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Abstract

The present notes are an attempt to lay out a process which would
help the practitioner in the lab take a control system design problem
from requirements through design to a working system, without having
to go into the theoretical intricacies associated with feedback control
systems.
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1 Introduction: Feedback Control System Es-
sentials

Carying out an experiment often involves forcing a parameter which is oth-
erwise undetermined, or free runing, to track a reference, to a certain degree
of accuracy. A common method employed in tracking applications is to use
a feedback control system (FCS). The idea, illustrated in Fig. 1.1, consists
of measuring the departure of z, the parameter of interest, from a reference
value z, using a sensor(s), processing the sensor output by a compensator,
and using the processed signal to command an actuator(s) whereby appro-
priate corrections are applied. The total correction is supposed to cancell
the free-runing value z; of z and impart the reference value instead.

FCS design is covered by a highly theoretical discipline, which evolved
through contributions by many illustrious authors during the last 150 years.
The present notes, however, will trade generality for simplicity and rigor-
ous optimization for the pursuit of “good enough” performance, so that the
mathematics can be kept to a minimum. It turns out that this low-math
approach can result in FCSs with good performance, adequate for many prc-
tical situations in the lab. A few formulae of interest will be derived in the
remainder of this Section; the rest of the necessary algebra will be delivered
in small portions as the need arises.

At first sight, following the signals in Fig. 1.1 may appear confusing, due
to the closed-loop character of the system. Understanding is greatly helped,
though, if one assumes that the diagram represents a steady-state situation.!
Following the arrows in Fig. 1.1, one notes that the difference between the
“output” signal z, on one hand, and the reference z, plus its noise n, on the
other hand, are converted into an electrical signal e, = A(s) - (zo — 2, — n,).
s = o + iw is the Laplace variable. Laplace transforms are prefered to
Fourier transforms in FCS work because the latter are not defined for such
functions of practical interest as e. g. sine-waves. The symbols A, G, H;
and B; in Fig. 1.1 thus represent transfer functions of the FCS components.
The signal e, is amplified and filtered by the compensator whereby noise
is added, so that the Laplace transform of the voltage at the compensator
output is e, = G(s)- (e +ng). This signal is further amplifiedand filtered by
the actuator drivers,then converted by the actuators into correction signals

lor, alternatively, a frequency domain description. The latter statement will not be
proven here.




Ze; = Bi(s) - Hi(s) - e.. Two actuators are shown, because it is frequently
the case that one actuator alone can not satisfy the tracking requirements.
The correction signals are subtracted from the initial free runing value z;, to
yield the output z, = z; — (¢ + Z2). Eliminating the intermedite variables
e. and e, from the above equations yields:

! n L (1.1)
A+L) a+L) CAQ+L) '
where L{s) = A(s)G(s)[H1(s)Bi(s) + Ha(s)Bs(s)] is called the open-loop
transfer function or open-loop gain, because it is obtained by cutting the loop
in Fig. 1.1 at some arbitrary point, then following the arrows and multiplying
the Laplace transforms of the various elements as they are encountered. For
|L| > 1, Eq. 1.1 reduces to:

T, = (T, + ny) + x;

ng ZI;
0 ™ Ty F——+ = 1.2
To =&+ —— + 7 (1.2)

This equation can be interpreted as follows:

e With the loop closed, the contribution of the free-runing variable to z,
is z;/L, that is the free-runing variable is suppressed by the loop gain
L.

e With the loop closed, the main contribution to z, is the value of the
reference, z,.

e Closing the loop as shown in Fig. 1.1 adds to the output the noise
associated with the sensor and with the compensator.?

Thus, closing the FCS loop causes = to track the reference to accuracy
(x;/|L] plus noise in the system), which illustrates the usefulness of FCSs
in tracking applications, in particular when high gain and low noise can be
obtained.

The correction signal is calculated from from Eq. 1.2:

a:c=a:cl-:~:cc2=xi—a:o=(:c,-—xr)—nr—k%c (1.3)

which is valid in the high gain limit, as is Eq. 1.2. Eq. 1.3 shows that, for
high gain and low noise, the FCS does what it is intuitively expected to

2it is assumed that compensator noise dominates the noise of the actuator drivers and
of the actuators. These noise terms were thus disregarded.
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Figure 1.1: Schematic diagram of a tracking system. z;: uncontrolled value
of parameter z, z,: controlled value, z,: reference value, x.1, oo correction
signals, n,: reference error, e.: sensor output, ng: electronic noise refered
to compensator input, s: Laplace variable, ACT1,2: actuators, which have
arbitrarily been included in the plant. Each actuator consists of a driver
with transfer function H and the actuator proper with transfer function B.
G is the compensator transfer function, and A is the transfer function of the
sensor. G and Hj » are measured in V/V, A is measured in V/units(z), and
B, 2 are measured in units(z)/V. '




do, which is to apply a correction that converts the free-runing value into the
reference value for the variable z, in other words it ensures proper tracking
of the reference

Designing a FCS comes down to specifying the sensor, the compensator
and the actuator(s) such that proper tracking, i. e. high gain and low noise,
are achieved. An added requirement is that the FCS system be oscillation
free, i. e. stable, as closed loop operation can engender instability.® Laying
out a path for designing a working FCS with specified tracking accuracy and
stable operation is the object of these notes. The procedure described in what
follows is not unique or general, neither does it achieve optimum performance
in a rigorous sense. Nonetheless, it provides a practical approach to many
FCS design problems encountered in the laboratory.

3FCS stability is often the main topic in control systems textbooks



2 Feedback Control System Stability

2.1 Stability, Differential Equations and Laplace Trans-
forms

The dynamics of many systems of interest can be described by differential
equations; this allows stability to be defined and described in a precise math-
ematical language. In general, the evolution of a parameter z associated with
the system is described by the n-th order differential equation with constant
coefficients:
drz(t)  d*lz(t)
T + Tl + ...+ anz(t) = f(2) (2.1)
where f(t) is called the forcing function. The general behavior of z(t) is

governed by the solution of the homogeneous counterpart of Eq. 2.1, i. e. by
the solution corresponding to f(t) = 0, which can be written:

Ggp

zi(t) = icie”t (2.2)

where ¢; are constants depending on the initial conditions, and r; are the
roots of the characteristic equation associated with Eq 2.1:

> arr® =0 (2.3)

The sum on the left-hand side of Eq. 2.3 is called P,(r), the characteristic
polynomial associated with Eq. 2.1. When multiple roots occur, Eq. 2.2 has
a slightly different form, but is still a sum of exponentials. A system is stable
when z(t) or any other function which describes the system are bounded as
t — oo. It is worth noting that for complex roots r; = o; + w;, the real
part represents a real exponential, while the imaginary part describes an
oscillatory behavior. In other words, a system is stable when the real
parts of the roots of the characteristic polynomial are all negative
or zero, which ensures that the real exponentials in Eq. 2.2 are not becoming
unbounded. An equivalent statement is that the characteristic polynomial
should have no roots in the right-hand side of the s-plane.




In order to translate the above formulation of the stability criterion into
common control system language, note that the Laplace transform* X(s) of
the solution of Eq. 2.1 is:

X(s) = (2.4)

where s = 0 + jw. Note that the denominator in Eq. 2.4 is the characteristic
polynomial associated with Eq. 2.1. L(s) = 1/P, is called the transfer
function of the system, as it allows to calculate the Laplace transform of the
output X (s) if the Laplace transform of the input F(s) is known. In terms
of L(s), the condition that there be no roots of Eq. 2.3 in the right-hand side
of the s-plane translates into the requirement that the transfer function
have no poles in the right-hand side of the s-plane. When a feedback
control system is built by closing the loop as in Figs. 1.1,2.3, the transfer
function of the new system is 1/(1+L(s)), according to Eq. 1.1,° and stability
requires that this function have no poles in the right-hand side of the s-plane.
Much of the classic feedback control system research revolved around using
this condition as a starting point for deriving closed loop stability criteria in
terms of the properties of L(s). Two of the most frequently used criteria are
given below without derivation:®

e The Nyquist Criterion
The Nyquist stability criterion relies on the open loop transfer function
calculated for real frequen-cies, that is on L(jw). The imaginary part
of L is plotted against the real part, for increasing values of w. The
closed loop system is stable if the curve does not encircle the -1 point
on the real axis clockwise.” For illustration, Fig. 2.1 shows a Nyquist
plot corresponding to a stable system.

e The Bode Criterion
The Bode criterion requires that ¢(L) < 180° at frequencies where

4The definition of the Laplace transform and other transformations between the time
domain and the frequency domain can be found in many textbooks, e. g. A. V. Oppen-
heim, A. S. Willsky,Signals and Systems, Prentice Hall, 1983

5in the absence of noise and for =, = 0.

Ssee e. g. J. J. DiStefano etall, Feedback and Control Systems, Schaum’s Outline
Series, McGraw-Hill, 1990.

"While this is not themost general formulation of the Nyquist criterion, it is sufficient
for most practical design ccases
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Figure 2.1: Example of Nyquist plot. The system is stable even though at
some frequencies ¢(G) > 180°.

L] = 1. Often, use of the Bode criterion is based on plots of the
magnitude and phase of the transfer function versus frequency, as in
Fig. 2.5.

