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Dynamic Models of Fabry-Perot Interferometers

David Redding’, Martin Regehr', Lisa Sievers?
August 29, 1997
Abstract

Long-baseline, high-finesse Fabry-Perot interferometers can be used to make distance
measurements that are precise enough to detect gravity waves. This level of sensitivity is
achieved in part by dynamically isolating the interferometer mirrors, using pendulum
mounts and high bandwidth cavity length control servos to reduce effects of seismic
noise. This paper presents dynamical models of the cavity fields and signals of Fabry-
Perot interferometers for use in designing and evaluating length control systems for
gravity wave detectors. Models are described and compared with experimental data.

1. Introduction

Changes in the distance between the mirrors of a high-finesse Fabry-Perot interferometer
can be measured to extraordinary precision through synchronous detection. This
technique is used in various proposed methods for the broadband detection of
gravitational radiation (Ref. 1). Fabry-Perot cavities used by the Laser Interferometer
Gravity-Wave Observatory (LIGO) Project as gravity wave detector prototypes have
demonstrated measurement sensitivities of 107¥ m/ J/Hz at 200 Hz.

Successful operation of a Fabry-Perot cavity at this level of performance requires passive
and active isolation of the optics from ambient seismic disturbances. The LIGO
interferometer mirrors are hung from pendulum suspensions mounted on dynamically
isolated platforms. The suspension system isolates the mirrors from seismically driven
displacements at frequencies well above the pendulum resonant frequencies (common
resonant frequency is 1 Hz). This passive isolation stage is augmented by lateral and
longitudinal mirror position and angle control systems, as well as laser phase control. In
this paper, we derive mathematical models for the longitudinal response of the cavity
fields, assuming the cavity to be well aligned in angle.

The Pound-Drever-Hall (PDH) radio-frequency modulation technique (Ref. 2) provides
signals for high-bandwidth mirror controls that “lock” the cavity length to the stabilized
laser frequency. As sketched in Fig. 1, the laser light is phase modulated at RF before it
enters the cavity. Light reflected back towards the laser is detected and synchronously
demodulated. The in-phase demodulated signal is proportional to the phase difference
between the carrier light incident on the cavity and the light reflected from the cavity,
provided the cavity is within a fringe-width of resonance. This signal used by the control
system to lock the cavity on resonance, as well as for length measurement.
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The control system must work in two operational modes. Initially the cavity will be out
of resonance, having relatively large mirror velocities. The mirrors drift through the
resonant condition, causing fringes to appear and disappear in the demodulated signals.
During this initialization phase, a “Lock Acquisition” controller captures a fringe as it
sweeps by, actuating the mirrors and source phase so as to establish the desired
resonance condition.

Once the cavity is in resonance, the interferometer is placed in “Operations Mode,” and
the servos limit mirror deflections to a small fraction of a fringe, typically much less than
1 nanometer. The high cavity light levels that result enable the precise displacement
measurements required for gravity wave detection.
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Figure 1. Fabry-Perot cavity and error signal generation.

The control problem is complicated by the fact that the cavity has significant dynamics.
The long dwell time of the light in the cavity causes it to act as a temporal filter, with the
detected field being a function of the cavity geometry and source phase at many
previous times. In the Lock Acquisition regime, these dynamics are severely nonlinear.
This fact notwithstanding, acquisition controllers have historically been based on linear
small-signal linearized optical model.

Section 3 of this paper describes nonlinear optical models that accurately predict cavity
signals at arbitrary displacement and velocity conditions. Cavity fields are governed by
discrete time-difference equations, which may be reduced to differential equation form.
Computer algorithms are discussed. Lock acquisition controllers designed using these
models have demonstrated improved performance in hardware, compared to traditional
designs (e.g., Ref. 3).

Section 4 of the paper derives linear models of the small-signal response of the cavity, for
use in designing operations-mode servos. Two independent methods are used. The first
approach linearizes the time-domain difference equations about the cavity resonant
condition. The linearized equations are then Laplace-transformed to obtain analytic
transfer functions from error signal to laser source phase and mirror motions. The
second approach uses a direct frequency-response method, treating mirror and source




disturbances as audio-frequency oscillators, and directly computing the transfer
functions from the static solution of the linearized cavity field equations.

Model validation was performed by comparing model predictions to experimental
results, and by checking the consistency of the various models. The time-domain models
were exercised in sine-sweep tests to reproduce the transfer functions computed by the 2
frequency-domain models, and all agree to numerical precision.

The modeling approaches presented here have proven invaluable for the design and
analysis of controllers for LIGO interferometers, including Fabry-Perot and other, more
complex interferometers as well. The models may be used for purposes other than
control design, such as studies of noise effects on gravity wave detection.

2. Notation

In this paper we signify the complex transverse-electric field using the letter E. The point
where the field is evaluated is indicated by a 2-letter subscript, as in E4,. The first
subscript refers to the element in the beam train (here, to mirror A). The field is evaluated
at an inertially-fixed point in the vicinity of the element, rather than on the moving
surface of the element. The second subscript refers to the direction of the field: a to the
field entering from the left; b to the field departing to the right; ¢ to the field entering
from the right; and d to the field departing to the left, as illustrated in Fig. 2.

