LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO -CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Document LIGO-T980020-A - D 2/12/99

GDS REFLECTIVE MEMORY ORGANIZATION

Peter Fritschel, Mark Pratt, Daniel Sigg and Dave Barker

Distribution of this draft: DAQ and diagnostics system

This is an internal working note of the LIGO Project.

California Institute of Technology LIGO Project - MS 51-33 Pasadena CA 91125 Phone (818) 395-2129 Fax (818) 304-9834 E-mail: info@ligo.caltech.edu Massachusetts Institute of Technology LIGO Project - MS NW17-161 Cambridge, MA 01239 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

file /home/sigg/Detector/diagnostics/ISCInterface/DigitalTPTitle.fm - printed April 23, 1999

Table of Contents

1 INTRODUCTION AND OVERVIEW	2
1.1 DATA DEFINITION AREA EXTENSIONS	2
1.2 DATA AREA ORGANIZATION	3
2 DIGITAL SERVO TEST POINTS	4
2.1 TEST POINT INTERFACE	4
2.2 DIGITAL SUBSYSTEM TEST POINTS	5
2.2.1 LSC TPs	5
2.2.2 ASC Test Points	5
APPENDIX A TEST POINT LIST	8
APPENDIX B TEST POINT MANAGER	3
B.1 CONSTANTS1	3
B.2 API	3

1 INTRODUCTION AND OVERVIEW

This is a companion document to the "Data Acquisition System: Reflected Memory Network Design" (T980017-00) and details the organization of the part of the reflective memory which controlled by the GDS. One DAQ/GDS reflective memory ring is provided per interferometer (see Fig. 1 of T980017-00). The reflective memory is divided into a DAQ and a GDS section with a size of 2MB each (see Fig. 2 of T980017-00).

The reflective memory is subdivided into memory regions dedicated to specific data collection units (DCUs). Each DCU has a memory map which looks like:

following regions:

- interprocess communication area: Used to send messages and status information between DCUs and the DAQ system controller.
- data definition area: Used to describe the channels which are provided by the DCU.
- Data area:

Used to store the data of individual channels. The data area is divided into equal length memory block, each holding 1/16 sec worth of data.

The diagnostics system together with the ISC system define 6 separate digital data collection units (DDCUs):

- DDCU for LSC
- DDCU for ASC
- DDCU for the LSC excitation channels
- DDCU for the ASC excitation channels
- DDCU for the LSC test output channels
- DDCU for the ASC test output channels

The DDCU for ASC and LSC follow the exact same layout as the analog data collection units (ADCUs) and, hence, need no further explanation. DDCUs for excitation and test output channels introduce the concept of test points which allow the selection of a subset of all available test inputs and outputs of the digital servo systems.

1.1 DATA DEFINITION AREA EXTENSIONS

The basic concept of managing test points is that the data area is divided into a fixed number of channel slots which can be assigned to real channels on-the-fly. Exactly speaking, a test point configuration can only change at the GPS 1 sec boundary. To simplify the test point selection each test point has a unique number identifier. The data definition area is the divided into two regions: (*i*) a channel information area which is identical to the ones found in other DCUs with the exception that the channel names can change, and (*ii*) a lookup table which is located at the very end of the data definition area (last 256 bytes). At start-up the DAQ configuration manager loads the data definition area with a dummy set of channels and zeros out the lookup table; this automatically disables all test points.

Test points are the selected through a test point manager. The test point manager exports a test point API by implementing an rpc (remote procedure call) server. The test point manager will

update the data definition area in the 8th epoch¹ of every second. There is no notification when this happens, so each subsystem containing digital test points must update its internal data structures once every second. This information becomes valid for the next one second at the beginning of the 10 epoch and can be read from reflective memory until (and including) the 4 epoch of the second in which the test point information is valid. The test point manager updates both the channel information area and the lookup table. Additionally, it will update the channel count in the IPC area to reflect the actual number of used test points. The test point manager guarantees that test points are stored in a continuous data block (no holes). An empty channel name and a zero in the test point index indicates in inactive channel.