2.2 Poles and Zeros

Poles
Consider the RC network of Fig. 2.2. Assume the input is a sine-wave e; =
sin wt.
The differential equation which describes this system 1is:
de,(t :
RCZTS‘) + e,(t) = sinwt (2.5)
with the solution:

S

= sin(wt — ¢) (2.6)

eo(t) =
\/ 83 + w?
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Figure 2.2: RC network used to illustrate the concept of pole.

where ¢ = tan~!(w/sq), and sg = 1/RC. The output is a phase-shifted
version of the input, with ¢ = —45° for w = —s¢ and ¢ — —90° for w > so.
For w > sg, the input is also attenuated at the rate of a factor 10 per decade
of frequency (20 dB/decade). In electrical engineering terms, the network
of Fig. 2.2 is a low-pass filter. The Laplace transform of e,(t) is obtained
from Eq. 2.5 by replacing d/dt — s, sinwt — S(s) and solving the algebraic
equation. The result is:
By(s) = —2—§ 2.7
A(8) = —2=5() 2.7

The transfer function so/(so+s), which describes the network, has a real pole
at —sp in the complex s-plane. For physical frequencies, i. e. for s = iw, one
finds that the amplitude of the input sine-wave is attenuated when w > sy,
as in Eq. 2.6. The imaginary unit multiplying w describes a 90° phase lag at
frequencies well above sg.

Another case of interest is the driven harmonic oscillator, described by
the second order equation:

11




d?z(t)
dt?

dz(t)

T wiz(t) = sinwt (2.8)

+ 2y
with the solution:

sin(wt + ¢)
\/(uﬂ — wd)? + 4y202

z(t) = Ael~7+wnt L Bel-v-iwn)t 4 (2.9)

where ¢ = tan™! [2yw/ (w? — W?)]. w; = yJw§ —~? is real for small v. The
first two terms in Eq. 2.9 vanish after sufficient time has passed. The remain-
ing term is attenuated for w > wy, at a rate of w™2, i. e. a factor 100/decade
(40 dB/decade). For w = wy, ¢ = —90° and, for w > wo, ¢ — —180°. The
Laplace transform of z(t) is:

S5(s)
(s = 51)(s — s2)
The transfer function (s — s;)7!(s — s2)~!, which describes the harmonic

oscillator and has two complex conjugate poles at s15 = —7 £ iy/wg — 2.
displays the w2 behavior above wy and the phase lag already seen in the
solution of the differential equation.

Differential equations with order higher than 2 are more difficult to in-
tegrate than the examples considered above. However, the denominator of
the corresponding Laplace transforms is a polynomial consisting exclusively
of factors like the denominators in Egs. 2.7,2.10, as long as the systems are
described by linear differential equations with constant coefficients. Thus,
the corresponding Laplace transforms will have single real poles or pairs of
complex conjugate poles.

The preceding discussion of s-plane poles associated with systems de-
scribed by linear differential equations with constant coefficients is consistent
with the following statements, valid for either type of poles:

X(s) = (2.10)

1. The presence of a pole is indicative of low-pass filter behavior.

2. For real poles, the cut-off frequency of the system, i. e. the frequency
at which the low-pass filtering behavior sets in, is equal to the position
of the pole.

12




3. For a complex pole, the cut-off frequency is equal to the imaginary part
of the pole.

4. For either type of pole, the roll-off, i. e. the rate of attenuation above
the cut-off frequency, is 20 dB/decade/pole.

5. Poles introduce a phase lag:

e ¢ = —45°/pole at the position of the pole.

e ¢ = —90°/pole at frequencies far above the position of the pole.

Zeros

The presence of poles in the transfer function associated with Egs. 2.1,2.5,2.8

is related to the derivatives of the unknown function. If derivatives of the forc-

ing function in the right-hand side of the differential equations are present,

the transfer function will have a polynomial in the numerator. The roots

of the latter are called zeros of the transfer function. Similar to the case of |
poles, the following statements can be made regarding zeros: |

1. The presence of a zero is indicative of high-pass filter behavior.

2. For real zeros, the set-in frequency of the system, i. e. the frequency at
which the high-pass filtering behavior sets in, is equal to the position
of the zero.

3. For a complex zero, the set-in frequency is equal to the imaginary part
of the zero.

4. For either type of zero, the roll-up, i. e. the rate of amplification above
the set-in frequency, is 20 dB/decade/zero.

5. Zeros introduce a phase lead:

e ¢ = 45°/zero at the position of the zero.

e ¢ = 90°/zero at frequencies far above the position of the zero.

Both the magnitude and the phase shift of the frequency response are
readily measured quantities. The properties of poles and zeros, listed above,
can thus be used to gain insight about the number of poles and zeros of the
system at hand, by inspection of the magnitude/phase plots.

13
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Figure 2.3: Diagram of error suppression feedback system, used as an exam-
ple for stability discussion. Input, output, and correction sig-nals are shown.

Finally, it can be loosely stated that the steeper the roll-off, the larger the
related phase lag and, on the other hand, the steeper the roll-up, the larger
the related phase lead.® This often causes difficulties in the design of FCSs,
when the desire for fast gain roll-off abround and above unity gain frequency
is frustrated by instability caused by the associated high phase lag.°

2.3 System Stability: Low-Math Approach

The discussion of stability will be based on a simplified version of Fig. 1.1,
shown in Fig. 2.3, where there is enly one actuator, the sensor and the
actuator have unit transfer functions and all signals are voltages. The corre-
sponding simplified forms of Egs. 1.1,1.3 are:

8 At a deeper level, this relates to causality, via the Kramers-Kronig relations.

9steep filtering above unity gain is desirable in order to provide passive suppression of
electronic noise in a frequency range where the loop is effectively open and thus no noise
attenuation by the FCS is available.

14




e.
=t 2.11
0= 1Y G(s) (2.1)
e;G(s)
e = ———~
14+ G(s)
The ususal definition of stability will be used: a system is stable when

it settles following a disturbance. The system of Fig. 2.3 will be tested for
stability with a disturbance having flat spectrum with sharp cut-off:

(2.12)

1]ﬂ<BW} (2.13)

ﬂﬁ={0 f| > BW

which has the sinc function (1/7t) sin 27 BWt, plotted in Fig. 2.4, as its time
domain counterpart. It is also worth noting that the single sided frequency
bandwidth BW is equal to the inverse of the pulse duration 7. The sharp cut-
off in test disturbance spectrum makes it possible to explore the connection
between stability and the properties of the svstem transfer function G(s) in
arbitrarily chosen frequency bands.

A particular transfer function G(s), with three poles at 0.1 Hz, a zero at
0.31 Hz and unity gain at 1 Hz, will be used as an example. This function,
plotted in Fig. 2.5. has a phase shift of 180.1° at the unity gain frequency,
thus the closed loop system is unstable, according to the Bode criterion.

In the absence of feedback, the system of Fig 2.3 is assumed to be sta-
ble. The onset of instability must then be connected with the presence of
the correction signal, which is subtracted from the input signal in order to
generate a null output. Inspection of Eq. 2.12 suggests that there are three
distinct regimes for the correction signal:

Frequencies below the unity gain point of G(s).

|G(s)] is high by definition (see the example in Fig. 2.5), thus, according to
Eq. 2.12, the correction signal is approximately equal to the input signal; the
input disturbance is successfully suppressed and there is no ringing at the
output.!® Fig. 2.6 illustrates this point.}! Indeed, when a 4s test pulse is fed
into the system, pulse suppression and rapid settling is seen, even though,
according to the Bode criterion, the system is expected to be unstable. Stable
behavior in this regime is expected regardless of the phase of G(s), as long

0the width of the test pulse would be larger than the inverse of the unity gain frequency,
as its spectrum needs to drop to zero before unity gain is reached.
1 Gystem response was calculated using Matlab.

15




2N LN N
0 7 S_7
-3 2 -1 0 1 2 3

Solid: Time (s); Dashed: Frequency (Hz)

Figure 2.4: Pulse used to examine system stability. Solid line: time de-
pendence, dashed line: frequency spectrum. The pulse shown has 1s width,
measured between zero crossings next to the central peak. The single sided
bandwidth is 1 Hz.
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Figure 2.5: Bode plot of open loop sample transfer function used to illustrate
this discussion.

as the gain is high. This is of advantage when high gain is necessary at low
frequencies, in spite of a relatively low unity gain frequency, which requires
that the gain be dropped rapidly. Since each simple low-pass filter contributes
90°, the phase lag can stack up quite high.

Frequencies above the unity gain point.

In this regime, |G(s)| is low, and the correction signal is small as well. Since
little correction is applied to the input, the latter sails through the system
with little attenuation, as if there were no feedback. In this regime there is
no need to worry about instability.

Frequencies at and around the unity gain point.