When the cavity is illuminated by light at multiple frequencies, such as by the carrier
and upper and lower sidebands that result from modulation of the source, an additional
numeric subscript is used to signify the component of the field produced by illumination
at each frequency. Thus E,,, denotes the input field at mirror A due to illumination at
the carrier frequency, and E,,; and E,,; denote the corresponding upper and lower
sideband fields, respectively.

Properties of elements are identified using a single subscript, such as T, and R4 for
intensity transmittance and reflectance for mirror A. Lower case letters refer to
amplitude transmittance and reflectance (i.e. |r,| = A/R—A ). The sign used for the
amplitude reflectance follows the Fresnel equations (Ref. 4); the negative value is used
for light directly incident on the coated side of the mirror, and the positive value is used
for light that comes through the substrate.

Finally, this work ignores transverse effects, such as mirror or beam tilt or beamwalk.
The cavity is assumed to remain aligned in angle and to sustain only the TEMg mode.
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Figure 2. Fields at a mirror.




3. Nonlinear Time Domain Models

3.1 Cavity Field Equations for a Single Frequency Source

The fields affected by a single stationary cavity mirror (mirror A) are illustrated in Fig. 2.
The single frequency field incident on the left face of the mirror is labeled E,, and the
field propagating to the right of the mirror is E4;. The field incident from the right is E4.
and the field propagating to the left of the mirror is E4,; Summing the fields result in the
following transmitted field expressions:

Epp = 1hE o+ T4Ey, (EQD
Epg = 1aEsc—14E, (EQ2)

The power budget for each cavity mirror is such that:
R,+T,+A, =1 (EQ 3)

where A, is the power loss due to absorption and scattering.

As the mirror moves &(7) (e.g. mirror driven by seismic background, control force, etc.)
from its nominal inertially-fixed position, it imparts a phase shift on the reflected fields
proportional to twice its displacement. Taking this into account, a more general
expression of the fields at mirror A is

2k8,(1)
E (1) = tE () —rse " " Eac() (EQ4)

—2jkd,(1)

E (1) = t,E, (1) +r,e Eaa(t) (EQ5)

The fields within a cavity consisting of 2 mirrors and a source are illustrated In Fig.3. The
equations describing the fields are generated by applying Equations 4 and 5 to mirrors A
and B, and by adding 2 additional equations defining the propagation between the 2
mirrors. For mirror B, assuming there is no illumination entering the back of the cavity
(Ep. =0):

Ep, (1) = tzEp (1) (EQ 6)

2RO p L (1) (EQ7)

Ep () = —rpe

The propagation over the distance L between the mirrors is:
Eg (1) = ¢ Eap(1-1) (EQ38)
E, (1) = e Epa(1-7) (EQ9)

Here 1=L/c is the light travel time between the two mirrors.

The input to the cavity comes from the laser source field, which can vary in phase and
amplitude. Neglecting the distance between the source and the front mirror:

Ea (1) = tgsE (1) (EQ 10)



The field at the detector (neglecting the distance between the front mirror and the
detector):

Ep(t) = rpE, (1) (EQ 11)

The fields of primary interest are the circulating field E4; and the detector field Ep, from
which the control signal is derived. Substituting among Equations 4-11, these can be
expressed in terms of the source field and mirror displacement parameters. The field
circulating in the cavity, sampled near the front mirror, is:

E (1) = tatgsEo(t) +g(DE 4(1~27) (EQ 12)

The “round trip gain,” g(t) is defined:
~2FK[L+85(1-1) - 8,(0)]

g(t) = ryrpge (EQ 13)
The field at the detector:
_2ik$ 2 8.0 —
Ep(t) = rarpse OB (1) —tyrperge T T Ea (- 20) EQ 14)
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Figure 3. Fields in a Fabry-Perot Interferometer.
3.2 Static Response for a Single Frequency Source
In a static cavity, there is no variation in mirror position or source amplitude:
E (1) = Ey(1-21)=E,, (EQ 15)
Eg(r) = Eg(t-21)=Eg (EQ 16)
8,(1) = 8,(1-21)=3, (EQ 17)
S(t—1) = 8y(1—31) =8 (EQ 18)

Substituting Equations 15-18 into Equation 12 and simplifying, the static-cavity
circulating field is:



tAtBSES

Egp = Z2Jk(L+55-55) EQ19)
1 —ryrge
Similarly, the detector field is:
R tporgsre ot
N -2jk8, 'als'Bs'p
Ep = |ryrpge - AR5 5D Eg (EQ 20)

1 —ryrge
These are standard results appearing in textbooks (e.g., Ref. 5).

3.3 Time Response for a Single Frequency Source

In a dynamically-varying cavity, the source and mirror states will change as arbitrary
functions of time. The output of the cavity at a time ¢ is computed from the cavity field
difference equations (Equations 12-14), given the (single-frequency) source field at time ¢,
the cavity mirror displacements at time ¢ (mirror A) and ¢ — t (mirror B), and the
circulating field at time 7 — 21. Of course, the circulating field at time 7 — 27 is a function of
the source at time ¢ — 21, cavity mirror displacements at time 7 — 2t and ¢ — 31, and the
circulating field at time ¢ — 41, which is itself a function of the circulating field at time 7 -
47, cavity mirror displacements at time ¢z — 4t and 7 — 57, and the circulating field at time ¢
— 61, and so on (see Fig. 4).

