencies one can try to fit and
subtract the resonance line from the final calibration spectrum. Of course, in some very narrow
bands around the resonance frequencies the calibration information will not be reliable, but it
won't be needed there in the first place.

7.4 MEASUREMENT ERROR

Since statistical errors depend on the signal-to-noise ratio of the calibration signal and inversely
on the square root of the measurement time, it is most likely possible to make the integration time
long enough to keep the statistical errors well below the systematic ones. When calibration
changes have to be monitored on short time scales — i.e. minutes — one can make sure that the
signal-to-noise ratio is sufficiently large to begin with. Therefore, the statistics should never be the
limiting uncertainty.

8 CONCLUSIONS

We have shown that a calibration precision of ~ 2% in the gravitational wave strain amplitude and
~10µsec in the determination of the arrival time is both experimentally feasible and physical
sensible to extract the available gravitational-wave information given the initial LIGO sensitivity.
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