From Eq. 2.12 one finds that system behavior is likely to depend strongly
on the phase of G(s), because of the expression in the denominator, where a
complex number with modulus close to unity is added to 1.

e If the phase of G(s), ¢, is small, the correction signal will be smaller

17
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Figure 2.6: System response to a 4s pulse (0.25 Hz bandwidth). Upper trace:
input pulse; lower trace: system output. Note that the pulse is suppressed
40 times, consistent with the open loop gain around 0.25 Hz (Fig. 2.5). Some
1 Hz ringing, excited by wideband noise due to the computation process, is
present.
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Figure 2.7: System response to a 0.5s pulse (2 Hz bandwidth). Upper trace:
input pulse; lower trace: system output. Note that the ringing is slowly
building up, as expected with a very low phase deficit (0.1°) at the unity
gain frequency.
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Figure 2.8: Upper trace: input pulse, lower trace: input pulse distorted and
delayed by the feedback network. For this example, G(s) has 3 poles at 0.1
Hz, unity gain frequency of 1 Hz, and approximately 256° phase lag at unity
gain. At the correction point, the processed pulse misses the input pulse
which is there-fore not attenuated; the result is oscillation.

than and slightly out of phase with the input test pulse, but input
attenuation will still occur, albeit less effectively. The test pulse will
pass through with some attenuation, and the system will slowly settle.

e If ¢ is close to 180°, bad behavior is expected, as the denominator in
Eq 2.12 tends to vanish. The key effect here is that the correction pulse
becomes very large. With real systems, this is made worse by saturation
in the amplifiers, which usually adds to the phase shift. This, in turn,
causes the correction pulse to miss the input pulse at the correction
point, so that two pulses are now traveling trough the system. A third
one is then generated, and there will be a never ending succession of
pulses at the output, caused by just one input pulse. In other words,
the system is drastically unstable. The adequate test pulse for this
regime has a spectrum extending beyond the unity gain frequency and
duration less than the inverse of the unity gain frequency. Fig. 2.7
illustrates that the system does, indeed, display ringing in response to
such a pulse.

e If ¢ is well above 180°, for example ~ 270°, no anomalous correction

20




signal is generated, as the two terms in the denominator of Eq. 2.12
do not cancel. After passing through the feedback network, the signal
will be lagging 270° behind the input pulse, which it thus misses, as
illustrated in Fig. 2.8, and a series of pulses will be seen at the output.
A real system, with noise at the input, would never really settle. It
should be stressed here that for instability to occur, it is not necessary
to have the denominator of Eq 2.12 vanish; any phase shift larger than
180° would do.

Conclusion: to ensure closed loop stability, the phase of G(s) should be less
than 180° when |G(s)| = 1. In practice, one usually requires that the phase
lag at unity gain be kept below 120°-135°. The intuitive discussion above led
to the Bode stability criterion. It is stressed that at frequencies where the
gain is substantially higher than 1 there is really no restriction on the phase

lag.
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3 Example of Design Problem: Laser Fre-
quency Stabilization

In order to make these notes easier to follow, an FCS design problem is
presented in this section. The example which has been chosen, frequency
stabilization of a Nd:YAG laser, contains many of the ingredients found in a
wide variety of cases of interest. Various aspects of the example will be used
in later sections to illustrate aspects of the design process.

LOCK ACQUISITION
ARRANGEMENT
LASER
SEARCH
SENSOR ALGORTHM
TERMOELECTRIC
=
ELEMENT RIGID
RESONATOR
{ | POWER L ASER
\ ] SAMPLER BEAM ’
PHOTODIODE,
ELECTRO-OPTICS
ELECTRONICS, ETC.

v

COMPENSATOR

Figure 3.1: Concept of laser frequency stabilization system. The sensor
and the actuators will be discussed in this section. Lock acquisition will be

addressed later.

In terms of the language adopted so far, z, the variable to be controlled,
is the frequency of the laser. The input variable z; is the fre-runing value of
the frequency, which is fluctuating, i. e. affected by frequency noise. The
purpose of frequency stabilization is to attenuate the frequency fluctuations.
In the example dicussed here, this is to be achieved by using a FCS which
forces the frequency to track a stable reference. According to Eq. 1.2, z; is
attenuated by a factor equal to the magnitude of the open loop gain, |L|. If
the frequency stabilization system only aims at obtaining a stable frequency,

22
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Figure 3.2: a) Power transmission of an optical resonator versus frequency.
BW: resonator bandwidth, FSR.: free spectral range, defined as c/2l, where
c is the speed of light and ! is the resonator length. b) Main features of
output signal from a Pound-Drever-Hall frequency sensing arrangement.

but the value of the stable frequency is not important, the corresponding
FCS belongs to a class called error attenuation systems.

3.1 System Concept

‘The concept for stabilizing the frequency of a Nd:YAG laser is shown in
Fig. 3.1. The laser considered in this example is a monolithic Nd:YAG laser.
The laser itself consists of a Nd:YAG crystal a few millimeters in size, which
is the gain medium. The beam follows a closed path through the crystal,
which is also the laser resonator. The laser frequency is determined by the
legth of the optical path through the crystal. Slow frequency fluctuations
result from changes in crystal temperature, while fast frequency fluctuations
are caused mainly by fluctuations in the intensity of the pump source.!?

12]aser diodes are the prefered pump source for solid state lasers with output power up
to a few Watts.
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Sensor
Detecting laser frequency fluctuations relies on coupling the light to a rigid
optical resonator, consisting of two mirrors attached to a rigid spacer, such
that their optical axes coincide. Typically, mirror transmission is chosen at
a fraction of a percent, so that multiple overlapping beams propagate and
interfere with each other inside the resonator. When the resonator length is
an integral multiple of half of the wavelength of the light, a standing wave
patern builds up inside the resonator, a condition which is known as reso-
nance. At resonace, the resonator transmission reaches its maximum value,
and so does the power circulating inside the resonator. If the frequency
changes by a free spectral range, FSR, defined as ¢/2[, the cavity length
becomes equal to the next higher integral multiple of the half-wavelength
and another resonance is reached, as shown in Fig. 3.2a. The dependence
of transmission on frequency suggests the possibility of using the resonator
as a frequency fluctuation sensor. The reference in this case is one of the
resonant frequencies, which in turn is related to the length of the resonator;
hence the choice of a rigid resonator, to ensure stable length. Measuring the
transmitted power is not usefull for FCS implementation, since it is symmet-
ric with respect to resonance and therefore indicates only that the frequency
is off resonance, but not which way it is off. Among many ways devised
to overcome this limitation, the Pound-Drever-Hall method has established
itself for use in high performance laser frequency stabilization systems ***
cite Drever-Hall paper ***. A sample output signal corresponding to the
Pound-Drever-Hall sensing arrangement is shown in Fig. 3.2b. As long as
the laser frequency is within the resonance bandwidth, the sensor output is
approximately linear. The slope of the output, AV/Av, measured over a fre-
quency band Av centered on resonance and expressed in V/Hz, is the gain
of the sensor. A remarkable feature of the Pound-Drever-Hall sensor output
is that when the frequency moves out of the resonance bandwidth, the slope
levels off, i. e. the gain decreases. Thus, if this sensor is used in a FCS which
performs well on-resonance, pulling the frequency off-resonance could seri-
ously diminish system performance. Therefore the resonance bandwidth
defines a sensor range. The laser frequency has to be within the sensor
range for the system to function reliably.

The trace in Fig. 3.2b is obtained when the laser frequency is scanned
slowly through resonance. For faster scanning rates,' the fact that the field is

133ls0 called Fourier frequencies in order to distinguish them from the actual laser
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stored in the resonator over time scales ~ 1/ BW influences the measurement;
the faster the scanning rate, the lower the measured gain. Dependence of the
gain and phase shift on the Fourier frequency, for a resonator with 200 kHz
bandwidth, is shown in Fig. 3.3. The Bode plot of Fig. 3.3 can be seen as
a model of the frequency fluctuation sensor, detailed enough for FCS design.

In summary, the sensor compares the laser light half-wavelength with the
length of the resonator. When the latter is not an integral multiple of the
former, a voltage proportional to the difference is generated at the sensor
output.

Anything which changes the sensor output when the laser frequency does
not change is defined as sensor noise or error. Examples of sensor noise/error
are:

e Changes in resonator length due to ambient temperature variations.

e Changes in resonator length due to environmental vibration and acous-
tic excitation.

Changes of the optical path inside the resonator due to fluctuations in
air pressure, if the resonator is in air.

Electronic noise associated with the sensor.

Actuators

The actuators for correcting the laser frequency are a provision for laser
crystal temperature control and a piezo-electric device (PZT) bonded to the
laser crystal. Both change frequency by changing the optical path inside the
laser crystal. Temperature control provides for changing the frequency over
a range of about 5 GHz, while the PZT can be used to tune the laser over
approximately 100 MHz. Approximate typical Bode plots for the actuators
are shown in Fig. 3.4. It can be seen from the plots that the temperature
control has a substantially higher gain than the PZT. At the same time,
temperature-induced frequency changes start showing a substantial phase
shift around 0.1 Hz, while the PZT-induced ones do not show significant
phase shifts up to about 1 MHz. Therefore, the temperature control can
be used to effect slow, but large frequency corrections, while the PZT is
appropriate for small amplitude, fast frequency corrections.
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Figure 3.3: Sample Bode plot of output characteristic from a Pound-Drever-
Hall frequency fluctuation sensing arrangement. Note that both the gain
and the phase characteristics are flat from DC to roughly half the resonator

bandwidth.

3.2 Tracking Requirement

A tracking requirement!* could be formulated as follows:

1. The laser frequency shall be stable within a 10 kHz range, peak-to-
peak, once lock to the reference resonator has been acquired.’® Note
that this is a really though requirement. Indeed, since for A = 1.064
pm v = 3- 10 Hz, the laser frequency has to be stable to one part in

3-10%.