This recursive sequence continues back in time until the cavity was first turned on. As a
practical matter, though, it is not always necessary to go that far back in time. There is a
finite number of beams (n;,,,,;) that must be summed to achieve a specific level of
accuracy in the calculation of the circulating field, as illustrated in Fig. 4. If the cavity
geometry is fixed at the resonance, which is the most sensitive condition, the circulating
field can be written:

tAtBSES
I—ryrp

E,, = (EQ21)

n (r r )n+l
i A"B

i=1

Here n is the number of beams explicitly summed. The normalized error due to
summing a finite number of beams is €, where:

€= A = (r,rg) (EQ 22)

The error level € can be specified (e.g., 0.1% of the full resonant circulating field). The
minimum number of summed beams n,,,, that gives residual error less than ¢ is:

_ _loge (EQ 23)

n
beams IOg aTp
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Figure 4. Dependence of cavity fields on past cavity history.

Assuming that the one-way cavity light time T remains constant, the full computation for
the circulating field can be written:
E (1) = tytpsE (1) +g(1)(t4t5E (1 -2T) + (EQ 24)
g(t=21)(ttpsE(t—47) +
g(t=41)(...(t41gsE (1= (2(n = 1)) +
Cg(t—2n1)(t,155E (1= 2nT)))...)))

A simple algorithm that realizes this calculation as part of a time simulation is
summarized in pseudo-code in Fig. 5. /

EAb = tA*Es ! Initial circulating field
for time = 0 to t by 2*tau, ! Begin simulation time loop
call dynamics (delA,delB,ES, time) ! Compute cavity geometry
g = rA*rB*exp (-2*j*k*(L + delB - delA) ! Compute round-trip cavity gain
EAb = tBS*tA*Es + g*EAb ! Update circulating field

if (mod(time,dtprint)=0),

call print (EAb,delA,delB,dLs,time) ! Print state at times of interest

end;

end; ! End simulation time loop

Figure 5. Cavity simulation algorithm for time scales less than n;,,, 7.

The computational effort required by this algorithm per one-way light time 7 is quite
small. It is a good approach for high-finesse cavities driven by high-bandwidth
controllers, where the time interval of interest (atprint) is less than n, T

The algorithm of Fig. 5 may not be the fastest for modeling lower-finesse cavities, or low-
bandwidth controls. For cases where the shortest time interval of interest is longer than

Npeamss it 1s more efficient to reorder the calculation. Equation 24 is rewritten:



E, (1) = tAtBS[ES(t)+ D (Hg(t—ZiT)JES(t—2nT)} (EQ 25)

n=1\i=0

This approach limits the number of beams that must be evaluated to ny,,,,. The
algorithm of Fig. 6. illustrates its implementation in pseudo-code.

for time = 0 to t by dtprint,
call dynamics (delA,delB,Es, time)

Begin simulation time loop
Compute cavity geometry

EAb = tBS*tA*Es
for n = 1 to nbeams

Initialize circulating field sunh
Loop to evaluate sum
loopTime runs backwards from tine
call dynamics (delA,delB,Es, loopTime) ! Compute cavity geometry

g = rA*rB*exp(-2*j*k* (L + delB - delA)! Compute round-trip cavity gain

1
!
gprod = 1 ! Initialize running gain product
]
]
t

loopTime = time-2*n*tau

gprod=g*gprod ! Update running product
EAb = EAb + gprod*tBS*tA*ES ! Update circulating field sum
end;
call print (EAb,delA,delB,dLs, time) ! Print state at times of interesg
end; ! End simulation time loop

Figure 6. Cavity simulation algorithm for time scales greater than n;,,,, .

Equation 25 can be viewed as a Green’s function solution for the cavity fields. The
product in parentheses is the impulse response of the circulating field at time ¢ to the
source field at the time 7 — 2n1. The sum is then the convolution of the impulse response
with the source field at all relevant past times (all n less than ny,,,,,). This ordering of the
calculation is also used in later sections, in the derivation of transfer functions.

The models of Equations 24 and 25 neglect second-order effects of deviations from the
nominal one-way light time 1. These occur when the mirrors are displaced from their

nominal positions (8 # 0), so that the beams arrive at the mirrors at slightly different -

times than assumed by the model. For mirror displacements of a few wavelengths, this
time-of-arrival error is about 10-'¢ seconds per traversal of the cavity. In very high-finesse
cavities, this might grow to about 1072 seconds total after many bounces. The neglected
beam phase is equal to this time-of-arrival error times the velocity of the mirror, which is
typically less than a few wavelengths per second for Lock Acquisition (much less in
Operation Mode). The ratio of this worst-case error to the width of the fringe is about 1
part per million for a cavity with a finesse of 15,000, and much smaller for lower-finesse
cavities and/or smaller velocities. This level of error is usually negligible.

3.4 Approximate Differential Equation Form for the Cavity Field Equations

The cavity field difference equations can easily be converted to an approximate
differential-equation form. The resulting continuous-time equations may result in faster
simulation times for some interferometers, though at the possible cost of some accuracy.
They are also convenient for modal analysis.

Before converting, it is convenient to introduce a new state F(z), which is the value of the
circulating field at the previous round trip of the light:




F(t) = E,(t-21) (EQ 26)

The field equation (Eq. 12) becomes a first state equation:

E (1) = ty1pE (2) + g(D)F (1) (EQ27)
The Laplace transform of F() is the following:
| F(s) = ¢ “Enp(s) (EQ 28)

The delay e?¢ can be approximated by a rational function, such as one of the Pade
approximants. The (m,n) Pade approximant is a rational function with m zeroes and n
poles such that the first m+n terms in the Taylor series of this function are the same as the
first m+n terms of the Taylor series expansion of ¢2%. For example, the Taylor series
expansion of ¢ is:

e = 1215+ (215) - . .. (EQ 29)

The 0,1 pade approximant takes the form 1/(1 + a s) (with a to be determined), which
has Taylor series expansion 1/(1 + a s) = 1 - as + ... Matching coefficients for the first 2
terms, the (0,1) Pade approximant is:

=215 _ 1
¢ ST+2ts (EQ30)
Substituting into Eq. 28:
F(s) = 755E, (9) (EQ 31)

This expression can now be transformed back into the time domain to form a second
state equation:

F(1) = E (1) + 21%17(:) (EQ 32)

Here it is seen that the (0,1) Pade approximates the past value of E4(t) by extrapolating
linearly back in time. The state equations can be rewritten in standard form.
Differentiating Eq. 27 and substituting between Egs. 27 and 32:

%EAb(t) = El;c[(g(t)—l)F(t)+tAtBSES(t)]+tAtBS%ES(t)+F(t)%g(t) (EQ33)

d 1
EF(;) = E%(EAb(t)—F(t)) (EQ 34)

These equations form a system of differential equations to replace the time-difference
field equation (Eq. 12) in evaluating the cavity fields.

The approximation that has been introduced is that the circulating field changes only
linearly in the time it takes the light to traverse the cavity twice. Higher-order
approximants, or other higher-order approximations such as a Taylor series expansion,
can be used in cases where the fields change nonlinearly. Such higher-order
approximations replace Eq. 34. In general they are written in standard state-space form,



in terms of a multiple-element state vector %(t). The elements of %(t) are linear
combinations of higher-order derivatives of E,(1), Es(t), g(t) and F(7), which provide a
better basis for extrapolation. The general form for the time-delay equations is:

%?c(t) = A-X(1)+B - E (1) (EQ 35)
F(t) = C-X(1)+ D - E (1) (EQ 36)
Combining these equations with Eq. 27 and eliminating F(¢):
dy . _[A+BCg(1)] » Bt,tgg .
70 = [T ) 10+ [ gt B0 (EQ3D
1
E p(1) = m[gmc-}(I)HAtBS-ES(t)] (EQ 38)

For the (m,n) Pade approximant, A is an nxn matrix, and B and C are of dimensionnx]
and Ixn respectively. These can be solved algebraically, as in the case above.
Alternatively, commercially available control system design software provides functions
that automatically transform the poles and zeroes of the Pade approximant transfer
functions to the time-domain matrices A, B, C, and D, making it easy to generate
differential field equations of any desired order. The cavity fields are then solved by
integrating Eqgs. 37 and 38.

The differential equation model introduces some error through the time-delay
approximations described above. To estimate the magnitude of this error, and to
determine the Pade order necessary for good accuracy in the case of a slow open-loop
drift through a resonance, a simple test was performed. Successive simulations were run
by integrating the differential field equations forward in time, then increasing the order
of the Pade approximant and repeating. The order was increased until no changes in the
results occured with further increase in order. The (0,1) and (1,1) Pade approximants
produced slightly different results, and the (1,1) results were indistinguishable from all
higher-order results. Of course, stability of the result with increasing order in one case is
not a guarantee of accuracy in all cases. For simulations involving rapid field changes,
the difference-equation form is preferred, as it is free of these errors.

3.5 Time Response Example: Single Frequency Source

Figure 7 shows the carrier field intensity in a Fabry-Perot cavity as the input mirror
(Mirror A) sweeps through the resonance condition (which occurs at 8 = 0). The full
dynamic response of the cavity, computed by integrating the Equation 12, is shown as
the solid line. The static response, which neglects the dynamics of the cavity, as per
Equation 19, is shown as the dashed line.

As shown in Fig. 7, the passage of the mirror through the resonance condition causes a
bolt of high amplitude light to build up in the cavity. After the cavity passes through the
fringe, this light dissipates gradually, while bouncing from mirror to mirror. The
frequency of the light is shifted higher with each successive bounce, creating a Doppler
“chirp.” The parameters defining this example are listed in Table 1. The width of the
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resonant fringe is 0.11 nanometers, about 0.02% of the wavelength. The lock acquisition
controller must stabilize the mirror over a time period much shorter than the duration of
the “chirp” signal (see Ref. 3).
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Figure 7. Field intensities as the cavity goes through resonance.