2. There is no requirernent as to what the center frequency of this range
should be.

3. Lock acquisition should be automatic, and the acquisition sequence
should be intiated automatically whenever the system is out of lock.

more appropriately called frequency stability requirement, in this case

15i, e. the laser frequency is within sensor range and the FCS loop is closed and

functioning. A short discussion of “lock” is given in Section 4.3.
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Figure 3.5: Example of upper limit for the frequency noise of a ~ 1 W
monolithic Nd:YAG laser. At most Fourier frequencies, the frequency noise
is lower than the curve shown. One benefit of adopting a generous upper
limit is the simplicity of the spectrum, which makes the design process easier.
Moreover, a safety margin is generated, which offers some protection against
incomplete knowledge of the noise spectrum at the begining of the design
work. If the plot is derived from a some frequency noise measurement, one
should keep in mind that the units displayed on spectrum analyzer screens are
usually root-mean-square (rms). A commonly used multiplier for converting
rms units to peak-to-peak units is 5.

4. Once lock has been acquired, it should be maintained for continous
time interavals of at least 10 hours.

3.3 Free Runing Laser Frequency Noise

For the purpose of this design example, the following free-runing frequency
variations will be considered:

e Drift: over time scales of 100 s and longer, the laser frequency makes
excursions within a 1 GHz range.

e Noise at intermediate frequencies: The frequency noise spectrum
for a monolithic Nd:YAG laser is usually a fairly complicated func-
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tion of frequency. Since the error attenuation ratio'® is usually a fairly
smooth function, it has be to chosen such that adequate suppression is
provided at the peaks in the noise spectrum. Thus, it is sufficient to
have an upper limit for the noise spectrum, which, for design conve-
nience, should be a smooth function with simple frequency dependence.
A sample upper limit for the free-runing frequnecy noise spectrum of a
Nd:YAG laser is shown in shown in Fig. 3.5. The spectrum of Fig. 3.5
integrates to a total frequency error of 200 kHz rms which is equivalent
to 1 MHz peak-to-peak.

e Fast frequency fluctuations: occasionaly the laser frequency under-
goes step function-like jumps up to 50 kHz in amplitude, over time
scales of ~10 ns.

3.4 Environmental Parameters

It will be assumed that the laser is to be used in air, in a normal laboratory
environment. Since ambient temperature changes cause changes in laser
frequency and reference resonator length, temperature is probably the most
important environmental parameter, for this example. Thus, the requirement
will be made that the laser maintain the specified frequency stability over a
temperature range of 5° C, which exceeds the normal temperature variation
in an air-conditioned room.

3.5 In-Band, Out-of-Band Frequency Ranges

Comparing the requirement of Section 3.2 that the laser frequency be stable
within 10 kHz peak-to-peak with the free-runing error of Section 3.3, one
notes the following:

1. The long term frequency drift has to be attenuated.
2. The frequency noise up to ~100 kHz has to be attenuated.

3. The frequency “jumps” over 10 ns time scales need to be attenuated.

In practice, it is exceedingly difficult to operate a closed loop system at
~ 100 MHz. Thus, the FCS for this problem will most likely be designed to

16i e. |L|, according to Eq. 1.2




attenuate frequency noise at (Fourier) frequencies up to ~ 100 kHz, which |
would take care of Points 1,2 above, while the frequency jumps of Point 3 will
have to be addressed by other means, €’ g’ filtering by passing the entire laser
beam through the reference resonator. As a consequence, it is convenient to
divide frequencies into two cathegories:

e In-Band (IB): frequencies tracking errors exist and are attenuated
by the FCS. For the present example, frequencies from DC to 100 kHz
are IB.

e Out-of Band (OB): Other frequencies. For the present example,
frequencies over 100 kHz are OB.

by the FCS, they are relevant to the design problem:

e OB disturbances can prevent achievement of the tracking requirement,
as in the present example.

e OB disturbances can disrupt FCS operation, if they drive the parameter

It is important to realize that even though OB frequencies are not addressed
|
|

which has to be controlled outside the range of the sensor. 1

e In the presence of nonlinearities, OB effects can be frequency shifted
IB. For example, steady high frequency OB signals could be rectified by
slow electronic components. The FCS wold perceive this as a frequency
deviation and attempt to correct it. If this effect is large enough to
push the laser frequency outside the range of the sensor, the loop will

be brocken and the FCS will cease to function.

|

|

\
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4

Outline of Control System Design

4.1 Design Approach

4.1.1 Assumptions

The FCS design approach followed here is based on the following assump-
tions, which reflect reality in the laboratory and/or will considerably simplify
the design process:

1.

The end product of the design process is a system which complies with
pre-determined performance requirements. Performance is not required
to be optimal in a rigorous sense.

The starting point for the design consists of:

A concept for the tracking system

e A tracking performance requirement
e Some data on the free-runing behaviour of the variable =

e Some knowledge of the environment in which the system is re-
quired to perform

Noise contributed by the compensator, ng, can be made negligible with
respect to reference noise/error n, by proper comensator design. Noise
contributed by the actuators and their drivers is negligible compared

to ng.

The design process has to contend with inaccurate performance require-
ments and incomplete knowledge of the spectrum of the free-runing
values of z, the parameter to be controlled.

The dynamics of components to be used as sensors and aetuators are
incompletely known.

The behaviour of electronic components outside the linear regime is
unknown or difficult to incorporate into a reasonably simple model.

Specifying subsystems and components, prototyping and experimental
performance assessment are integral to the design process.
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4.1.2 Error Budget
The contributions to the error budget are read off Eq. 1.2:

1. Sensor error, n, consists of a slow variation of the nominal reference
value, N, g, due e. g. to thermal expansion, creep, component aging,
drift in the electronics and other slow effects, and a fast fluctuation
Nr, fast due to fast environmental and internal fluctuations, e. g. acous-
tic excitation, vibrations, and electronics noise.

2. Compensator noise ng can usually be made negligibly small by ade-
quate design. Therefore, this term should not contribute to the noise

budget.

3. Residual input fluctuation, z;/L, due to finite loop gain.

In a well designe system output noise/error thus consists of sensor error
and residual input error. In practice, it is usually easier to achieve high
|L| at low frequencies,!” and to obtain low n, at high frequencies.’® The
noise budget is therefore expected to be dominated by sensor error at low
frequencies and by residual input error at high frquencies.

4.1.3 Design Guidelines

An immediate consequence of the assumptions made in Section 4.1.1 is that
modelling which uses the initial design data will usually be quite inaccurate,
and thus will not be able to reveal ahead of time many of the problems
encountered in the course of building a working FCS. In view of this fact,
and given the approximate nature of the requirements and of the design input
data, the design approach discussed in these notes is based on the following
guidelines:

1. Starting from the initial concept and from the requirements and the
input data, assemble a specification for the sensor and for the actua-
tor(s). Since these are usually long-lead items, it is desirable that their
initial specification be adequate for being carried through the design
process, with no further iteration.

17L has to roll off at high frequencies in order to ensure system stability.
8hecause suppressing drift and other low frequency sensor errors is generally difficult.
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2. Assemble an approximate specification for the compensator, using a
limited amount of FCS modelling and crude models for the sensor and
for the actuator(s). At this stage, the emphasis should be mainly on
lock acquisition®® and on stability, and not on performance. The com- |
pensator is all electronics, thus its specification and design are most
easily iterated, and does not need to ensure the required performance
with its first version.

3. Design and build the compensator and all other necessary electron-
ics. Its input noise should contribute negligibly to the tracking error,
compared to reference noise/error. |

4. Put together the system and close the loop. Many of the tough prob-
lems affecting the design task at hand will show up at this point, thus
this stage should be reached as quickly as possible.

5. Diagnose the problems and achieve stable closed loop operation.

6. Run the system with the loop closed. Assess the ease of acquiring |
lock and measure the free-runing spectrum of z. Assess the long-term
behaviour of the system. Determine if performance is adequate.

7. Refine the FCS model using experimental data obtained while runing
the system.

\
\
8. Iterate the design in order to achieve: 1

¢ smooth lock acquisition
e reliable long-term operation and

e specified tracking performance ‘

9. Test-run the system and iterate the design again, if necessary.

The meaning of some of the above guidelines will become apparent when
the issues are discussed in detail in the following subsections.

The fact that iterating the design is explicitly made part of the process
relieves the need to go into excruciating detail in the initial phase of the work.
This makes it possible to move forward fast and settle most details gradually,

19gee Section 4.3
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as the data become available. In this spirit, the various parameters will be
devided into two categories:

1. The resolve-it-now (RIN) type includes parameters which need to be
chosen at once in order to allow the design process to move along.

2. The worry-about-it-later (WAL) type includes parameters the defini-
tion of which depends on yet to be done analysis or on measurements
which can be carried out only when a crude version of the system be-

comes operational.

The distinction between RIN and WAL parameters will be made frequently
in what follows.

4.2 Input Data

The input to the design process consists of the following information: |

e A concept for the system, including the type of sensor and acuator(s)
and the lock acquisition method.

e A requirement on tracking performance which indicates the maximum
allowed departure of the controlled variable o from the reference value
T, 1. €.

|zo(f) =z (/)] < T(f) (4.1)

It is useful to find out, by interaction with the customer, how much
safety margin has already been included in the requirement, as a func-
tion of frequency. Knowing the frequencies where the requirement is
“hard” and those where it is really a goal can make a big difference to
the designer.

The tracking requirement should also include a statement on the mini-
mum timespan over which the system is expected to track continously.

e Some knowledge of the free runing value z; of the parameter of interest.
This input is likely t contain a large initial uncertainty, which will be
removed when the system is run closed-loop.

e The range for relevant environmental parameters under which the sys-
tem is required to display the specified tracking performance. It is
important to identify the evironmental parameters which will have the
heaviest impact on system performance.
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Figure 4.1: Example of a tracking system: a CCD camera is required to keep
the image of the aircraft at the center of the CCD. In order to accomplish
this, the camera itself in conjunction with appropriate software are providing
an error signal when the image is off-center. The error signal is processed by
the compensator and fed to a tip-tilt actuator, which corrects the pointing
of the camera, to keep the image centered.