Table 1: Example parameters for 40-meter interferometer.

Parameter Value Parameter Value
RA 0.998604 Wavelength 0.5145 pm
RB 1 Mirror A velocity 0.25 pm/sec
Length 40 m Finesse 4500

3.6 Demodulated Cavity Phase Signals

Radio-frequency phase modulation and synchronous detection provides a means of
creating signals that are proportional to the phase of the reflected field, provided that the
cavity is near resonance. Phase modulation is implemented using a Pockels cell in the
beam immediately prior to the cavity (Fig. 1). The (radio) frequency fo4 Of the
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modulation is chosen so that the resulting sidebands are out-of-resonance in the cavity,
preferably anti-resonant, so only a minimum of sideband field leaks into the cavity.

For small modulation depth I" at frequency f,,,q = ®,,#/27, the field after the modulator
(the cavity source field) is written in terms of Bessel functions as (Ref. 5):

E(() = Eypyy ()(Jo(T) + I, (D)™ = 1 (e )¢ ™" + higher order terms  (EQ 39)

Here the laser frequency is f = ®y/2% = ¢/A. The source field can be rewritten as the sum
of 3 independent fields of slightly different color:

Eg(t) = Egp(ne’™ + Egy (e’ ™ —Eg_ ()™ (EQ 40)
The carrier and sideband source fields are:
Ego(t) = Ejs. (DT p(T) (EQ41)
Eg (1) = E e, (0)J (T (EQ 42)
Eg_((t) = =Ej5.,(D)J (D) (EQ43)

The carrier wavelength is the source laser wavelength, and the upper and lower
sidebands have slightly longer and shorter wavelengths, respectively. The wavelengths
for the upper and lower sidebands are as follows:

Ay = 21/ (0GFO,,,4) = (27C)/ Oy (EQ 44)

The nominal operational condition of the cavity makes the carrier resonant in the cavity
by making the nominal cavity length, L, an integer multiple of half the carrier
wavelength:

L = n(Ay/2)  where n= integer (EQ 45)

nom

The modulation frequency is then chosen to make the sidebands approximately anti-
resonant when the carrier is resonant, by choosing the modulation wavelength close to
an integer factor n,,,; of 4L,

Fmod = (€/Apog) Enp,4(c/(4L)) (EQ 46)

If it is chosen to be exactly antiresonant then the second order sidebands are also
resonant in the arm, causing the interferometer response to be more complicated. For the
above choice of modulation frequency, the effective phase of each sideband is then
shifted approximately +90° per round-trip of the cavity, relative to the carrier. Relative to
the other sideband, the shift is 180°. The choice of integer n,,,, determines the particular
modulation frequency. For long cavities a relatively large number may be desirable to
reduce the effects of 1/f noise in the detection.

The detector field of the cavity at a time ¢ can be computed separately for each frequency
component, by application of Equations 12 and 14 to the source fields of Equations 41-43.
The total detector field is simply the sum of the detector fields at each frequency:

—jo_t

(EQ47)

TN TO NS
Ep(t) = Epg(n)e’ " +Ep (t)e " —Ep(t)e




The detector intensity is the modulus squared of the field of Equation 47. It includes
terms at DC, frequencies at f,,,,; and 2 f,,,4 , as well as higher harmonics.The error signal
for the control system is the output of the demodulator which is synchronous with the
modulation signal at f,,,;. With sinusoidal modulation, the demodulated in-phase signal
I In is:

Iy, = 2Imag(Epo(t)(E™p.1(1) = E" (1)) (EQ 48)

The quadrature-phase signal /,,,4 is:

Iouad = 2Real(ED0(t)(E*D_1(t)+E*D1(t))) (EQ 49)

3.7 Time Response Examples: Cavity Phase Signals

Two examples are discussed in this section. The first continues the example of Fig. 7.
Figure 8 shows the demodulated in-phase and quadrature phase signals detected at the
input mirror for the cavity defined in Table 1 as the mirrors swing through the carrier
resonance. Modulation frequency was 12.5 MHz, which puts the sidebands in an
antiresonant condition in the cavity as per Equation 45.
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Figure 8. Constant velocity sweep showing signals at input mirror detector.

The second example compares simulated and experimental response data for the LIGO
40 m interferometer (Ref. 1). This interferometer provides an experimental testbed for
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development of gravity wave detectors. In the configuration we ran, the interferometer
is made up of two orthogonal suspended 40 m Fabry-Perot cavities. Both cavities have a
finesse of 15000 with an approximate storage time (amplitude half life) of 0.338
milliseconds. The main function of one of the cavities is to provide a reference for
stabilizing the laser frequency to approximately 10% Hz/ J/Hz. We used the second cavity
to measure the optical response to mirror motion. The interferometer and signal
extraction scheme is shown in Fig. 1. Experimental time traces were taken of the error
signal (i.e. demodulated in-phase signal at the input mirror) as the cavity mirrors swung
freely through resonance; a characteristic trace is shown in Fig. 9.

Comparison of Model and Experimental Data
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Figure 9. Measured and predicted control system error signal (In-phase demodulated
signal) as cavity goes through resonance at a constant velocity.

To compare the experimental data with model data we fit two parameters: the relative
velocity of the cavity test masses; and the absolute amplitude of the field incident on the
photodetector. This is necessary as we have no independent means of measuring these
parameters. Figure 9 compares model and experimental response for a typical case,
showing good agreement.

4. Linear Frequency Domain Models

4.1 Response of Interferometer Near Resonance

In order to use a Fabry-Perot interferometer as a Gravity Wave Detector, the length of the
interferometer must be controlled so that the carrier field in the cavity resonates (i.e. the

14



relative position between the mirrors is kept at n,/2) for long periods of time. When the
interferometer is close to the resonant state the interferometer can be modeled as a
simple linear system. A linear model is important for two reasons: 1) it provides a
predictive model for how gravity wave strain drives the error signal in Operations Mode
and 2) it provides a simple transfer function model that can be used as an element for
both the Operations Mode and Acquisition mode control system design.

We can obtain optical models for small motions of the cavity mirrors and source phase
about the resonant condition in 3 distinct ways. The first approach, described in this
section, reduces the solution of the in-phase demodulated signal (Equation 48) to the
case of small disturbances, and then takes the Laplace transform to obtain cavity transfer
functions in closed form. The second approach uses a direct frequency-response method,
treating mirror or source disturbances as audio-frequency modulation and numerically
generating transfer functions from the small-motion equations. This approach was also
pursued by Weiss (Ref. 8). A third approach is simply to exercise the nonlinear time-
domain model in a series of single-frequency sine sweeps, recording amplitude and
phase response at each frequency, to build up a complete transfer function. The sine
sweep method provides a useful cross-check of the time-domain and frequency-domain
models and represents what is actually done experimentally. A comparison of the 3
methods produce essentially identical results.

4.2 Frequency Response Model Derivation by Laplace Transform

Assuming that the cavity is near its ideal configuration, so that the carrier is resonant
and the sidebands are essentially anti-resonant, the cavity gain factors for the carrier and
sidebands (Eq. 13) become:

—2jk[85(t—1) - 8,4(1)]
go(t) = ryrge " A (EQ 50)

-2jk[dg(t - T) - 8,(1)]
g (1) =g (1) = —rprge " . (EQ51)

where 8, and 8p are mirror displacements of mirror A and B, respectively. Assume also
that the magnitude of the laser illumination is constant. The source field is then written
(for the carrier):

_jkss

Ego(t)= E e (EQ52)

Carrier source amplitude E, is a constant; similar expressions can be obtained for the
sidebands. To further simplify the equations, we introduce a cumulative beam phase
parameter A,, where:

A1) =23 81— (2i—1)T) =2 Y, 8,(1-2i1) + 3(t —2n7) (EQ 53)
i=1 i=1
We also introduce 2 cavity reflectance parameters R, and R;:
Rg = rsrp (EQ 54)
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2
Trlpner
R, = 220 (EQ 55)

Substituting and simplifying, the detected carrier field becomes:

Rpeams

0% .

Ep (1) = {rAe KD +B0) | p S (R JkAn(I)]:l E, (EQ 56)
n=1

Similarly, the difference of the detected sideband fields becomes:

+R Y [(—Rg)"e”"“’"‘”1}3‘51 . (EQST)

n=1

—jk(28,(1) +8,(1))

In these equations we neglect the very small differences between the wave numbers k of
the sidebands and carrier, using the carrier value for all terms. Multiplying the carrier
and sideband terms to obtain the demodulated in-phase signal (Equation 48):

Rpeams
2 2,2 —jh(A, (1) = 28,(1) - 8,(1))
I,(1) = 4ES0ESIImag[rA—rARr Y [R,"e * ]
n=1
aneam: 8 5
2 —jk(A, (1) - 28,(t) - 6,(1))
—raR. Y [(-R,)"e g ]
n=1
Npeams k Nbeams KA
—ikA ;
+Rj{ 2 Rgne J n(t)][ z (_Rg)neJ n(f)jD (EQ 58)
n=1 n=1

Near resonance, the phasor exponentials can be replaced with the first 2 terms in a
power series expansion: ‘
2nbeam:
2 2 .
1,(1) = 4ESOESIImag(rA—rARr 3 IR (1= jk(A, (1) = 28,4(1) = 8,(1)))]
n=1

Rpeams

AR Y =R (1 - k(A (1)~ 28,(1) - 8,(1))]

n=1
+R‘,‘{ > RS (1 —jk(Anm))H Y (-R)"(1 —jk(A,,(r)))D (EQ 59)
n=1 n=1

Constant terms can be extracted from the sums, and some sums can be closed using the
binomial theorem. The result is:
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I,(t) = 4E50E51[ 2[ AD+3()+ T (R,A (t)]ji

n=1
R 175 (28,(0 +8,(10) - ¥, [(-R)"A (r)]}
n=1
4 [ R Ppeams " R Rpeams
+R, 1_’;g ; (=Rp)" Ay (1) + 1 ZIR A (r)D (EQ 60)

The above expression can be written explicitly in terms of the source phase and mirror
position states by substituting for the cumulative beam phase parameter A, from Eq. 54
into Eq. 60.