4.3 Lock Acquisition

In order for a tracking system to work, the loop shown in Fig. 1.1 needs
to be closed, which in turn requires that all elements in the loop function
properly. In the example shown in Fig. 4.1, the CCD camera, which is the
sensor in the system, can provide an error signal only if the aircraft is within
the field of view. If this is not the case, the input to the compensator cannot
be processed into a signal which leads to successful tracking. In other words,
the variable to be controlled, in this example the angle between the line of
sight to the aircraft and the optical axis of the camera, needs to be within
what is called the range of the sensor, in this case the field of view of
the CCD camera. When the aicraft is outside the camera’s field of view, the
tracking cannot work and the system is free-runing. If, on the other hand,
the image of the aircraft is on the CCD, the camera can track the plane.
This situation is described by saying that the system is locked, or in-lock.
Thus the need arises to ensure a transition, called lock acquisition, between
the free-runing and the locked states of the system.
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The arrangement of Fig. 1.1 does not explicitly contain any provision for
lock acquisition. What is needed is some sort of search algorithm, which
eventually brings the system within sensor range. In some fortunate cases
one can rely on the random nature of the free-runing variable z; to bring the
system within sensor range; otherwise, an explicit search mechanism has to
be designed into the system.
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5 Step-by-Step Design

5.1 Sensor Specification

5.1.1 Sensor Range

Several considerations which help chosing the sensor range R will be discussed
below. They all originate from the circumstance that, when the variable z
is outside the range of the sensor, the loop is open and the FCS is not

operational.

1. IB requirement
When the system performs according to specification, the variable z
still shows a residual error with respect to the reference. An upper
bound to the IB residual error is calculated by integrating the spectrum
of the tracking requirement defined in Eq. 4.1

=[] (51)

If the system is to maintain lock, the residual error should not be
capable of pulling z outside the sensor reference, i. e. R > 2¢e;p.

2. OB requirement
Like in the IB case, the range of the sensor has to accomodate the OB

error, that is R > 2epp.

3. Lock acquisition considerations
Before lock is acquired, z is typically outside the range of the sensor.
The loop is therefore open, which usually means that the amplifiers
making up the compensator are at least partially saturated.?® When
the lock acquisition subsystem brings z within the range of the sensor,
the loop is closed, and tracking starts to take effect. However, due
to amplifier saturation, attenuation of the tracking error is less than
described by Eq. 1.2. The system needs some time to come out of
saturation and accomplish the nominal error attenuation. This can
happen only if z is within sensor range even when the residual error
is larger than under nominal tracking conditions. In other words, the
range of the sensor has to be wider than required by the IB condition

2gimilar to the case of a high gain operational amplifier with no feedback loop.
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above. A good starting point is to require that sensor range be the
larger of 20e;g, 2epp. If during testing it turns out that lock acquisition
is difficult, one may have to redesign the compensator electronics for
faster recovery from saturation. This is usually simpler, easier and
faster than re-specifying and rebuilding the sensor.

Going back to the example of the laser, e;p = 10 kHz, and egp = 50
kHz. Thus, the range of the sensor, which is the bandwidth of the reference
resonator, should be specified at ~200 kHz.

5.1.2 Sensor Error

According to Eq. 1.2, the tracking error z,—z, can be no lower than the sensor
error n,. Therefore, sensor error is bounded by the tracking requirement:

e ()] < 1T (£)] (5.2)

for all IB frequencies.

For design purposes, it is convenient to split sensor error into reference
error and semsor electronics error, and to further split each of these into
slow (e. g. drift, creep, etc.) and fast (arbitrarily defined as f > 0.1 Hz)
components:

Ny = Nyefislow + nref;fast + Nel;slow + Nel; fast (53)

A good design will ensure that the reference error dominate at all IB fre-
quencies:

Inel;slowl > |nref;slow| (5 4)
,nel;fast! > ,nref;fast’
While designing the sensor for satisfactory noise performance, it is worth
keeping in mind the following considerations:

1. The reference is the part of the sensor which is usually long lead. The
success of the design may depend to a large extent on identification and
careful analysis of the slow and fast contributions to reference error and
ensuring they are low enough to comply with Eq. 5.2.

TNrefsiow a0d Tyef,rast are RIN-type®! parameters.

2
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2. In terms of the ultimate performance of the FCS, Nyefision and Meisiow
are equivalent. However, they affect tracking performance by different

mechanisms:

¢ In the absence of any other error, and under stable FCS operation,
z, tracks the reference; if the reference drifts, z, drifts with it.

e In the absence of any other error, z, will differ from the reference
by 7. If ne becomes larger than the sensor half-range, the FCS
will loose lock. Thus, even though ne; can be considered a WAL-
type®? parameter, one should ensure successful closed-loop oper-
ation by selecting electronic components and construction tech-
niques which are most likely to keep n,; well below the range of
the sensor.

Refering to the example of laser frequency stabilization, Points 1,2 above
translate as follows:

1. Since the resonant frequency changes with resonator length as Av/v =
Al/l. and the stability requirement is that Av/v < 31071, the legth
of the reference resonator has to satisfy Al/l < 3-107''. If ther-
mal expansion is the only cause of length change, one needs to ensure
that aAt < 3107, where « is the coeflicient of thermal expansion.
With a resonator made of ULE (ultra-low expansion glass) for which
a ~ 107%/°C, resonator temperaturevariations have to be limited to
At < 0.03°C, when the ambient temperature may change over a 5°C
range. Clearly, both thermal insulation and temperature control of the
reference resonator will be necessary.

A likely contribution to e, f.st are acoustic and seismic excitations
of the resonator spacer. While it is hard to make a general statement
regarding the level of these disturbances, it is very likely that, in order
to meet the frequency stability requirement that Av/v < 310711,
one will have to place the reference resonator on a seismic isolator, in
vacuum.

2. A typical range for the sensor output is ~ +1V/BW. Thus sensor elec-
tronics noise should contribute significantly less than +0.1 V at the

22gworry-about-it-later
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sensor output in order to allow the system to stay within range once
lock has been acquired. Of course, meeting the frequency stability re-
quirement means keeping electronic contributions to the sensor output
below £0.05 V. Likely electronic contributions to sensor error are :

e Temperature-dependent offset voltages at the input of the op-
amps

e Pick-up at multiples of the line frequency

¢ Electronics noise and electromagnetic interference not related to
the power line

All these effects are hard to assess quantitatively in advance. In the |
early phase of the design it is enough to make sure that the various
terms listed above do not add up to more than 0.1 V. This will allow
the loop to be closed and FCS tests to be carried out, while the sensor
itself is subjected to independent tests aimed at reducing its output |
error to less than +0.05 V, consistent with the stability requirement. }

5.1.3 Sensor Gain

A more detailed block diagram for the sensor is shown in Fig. 5.1. The sensor
head is defined as the part which converts the deviation of the parameter
from the reference z, into an electrical signal. The purpose of a subsequent |
stage(s) as shown in Fig. 5.1 is: |

e To amplify the signal from the sensor front end in order to make sensor
error the dominant error in the system, in particular over compensator
noise/error. According to Eq. 1.2, this is another way of saying that
high sensor gain |A(s)| reduces the total noise affecting z,.

e To buffer the sensor front end from the compensator input, e. g. in
case of a piezo-electric sensor with ~1 M output impedance and a
compensator with a low-noise input stage with ~1 k{2 input impedance.

e To allow the implementation of filtering needed for proper operation of
the compensator and of the actuators. For example, it may happen that
high frequency noise or pick-up are showing at the output of the sensor
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Figure 5.1: Multiple-stage sensor configuration. A distinction is being mde
between the sensor front end, where the parameter to be measured is con-
verted into electrical signals, and the amplifiers (two stages are shown), whch
may include some filtering. The overall sensor transfer function, measured
in units of V/[units of z], is A(s) = An(s)A1(s)Az(s). Each stage is charac-
terized by a gain and a noise/error contribution.

head, but cannot be tollerated by the slow compensator electronnics.?
One solution is a filter/amplifier stage after the sensor front end.

The signal at the sensor output is:

e, = A(8) (T, — 2, — n,) + A1 (s)Az(s)n1 + Aa(s)ny (5.5)

where A(s) = Ap(s)A1(s)Aa(s). A good sensor design will ensure that the
only significant contribution to sensor output error will come from the sensor
head itself, that is:

fAh(S)nr, > ,nll (5 6)

|A1(s)n1] > [no| '
For the example of the laser stabilization arrangement, the tracking re-
quirement corresponds to 50 mV at the sensor output. This is high enough to
dominate compensator noise almost regardless of compensator design, thus
no sensor output amplification is necessary. The only issue than is to design

23where it may be rectified and generat an unwanted DC offset in the system.
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the sensor front end such that its own error/noise is much lower. e. g. by a
factor 10, than the tracking requirement.