The transfer functions of the demodulated in-phase signals are obtained by taking the
Laplace transform of Eq. 60 and closing the sums. The transfer function from source
phase to in-phase demodulated signal is:

-21s
IIn -2R 2 2 R R e
Ss s0™s 1 —R2 1 _Rg 1+ Rge—21:s

g
21s
R R e
2 2
+(1+tArA £ ) £ ] (EQ 61)
1+R -21s
g I—Rge
The transfer function from mirror A displacement to in-phase demodulated signal is:
P P gn
—21s
I, (s -2R _ R R e
Lg(——) = 8kE E,, £+ L 22 e S |——
A 1-r> \1*R, 1-RJ1+R.e
g g g
-21s
1 2 2 Rg Rge
(1 -R, l—Rle ~Re"

The transfer function from mirror B to in-phase demodulated signal is:

Iy 1 22 R, Rge_u
g;(s) = 8kEsoE51[[1";Tg—fArAl R 1R
8 g
-Ts
1 22 Rg Rge ]
v _ (EQ63)
[(1 -R, 1—R§J1 ~Re® |

4.3 Cavity Transfer Functions in Rational Form

These transfer functions can be further simplified by eliminating certain sideband terms
(which do not affect the response significantly at frequencies below half a free spectral
range) and replacing the time-delay exponentials (¢®) with a rational approximation.
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The resulting rational transfer functions provide a good match to the exact form over the
main frequency band of interest and offer a convenient form for control design.

As before, the time delay can be approximated as a truncated infinite series, derived by
picking a form for the solution, expanding it out in MacLaurin series, and matching
coefficients of terms of like order to the series expansion of . We picked a form that
matches the high-frequency response well. The result is:

215 _ (s=0)(s— (0t jo))(s-(ct2jm))...
¢ T (s+0)(s+ (0t jo)(s+(cEt2jm))... (EQ6d)

Here (in Hz.):
(EQ 65)

O =

ala Yla

o = (EQ 66)

Experience suggests that, in truncating the series, one should carry all terms up to twice

the highest frequency of interest. The rational transfer functions in normalized form are
as follows.

(s+0) ] (s+o+jno) [] (s+0-jnw)

Si;’(s) = n=l 1=l (EQ67)
(s+a) [T s+a+j20) [] (s +a-j2m)
n=1 n=1

(s-20) [J (s-20+j2(2n- Do) [] (s+20-2(2n- 1))

IIn _ Iln n=1 n=1 EQ 68
S;(S) = g(s) —~ = - (EQ 68)
(s+20) [] (s+20+2(2n- Do) [] (s+20-j2(2n-1)w)
n=1 n=1

where a=-log(rsrg)/(27)). The first few poles and zeros of these transfer functions are
sketched in Fig. 10.
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Figure 10. Roots of the cavity mirror transfer functions (rational approximation).

4.4 Linear Model Derivation by Direct Frequency Response

This section presents a second method for computing the same transfer functions. We
take the point of view that a moving mirror phase-modulates the light reflected from it,
and thereby imposes phase-modulation sidebands on this light. Consider (for example)
mirror B to be moving with small amplitude X at frequency wp in an otherwise stationary
cavity:

85(1) = Xcoswr = Real(Xe' ") (EQ 69)

The mirror motion frequency wg is in the audio band, as opposed to the RF frequencies
0,04 used in the PDH detection (0p<<®,,,4)- The light reflected from the mirror is then
phase modulated. From Eq. 40:

Eoi(8) = —rn(l - jkXe'™ + jkXe ™) Epa(t) (EQ 70)
Bd B

Here we have used equation (39) with the approximations J(2kX) = 1 and J;(2kX) = kX .
We call the sidebands imparted to the light by reflection from a moving mirror “audio”
sidebands, since the frequencies of interest are typically audio frequencies, and to
distinguish them from the RF sidebands described earlier. If the light incident on the
mirror has been radio-frequency phase modulated then each of the RF sidebands will
also have a pair of audio sidebands imposed on it.

At this point it is convenient to modify our notation by adding a second numeric
subscript to the field variables to index the audio sidebands. For example Eg;; 4 is the
amplitude of the lower audio sideband of the upper RF sideband. Now suppose that the
light incident on mirror B contains 9 frequencies; the carrier and two RF sidebands, and a
pair of audio sidebands on each of those three frequencies. Then the total field incident
on mirror B is written:
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1
—(UW®,, g+ V)t
EBa = z z EBauve ’ ’ (EQ7D
u=-lv=-1 ’
Now assume that the moving mirror is the only source of audio sidebands so that their

amplitude is proportional to X. Then substituting into Eq. (67) and discarding terms
quadratic in X we obtain:

1
EBd = ~rp 2 (EBaqu + z (EBauv+ikXEBauO)e

u=-1 v=-1,1

-—iu(Dm(,dt

(EQ72)

— (U, + va)t)

By discarding terms quadratic in X we are neglecting two effects which are significant for
larger-amplitude mirror motion. One is the creation of additional frequencies when
audio sidebands are imposed on audio sidebands, and the other is the attenuation of the
carrier and RF sidebands by such audio sidebands which fall back on the carrier or RF
sidebands.

From Eq. 72 we see that the carrier and RF sidebands are reflected from the moving
mirror in the same way as they would be were the mirror stationary, but the amplitude
of each audio sideband is changed by the amount ikXEp,,y. The moving mirror behaves
like a source of light at the frequencies of the audio sidebands.

Now we can solve for the response of the interferometer to mirror motion in two stages.
First we compute the static fields from Egs. 1, 2 and 4 through 11, substituting Eq. 71 for
Eq. 40, to get the amplitudes of the audio sidebands. Then the demodulated signal is
computed following Eqgs. 48 and 49. Only terms at frequencies ®g+ ®,,,4 and Wp— Oy
are of interest. With sinusoidal modulation, the in-phase response is:

0 0
I, = 2Real{ > 2 E pawEsaue v+ 1) * EBauv+ HE Ba(u+1)v)} (EQ73)

u=-lv=-1

The quadrature phase response is:
0o 0

Louad = 2Real{ Z z (E BaquBa(u+1)(v+1)_EBau(v+1)E Ba(u+1)v)} (EQ 74)

u=~-lv=-1

These expressions are the transfer functions from mirror B motion to detected in-phase
and quadrature-phase signals, at an excitation frequency g, for comparison with those
derived earlier. A similar analysis leads to transfer functions for motion of mirror A and
source phase.

In practice all of the above manipulations are performed by a computer program which
uses data specifying mirror reflectances, transmittances and relative locations to
construct a matrix corresponding to the set of linear equations to be solved, and then
solves the linear system once for each of the nine frequencies of interest. Once the
amplitude at the photodetector of the light at each of these nine frequencies is known,
the demodulated signal is computed. The process is repeated for a sequence of different
excitation frequencies to develop the full transfer functions.
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This method of numerical analysis is easily extended to other optical configurations,
such as systems containing more than two mirrors or beam splitters. The computer
program accommodates additional optical elements by increasing the dimensions of the
matrix relating the optical fields. This approach is elaborated in more detail in Ref. 7.

4.5 Frequency Response Example

A very long-baseline interferometer, typical of the lengths used for LIGO gravity-wave
detection, provides an example to illustrate frequency response characteristics.
Interferometer parameters are summarized in Table 2. Figure 11 shows the transfer
function from source phase to in-phase demodulated voltage. There is a zero at DC,
indicating that low-frequency changes in the source phase have little or no effect on the
in-phase signal. The gain increases with frequency, saturating above 90 dB for
frequencies above the cavity pole at 92.4 Hz. There are sharp dips in the amplitude
response at frequencies that are multiples of half the cavity free spectral range. These
occur when the excitation becomes synchronous or anti-synchronous with the carrier
light circulating in the cavity, aliasing the DC condition (0 gain) in the first case, and
killing the leaked light contribution to the detector field in the second.

Table 2: Example parameters for 4 km interferometer.

Parameter Value Parameter Value
RA 0.9699 Finesse 410
RB 0.9998 Free Spectral Range 37.5kHz
Length 4,000 m Cavity pole frequency 92.4 Hz
Wavelength 0.5145 um Fringe width 2.5 nm

The transfer functions from motion of mirrors A and B to in-phase demodulated voltage
are shown in Figs. 12 and 13, respectively. The amplitude response is identical for both
mirrors. The gain is flat at frequencies below the cavity pole and then rolls off as At
high frequencies, there are peaks in the amplitude response occurring at multiples of the
cavity free spectral range, where the mirror motion is synchronous with the light
circulating in the cavity. This effectively aliases the DC condition, so the peaks recover
the DC gain value. There are also very narrow zeros at odd multiples of half the free
spectral range, where the excitation is anti-synchronous with the circulating carrier field
(and synchronous with the sideband fields). Although the amplitude response of the two
transfer functions is identical, the phase response is different. The difference is a time
delay whose time constant is the one-way light travel time in the cavity. These plots were
generated using Method 1; they are indistinguishable from those generated using
Method 2.
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Source Phase Transfer Function
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Figure 11. Source phase transfer function example.
Mirror A Transfer Function
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Figure 12. Mirror A transfer function example.
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Mirror B Transfer Function
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Figure 13. Mirror B transfer function example.

5. Conclusion

The models presented here capture the longitudinal dynamics of the light circulating in
well-aligned Fabry-Perot cavities, for large or small displacements of mirrors or source
phase. The models provide useful tools for the design of both linear and acquistion
mode cavity length controls. They are also useful for computing the influence of laser
phase and mirror seismic noise effects on the noise performance of cavity length
measurements. The same basic modeling approach can be extended to encompass more
complex interferometer configurations, higher-order modes, and different modulation
schemes.
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