5.1.4 Sensor Noninearity

Sensor nonlinearity, defined as z-dependence of the derivative of sensor out-
put with respect to z,?¢ is not a crucial issue as long as it is small. Several
examples of large nonlinearities, with their possible adverse effects on FCS
operation, and tentative remedies are listed below.

e Gain reduction due to nonlineaarity, e. g. saturation, can be so severe
that it may prevent the FCS to ensure proper tracking. The remedy is
to design enough excess gain into the system to keep the overall gain
high enough for proper tracking even when nonlinearity sets in.

e Signal distortion may cause phase shifts which erode the phase margin
enough to render the closed-loop system unstable. The remedy is to
design sufficient phase margin into the system to accommodate phas
shift due to nonlinearity.

e A change of sign of the sensor gain would render the system intrinsically
unstable. There is no easy remedy for this situation.

A general, albeit costly way to mitigate the existence of nonlinearities is
to define the sensor range as the interval of z where the system is at worst
mildly nonlinear. and then design the FCS to operate within this limited
range. This entails adding a mechanism for lock acquisition, which is meant
to bring the system within its linear range, and requires that there be enough
control “strength”?® available to keep the system tracking, once lock has been
acquired. It may happen that keeping the system inside the linear range
defines a tougher requirement than the original tracking specification.

The laser stabilization problem presents an example of extreme nonlinear-
ity. As it can be seen from Trace b) in Fig. 3.2, outside the reference resonator
bandwidth, the signal changes sign, rendering the closed-loop system unsta-
ble?s. The range of the sensor thus has to be restricted to the resonance
bandwidth, and a provision for lock acquisition, as shown in Fig. 3.1, has to
be part of the design.

24which is the gain, or sensitivity of the sensor
i. e. high enough open-loop gain L.
6as it causes positive feedback
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5.2 Actuator Specification

Actuators are the part of the FCS which correct tracking errors detected by
the sensor and filtered and amplified by the compensator. In order to ensure
proper tracking, the actuators?” have to satisfy two conditions:

1. Since, according to Eq. 1.2 the effect of the FCS is to cancel the free-
runing value of the variable of interest, z; and replace it with the ref-
erence value z,, the correction range of the actuators has to be wide
enough to cover the maximum variation of z;:

1
Actuator range > 5Zipms = O [/IB :1:,-2(f)df} ’ (5.7)

2. The actuator has to be “fast” enough to be able to correct for errors
at the high end of the IB range.

Returning to the example of the laser stabilization system, the require-
ment is to cancell frequency fluctuations of up to 1 GHz. The temperature
control, which is capable of tuning the laser frequency over ~5 GHz, has
plenty of range. However, inspection of the corresponding part of Fig. 3.4
shows that for frequency fluctuation rates®® above 0.1 Hz temperature control
just cannot correct the frequency of the laser anymore. Temperature con-
trol is to “slow” an actuator for correcting frequency fluctuations at Fourier
frequencies from ~0.1 Hz to ~100 kHz, as required. A “faster” actuator
is needed; as the upper box in Fig. 3.4 shows, the PZT has the necessary
speed, as its magnitude plot hardly decreases at all up to 100 kHz. On the
other hand, the PZT has a correection range of only 100 kHz, and is not
able to cover the entire range of expected frequency error. This situation,
calling for a slow, wide range actuator to be used in conjunction with a
faster, nartrower range one, is fairly common. Designing such arrangements
for close-to-maximum gain and stable operation is covered in Section 6.2.

5.3 Open-Loop Gain Specification

The open-loop gain has to be specified while keeping in mind two aspects:

27which under the definitions used here include the actual correction device and thedriver
28i. e. Fourier frequencies
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e The need to provide sufficient gain for achieving the prescribed tracking
performance.

e The frequency dependence of the open-loop gain has to be consistent
with closed-loop stability.

According to Eq. 1.2, if noise is disregarded, |z, — z,| =~ |z;/L|. On the
other hand, the design has to ensure that the tracking requirement of Eq. 4.1,
T(f) = |z.(f) —z-(f)]|, is satisfied. From these two equations it follows that:

zi(f)

L= 3 58
which defines the minimum magnitute of the open loop gain L, as a function
of frequency, necessary in order to satisfy the tracking requirement.

The lower bound for |L|, obtained from Eq. 5.3 may not satisfy the Bode
criterion (Section 2). If this is the case, the bound on |L| should be deformed
to a curve which does satisfy the Bode criterion while still being consistent
with Eq. 5.3.

The specification for |L| is more easily used in subsequent FCS design
steps if it is expressed in terms of a DC gain. and the number and positions
of poles and zeros.

The derivation of a lower bound for the open loop gain L is illustrated
using the sample tracking requirement for the stabilized laser, Section 3.2,
which asks for the laser frequency to be within 10 kHz of the reference (as-
sumed to be more stable than this requirement), while the low-frequency
drift is up to 1 GHz, and the frequency noise at higher Fourier frequencies
is bounded by the plot of Fig. 3.5. The somewhat arbitrary assumptions®
will be made that the open loop gain shall be chosen so that the residual
low-frequency and high-frequency errors are equal, each approximately equal
to 3kHz, and that the residual noise above 10 Hz be white, e. g. constant
as a function of Fourier frequency. The low-frequercy gain should then be
at least 1GHz/3kHz= 300000 = 110 dB. A total noise level of 3 kHz over a
frequency span of 100 kHz corresponds to a constant spectral density of 10
Hz/Hz'/2. Thus, from Fig. 3.5 the gain has to be at least 1000 = 60 dB up to

29real life design work often demands that somewhat arbitrary choices be made, in order
to keep the process moving. It is important that these choices be documented so that they
can be tracked and modified, in case the design is faced with excessive difficulty. This is
one of the circumstances which make design iteration necessary.
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Figure 5.2: Example of open-loop gain specification, for the case of laser
frequency stabilization. Dotted line: specification as derived from Eq. 5.3;
solid line: modified gain specification, which can be implemented in practice.
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100 Hz, with a 1/f roll-off at higher frequencies. The result of this process is
illustrated in Fig. 5.2. The immediate result of using Eq. 5.3 has a vertical
slope at low frequencies. In practice one cannot realize this kind of steep fre-
quency dependence for the gain. Therefore, one has to modify the frequency
dependence to a shape which is practicaly feasible, while encompasing the
requirement set by Eq. 5.3.

At the frequency where |L| = 1 the slope of the gain plot in Fig. 5.2 is
20 dB/decade. This corresponds to a phase lag of 90° (Section 2.2), which,
according to the Bode criterion predicts stable closed-loop behaviour. Had
this not been the case, one would have had to further distort the gain curve
upwards, untill it became compatible with closed-loop stability.

Finally, inspection of Fig. 5.2 and use of the rules listed in Section 2.2
yield the following open-loop gain specification in terms of DC gain, poles
and zeros:

e DC gain: 110 dB
e Poles: 0.03 Hz (single pole) and 100 Hz (single pole)

e Zeros: 10 Hz (single zero)

5.4 Compensator Specification

From a pure control system point of view, the most important characteristic
of the compensator is its transfer function G(s). G is obtained from the
definition of the open loop gain L given in Section 1:

Gls) = L(s)

A(s) Ly Hi(s)Br(s)
where A, By, and H;, are the transfer functions of the sensor, the actuators
and the actuator drivers, respectively.

In order to facilitate electronics design and construction, as well as trouble-
shooting for proper close-loop operation, the compensator specification should
include:

(5.9)

1. The transfer function as calculated with Eq. 5.9, expressed as a DC
gain and a list of poles and zeros.

2. A normal signal input which should be characterized by:
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¢ Input impedance, selected such that the sensor output is not over-
loaded.

. o Input refered offset, which should be less than sensor error at the
output of the sensor.

e Input refered noise level, which should be less than noise at the
output oof the sensor.

¢ Type of connector
. A test input which allows injection of a test signal under operating
conditions. This input can be implemented as a summing point at the

input of the compensator, or at the input of any of the compensator
amplifier stages.

. A normal output which should be characterized by:

e Output impedance, which should normally be much lower than
the input impedance of the actuator driver(s) which follow down-
stream.

e Output range, selected to match the range of the actuator(s).

e Maximum current drive capability, determined by the input impedance

of the following actuator driver(s) and the output range.

e Type of connector.

. A monitor for the output of each amplifier stage, to assist the testing
process.

. A front-panel switch for changing the sign of the signal. This switch
will help ensure that negative feedback is established once the loop is
closed.

. A front-panel gain adjustment knob, for changing the compensator
gain® by two decades above and two decades below the nominal gain.
This provision is necessary because the initial design is not accurate
enough to predict the exact value of the gain “as built,” and also be-
cause the necessary gain is somewhat uncertain, given the uncertainty
in the initial design data.

30and thus the open-lop gain L
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8. Input and output protection. This provision is necessary because close-
loop operation is likely to engender system oscillation at one time or
another, in particular during the trouble-shooting phase. Conditions
may then occur which could damage the compensator or the actua-
tor(s).3!

5.5 Lock Acquisition

If the system is initially outside the range of the sensor, the loop cannot be
closed, and the FCS is unable to perform its tracking function. While z; is
outside the range of the sensor, it is likely that the amplifying stages of the
sensor and compensator will be saturated, thus driving the actuator toward
the edge of its range. There are two distinct lock acquisition conditions:

1. Spontaneous lock acquisition

This occurs if the natural variation of z; is large enough to bring the
system within sensor range occasionally. If the variation of z; is slow
enough to give the amplifiers time to come out of saturation while the
system dwells within the range of the sensor, lock acquisition will “hap-
pen” without any special addition to the FCS. If spontaneous locking
appears to be a possibility, the electronics should be designed with
quick desaturation in mind.

2. Induced lock acquisition
This is a situation where the system would “never” enter sensor range,
if explicit provisions are not added to the FCS. The remainder of this
subsection contains a short discussion of induced lock acquisition.

Locking can be induced in many different ways. Fig. 5.3 presents one
example which illustrates what’s involved. The main components of the
arrangement in Fig. 5.3 are: .

e An “out-of-lock” or “out-of-range” detector which continuously ana-
lyzes the output of the FCS sensor for anomalous behaviour, which
indicates that the variable z is outside the sensor range, which means
that the system is out of lock.

31For example, if the actuator is a piezo-electric device, oscillation may result in voltages
much higher than the maximum rating of both the actuator and the compensator. A
voltage clamp would provide adequate protection in this case.
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Figure 5.3: Concept of induced lock acquisition arrangement, shown in the
shaded area of the picture. SW1,2: switches; U: system in unlocked (out-
of-range) state; L: system locked.




¢ A set of switches.

e A search pattern generator.

Lock acquisition proceeds as folows:

1. Absence or loss of lock is detected by the out-of-lock detector.

2. The locking sequence is initiated by the out-of-lock detector setting
both switches to the “U” position. SW2 thus disconnects the actuator
from the compensator, which is saturated anyway, while SW1 connects
the search pattern generator to the actuator input.

3. The search pattern generator is triggered, which causes the actuator to
scan the otherwise free-runing variable ;.

4. When z; moves within sensor range, the FCS amplifiers in the sensor
and the compensator come out of saturation.

5. The out-of-lock detector senses that the system is now within range,
sets both switches to the “L” position, and commands the hold circuit
to continously apply the last value of the search pattern generator to the
actuator input. The FCS loop is thus closed and the system operates
as designed, while the lock acquisition arrangement is basically out of
the loop. Lock has been acquired.

Example 1: laser stabilization

For the stabilized laser shown in Fig. 3.1, the locked state corresponds to
the laser field resonating with the reference resonator. In this state, the
maximum amount of light is transmitted through the resonator. The out-of-
lock/out-of-range detector can thus be implemented as a transmitted power
measurement combined with a threshold detector; an in-lock state is declared
when the transmitted light exceeds a preset threshold. The search pattern
could be a succession of step increases in laser crystal temperature, effected
by the thermoelectric element. As a result, the laser frequency would change
in steps, untill it comes close to a reference cavity resonance. At that point,
searching is stopped and the loop closed.

Example 2: aircraft tracking
For the tracking camera shown in Fig. 4.1, the locked state corresponds to
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the image of the aircraft being held on the CCD array. The out-of-lock/out-
of-range detector can thus be implemented as an algorithm which recognizes
the shape or the motion pattern of the plane. The search pattern could be an
outward spiraling motion of the camera, executed using the tip-tilt actuator.
When the image of the plane is detected, the search is stopped and the loop
is closed, so that the camera can track.

5.6 Making the System Work
5.6.1 Achieving Closed-Loop Operation

Of all the steps in the design and testing of a FCS, this is without doubt
the most challenging. Indeed, in most cases proper closed-loop operation
will not be established when a new system is being put together for the first
time, even though the individual parts of the system, i. e. the sensor, the
compensator and the actuator have been tested and are in good working
order. The presence of tracking or the lack thereof can be determined by
observing the signals e, and e, at the sensor and actuator output monitors
shown in Fig. 5.4. When the system tracks, both sensor and the correction
signal change with time. For sytems with very high open-loop gain, the sensor
output may appear “frozen” during closed-loop operation, due to the large
degree of suppression of the free-runing variable z;, according to Eq. 1.2. On
the other hand, if any of e; 53 . is either zero or the maximum value supported
at the corresponding output, tracking is not occuring.

Since the various operating parameters are vastly different in the closed-
loop and open-loop regimes, testing the system open-loop in order to find
why the loop can’t be successfully closed is going to be only marginally
useful. The troubleshooting approach discussed in what follows is based on
the observation that, when the system is brought within sensor range, all
the components of the system are in a linear regime for a short time, untill
linearity is lost because the loop malfunctions. The specifics of the transition
from linearity to severe nonlinearity®? hold the clues needed to make the loop
work.

Troubleshooting can thus be conducted along the following three-step proce-
dure:

1. Bring the system within sensor range by using the input normally used

32¢, g. amplifier outputs getting stuck at one of the powér supply voltages
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Figure 5.4: Modified version of Fig. 1.1, used in the discussion on trouble-
shooting the FCS and testing its performance. SW: switch for selecting open-
or closed-loop operation; +/-: sign switch for ensuring negative feedback; e,:
signal at sensor output monitor; e; o 3: siznals at output monitors for various
compensator amplifier stages; e.: correction signal monitor; e.s: signal at
test input. The second stage of the compensator is shown as having variable
gain, which is a provision for adjusting the open-loop gain. The input labelled
“MANTUAL STEERING,” which under normal operation is the input for the
lock acquisition arrangement (see Fig. 5.3), is used to manually bring the
system wihtin the range of the sensor in the evaluation phase.
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for lock acquisition, as shown in Fig. 5.4.

2. Record the linear-to-nonlinear transition at one or several of the output
monitors shown in Fig. 5.4.

3. Analyze the above time record.

The tests will require an oscilloscope and a sufficiently fast transient

recorder.
The most likely causes of closed-loop failure are:

1. Closed-loop instability
2. Insufficient open loop gain

3. Insufficient actuator range

A short discussion of each of these follows.

Closed Lopp Instability
If the loop is closed and the system is steered manually, observing the sen-
sor output e, will indicate when the svstem comes within range; the sensor
output shows variation with time, within the known range for sensor output
voltages. If lock is not acquired at this point because of closed loop insta-
bility, the sensor output will show an oscillation which builds up to a point
where some amplifier in the system saturates, as shown in the example of
Fig. 5.5. A first quick diagnostic consists of changing the sign of the open-
loop gain by using the sign switch built into the compensator. If the cause of
instability was positive feedback, it should now be possible to close the loop.
If the loop appears to be working, changing sign should cause instability as
in Fig. 5.5.

If changing the sign does not help, there is a genuine closed-loop insta-
bility. In other words, the phase lag fot |L| = 1 is more than 180°. To
further investigate this possibility, one should attempt to set the sign cor-
rectly. Many times, this is not practically possible, and all the tests will
have to be carried out for both signs. In some cases, the frequency of the
oscillation is visibly different for the two signs settings. The correct sign then
probably corresponds to the switch setting where the oscillation frequency is
close to the nominal unity gain frequency of the FCS.
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Sensor output

Time

Figure 5.5: Buld-up of oscillation as a result of closed loop instability, as
seen at the sensor output. Saturation is visible at the right hand side of the
trace. Since the loop is closed, it is not obvious from the figure where in the
system saturation occurs. To locate the first amplifier to saturate, one has
to look at the output monitors downstream of the sensor.
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Assuming that the feedback sign is correctly set, the next thing to look for
is an incorrect overall gain value. The example shown in Fig. 5.6 illustrates
one such situation. Thephase lag at 10 kHz is ~ 35° less than 180°. Thus, if
the unity gain is at 10 kHz, as in the middle trace, the closed loop should be
stable. For both the upper and lower traces, however, unity gain occurs at
frequencies where the phase lag is higher than 180°, which will cause close-
loop instability. sometimes the specific design for L(f) is such that instability
can occur only when the gain is too high. In any event, if improper gain is the
cause for instability, both the dignostic and the remedy consist of changing
the overall gain by using the manual gain control included in the design of
the compensator.

If both changing the sign and changing the overall gain fail to eliminate
the istability, the designer is likely to have one of the following problems:

1. Unaccounted for dvnamics in the system causes additional phase lag.

2. Compensator as built induces more phase lag at unity gain than allowed
for in the design.

In either case one will have to perform a piece-by-piece measurement of
the open-loop gain L, followed by appropriate redesign.

Insufficient Open Loop Gain

If the system is free of instability, lock acquisition will occur oance the
free-runing variable z; has been steered within sensor range. In this mode,
the sensor output will be e, = A(z, — z,), where A is the sensor gain.
Disregarding noise, according to Eq. 1.2 this can be written:

T
= 5.10

If L is not high enough, e, maight exceed the range of the sensor for large
values of z;. Then tracking is lost, and the sensor output may become a flat
line, as in the example shown in Fig. 5.7. The immediate thing to try is to
increase the overall loop gain by using the gain control of the compensator.
This remedy is limited by:

e The limited range of any gain adjustment.
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Figure 5.6: Bode diagram for a system which goes unstable when the gain
is either increased or decreased from an intermediate value. The magnitude
curve in the middle crosses 0 dB (i. e. unity gain) at a frequency where the
phase shift is well under 180°, which makes the system stable, according to
the Bode criterion. The upper and lower magnitude curves cross 0 dB at
frequencies where the phase shift is well in excess of 180°, which makes the
system unstable.
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UPPER LIMIT OF SENSOR RANGE

LOWER LIMIT OF SENSOR RANGE

Figure 5.7: Time record of sensor output for a situation in which lock is lost
due to insufficient open-loop gain.

e Increasing the overall gain moves the unity gain frequency to higher
frequencies, so that the phase margin becomes lower and lower, untill
the system is rendered unstable.

If this simple remedy does not help, one will have to measure X;(f), the
spectrum of z;, while the system is tracking, and increase the gain selectively
around frequencies where X;(f) peaks. Methods for increasing the gain are
discussed in Section 6.

Insufficient Actuator Range

If tracking for extended time intervals fails even though the system is
stable and there is enough gain to keep the signal within the range of the
sensor, the prime suspect is a limitation in the range of the sensor. Indeed,
according to Eq. 1.2 the correction signal z. is approximately equal to the
free-runing variable z;, when L is high and noise is disregarded. Therefore,
with reference toig. 5.4, the actuator driver output is:

e = % (5.11)
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UPPER LIMIT OF ACTUATOR RANGE

LOWER LIMIT OF ACTUATOR RANGE

Figure 5.8: Time record of actuator driver output e, for a situation where
tracking fails as a result of insufficient actuator range.

If the free-runing variable becomes too large, the output of the actuator
driver will fail to increase enough for proper tracking, i. e. its final stage will
saturate, and tracking will be lost. An example of saturation at the driver
output is shown in Fig. 5.8. In many cases, e, will retain its saturated value
even after z; leaves the range of the sensor because of tracking failure,®
because of the high gain in the system which amplifies small DC offsets
beyond the output range of the actuator driver.

5.6.2 Measuring the Open-Loop Gain

Since the open-loop gain L is crucial in achieveing the specified system per-
formance, it is important to determine what its actual magnitude and phase
versus frequency are and compare them with the design values. With refer-
ence to Fig. 5.4, ideally one would open the switch SW, inject a sine-wave
at the input of G;, measure the corresponding sensor output and take their
ratio. Varying the frequency of the sine-wave over the band of interest would
yield the open-loop frequency response. This direct approach is impractical
in many cases, mainly because:

33jeading to the sensor flat-linig at zero
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e With the loop open (i. e. with the switch SW open), the free-runing
variable may be outside the range of the sensor, and thus no useful
signal would be present at the sensor output.

e The combined gain of the compensator and actuator driver may be
large enough to force the actuator driver output into quasi-permanent
saturation, whereas no change will be enforced on z; and thus no signal
would be present at the sensor output.

Neither of the two points above applies if the loop is closed, which is possible
only when there is a useful signal at the sensor output and if the actuator
driver is not saturated.

An open-loop gain measurement with the loop closed is described in what
follows.

A sine-wave ey With frequency f is injected at the test input of Gy,
the corresponding output e,(f) is measured and their ratio is calculated as
a function of frequency. When the loop is open:

€2

Ropen = [ = GQ (512)

etest] open—loop

The calculation of Rgeseq for closed-lop operation is silmilar to the deriva-
tion of Eq. 1.1, with the result:

€9 } _ GQ AG1G2 x; G2
€test | closed—loop 1+ L 1+ L €test 1+ L

Rclosed = [ (513)

where L = ABG1G2G3sH and the z; term was neglected assuming that egest
is large. L is obtained by comparing Egs. 5.12,5.13:

— Ropen

L=
Rclosed

~1 (5.14)

5.6.3 Measuring the Free-Runing Variable x;

At the beginig of the design process, the spectrum or other quantitative
descriptions of the free-runing variable are usually known with substantial
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uncertainty. Since the tracking performance of the system relies on z; sup-
pression by the loop gain, which is set by the designer to a certain magnitude,
it is important to make a reliable assessment of the size of z;.

According to Eq. 1.3, for high values of L the correction signal closely
follows the free-runing variable, z, ~ (z; — z,), up to noise terms. Since
z, = Be, (See Fig. 5.4), the free-runing variable z; can be calculated from:

z; = z, + Be, (5.15)

The input to the actuator, e, also called comand signal, is measured
directly with the loop closed. Tis measurement should be repeated under
a variety of conditions, in order to determine the upper limit X;(f) of the
spectrum of z;. X;(f) will henceforth serve as the worst case against which
the tracking performance will be evaluated.

5.6.4 Evaluating Tracking Performance

As indicated in Section 4.2, the tracking requirement consists of two compo-
nents:

e Maximum departure from reference.

e Tacking robustness, measured by the minimum amount of time the
system is expected to track continously.

Maximum departure from reference refers to the quality of tracking.
In some rare cases it is easy to see if tracking is appropriate. For the ex-
ample where a camera is required to track an aircraft, the system performs
adequately if the image of the flying plane is kept within the field of view of
the camera, which is easily ascertained. In most cases however, testing for
adequate tracking tends to be a more laborious process. Tracking error can
be evaluated by inspection of Fig. 1.1:.

ee(f)
A(f)

ee(f)

S TR (5.16)

+ n,

6(f) = leo(f) — 2 (f)] =

8(f) can be compared directly with the tracking requirement 7(f), if the
latter is given as a tracking error spectrum, as in Eq 4.1. If the tracking
requirement is given as a root-mean-square value, it should be compared to
the rms integral:
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A= [ [ e f)dfr (5.17)

If the sensor error n, is guaranteed to be small enough, 6(f) ~ e(f)/A(f).
In this case, since A(f) is known, tracking performance can be assessed
by simply measuring e (f) several times, under different conditions with the
loop closed, using these measurements to determine the upper limit E.(f) on
e.(f), then using Eq. 5.16 to evaluate 6(f). It should be stressed however that
unless a direct mesurement of n.(f) is carried out, this kind of “inside-the-
loop” tracking performance evaluation is dangerously unreliable, as it would
have to build on the belief that sensor error is small. While every effort has
possibly been made to design a sensor with low error, the purpose of testing
is to verify that the result is actually as good as desired. A more reliable test
protocol is strongly advocated. While it is not possible to prescribe a test
procedure that is satisfactory in all cases, because of the enormous variety
of tracking applications, one method which often works is to use a sensor
external to the feedback loop, as shown in Fig. 5.9. This method works if :

|nr;emt(f) << nr(f) (518)

In this case. tracking quality is estimated by measuring e;s. For example,
for a system designed to stabilize the temperature inside an enclosure, the
external sensor would be a thermometer which is more accurate than the
temperature sensor used in the loop.

Tracking robustness is easy to measure by letting the system acquire lock
and recording the actuator driver output e.. An obvious sign of robustness is
uninterrupted tracking for at least as long as the specification requires it, and
preferably for times 50%-100% longer. The record of e, should be compared
with the output range of the actuator driver.>* In a well designed system,
there is range to spare; one ad-hoc rule would be too make sure that e, is
within less than one third of the available range, most of the time.

34which is ideally just a little narrower than the corresponding actuator range.
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Figure 5.9: Use of an external sensor (shaded) for testing tracking perfor-
mance.

5.7 Lock Acquisition Efficiency

Testing the lock acquisition arrangement consists of tacking the system out
of lock and letting it re-acquire a number of times. If the system re-acquires
on its ovn within a reasonably short timespan,® every time, the design is
successful. In order to make the test meaningful, it is desirable that, every
time the system is taken out of lock, a different initial condition be estab-
lished, so that the entire range of initial conditions likely to be encountered
in practice is covered. For example, in the case of the frequency-stabilized
laser, every time lock is interrupted one would manually tune the frequency
of the laser to a different point in the interval between two resonances of
the reference resonator. Frequently encountered causes for difficulty in lock
acquisition are:

1. Unfavorable initial conditions. For example, in the case of the camera
trying to acquire an airplane, the target search pattern may be so fast,
that when the presence of the aircraft in the field of view is detected,
the FCS does not have enough power, i. e. gain, to stop the search
pattern before the target is lost. Possible remedies are:

- 354reasonable” needs to be defined for each concrete case.
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e Selection of a slower search pattern.

e Increasing the open loop gain L.

2. The presence of offsets in the electronics. Offsets cause the system
to lock away from the center of the sensor range. If offsets are large,
the system may tend to track at the very edge of the sensor range
and even small perturbations may be enough to push the system “over
the edge” and cause it to loose lock. Electronic offsets are often the
result of changes in operating temperature and may thus be the reason
for intermitent lock acquisition difficulties. The remedy is to carefully
analyze the specifications of the amplifiers used in the design of the
electronics and select those with sufficiently low temperature dependent

offsets.

5.8 Refining the system

After carrying out the tests described in Sections 5.6,5.7, the information
needed to make the system perform to specification is available. The areas
most likely to need improvement arelisted below.

1. The open-loop gain L may require:

e An increase in magnitude at certain frequencies, for adequate
tracking and easier lock acquisition. Methods for increasing L
are discussed in Section 6.

e An increase in phase margin, if “ringing” around the unity gain
frequency is observed, and if the measured open-loop gain shows
less than 30° phase margin.

2. If the range covered by the free-runing variable z; is almost as wide or
wider than the actuator range, the actuator selection will have to be
revisited. It is desirable that the actuator range be at least e. g. three

times the range of z;.

3. In order to ensure smooth and efficient lock acquisition,® it may be
necessary to:

3645 discussed earlier, lock acquisition is an issue only if the range of z; exceeds the
range of the sensor
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e Modify the search pattern.

e Redesign the electronics in order to reduce temperature-dependent
DC offsets.

e Increase the open-loop gain at certian frequency ranges.

Once all the changes are implemented, the system needs to be put again
through the tests discussed in Sections 5.6,5.7.

6 Increasing Loop Gain

6.1 The Need for High Bandwidth

6.2 Parallel Control Paths

6.2.1 The Need for Parallel Control Paths
6.2.2 Parallel Control Paths: System Stability
6.2.3 Bypass Configuration

6.2.4 Simultaneous Use of Several Actuators

7 Case Study: Laser Frequency Stabilization

by Serge Dubovitsky
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