The lookup table is organized as a simple array of short integers (16 bit). Each entry holds the test point identification number of the corresponding data slot, i.e. table index 0 corresponds to the first slot, index 1 to the second slot, and so on. A test point identifier of zero indicates an inactive slot. The table length is determined by the number of data slots which are available in the DCU: 7 for LSC excitation channels, 15 for LSC test outputs, 28 for ASC excitation channels, and 60 for ASC test outputs.

A list of valid test point names and identifiers can be found in Section 2. A channel information structure (dataInfo) contains a 'chNum' field which is used by ADCUs to identify the ADC channel number. DDCUs with test points use this field to store the test point identifier.

1.2 DATA AREA ORGANIZATION

The data area is divided into 8 equally sized data blocks each containing one epoch worth of data. The first block contains data corresponding the 0th or the 8th epochs, the second one contains data of the 1st or 9th epoch, and so on. This is also valid for test point DDCUs where the first data block contains either data obtained by the ISC digital servo during the first epoch, or data which has to be added to one of the excitation points during the first epoch. This requires that the excitation engine writes the excitation channel data of the 0th epoch no later than the 14th epoch of the previous second. This allows the ISC servo control to read the data in the 15th epoch and make it ready for adding in the 0th epoch. On the other hand test output data of the 0th epoch will be written to the corresponding data block in the 1st epoch. Ideally, the data acquisition system reads both the excitation and the test output channels in the 2nd epoch. The excitation channel data of the 0th epoch. The excitation channel data of the 0th epoch. The excitation channel data of the 0th epoch. The excitation system reads both the epoch is then valid until the end of the 4th epoch, after it will be overwritten by data for the 8th epoch. Test output data of the 0th epoch will be valid until the end of the 8th epoch.

Within each data block the test point channel data is stored continuously, staring at slot 0. Channel data consists of a integer (32 bits) describing the validity of the channel, and an array of data points in single precision floating point format. For LSC test points the array length is 1024 points, whereas for ASC test points it is 128 points. This leads to a total length of 4100 bytes and 516 bytes, respectively.

^{1.} A second is divided into 16 epochs, numbered from 0 to 15.

2 DIGITAL SERVO TEST POINTS

Test points (TP) are internal servo signals of digital subsystems and can be outputs or inputs. Outputs are used for reading out internal servo signals; they are written by the digital subsystem and read out by the DAQS. Inputs are used to inject excitations signals; they are written by the GDS excitation system and are read by both the digital subsystem and the DAQS.

Digital servo test points are used to perform the following functions:

- 1. Measure closed loop gains. These measurements are used for:
 - determination of phase and gain margins
 - adjustment of gains to achieve intended unity gain frequencies
 - diagnostic tests that make estimates of noise couplings (frequency noise, e.g.)
 - calibrations
- 2. Strain calibration, performed with various types of excitation:
 - swept sine
 - fixed sine(s)
 - pseudo-random noise
- 3. Measure cross-couplings:
 - length-length
 - length-angle
- 4. Measure sensing matrices:
 - alignment sensing
 - length sensing

2.1 TEST POINT INTERFACE

All digital test points are given an ID number and a corresponding dataInfo structure. The dataInfo structure definition follows that given in T980017-00, with the extensions mentioned in Section 1.2. Zero is an invalid TP ID. The ID numbers are grouped by subsystem and are separated into inputs and outputs; blocks of ID numbers are assigned as follows:

- 1 99: LSC; test inputs
- 100 499: LSC; test outputs
- 500 699: ASC; test inputs
- 700 1499: ASC; test outputs
- 2000 2099: excitation system DAC channels
- 3000 3099: excitation signals of stand-alone signal generators

The channel names and the ID numbers for all test points are given in Table 1 in Appendix A.

There are many more (potential) test points in digital subsystems than will ever be used simultaneously, so we define a (re)configurable subset which is deemed large enough to accommodate maximum usage of simultaneous test points:

- Rates: TPs can either be 16384 S/sec (16k) or 2048 S/sec (2k).
- Number: the TP subset allows a maximum of 16 16k and 64 2k TP channels.

Test point subsets are configured through a lookup table, which will list the TP ID#s for each data channel in the index. The size of the index is DCU dependent; unused channels are marked with 0.

2.2 DIGITAL SUBSYSTEM TEST POINTS

Loop gain measurements during servo operation can generally be made by forming the ratio between the signal after a summing junction and the injected test signal, giving 1/(1 + G), where G is the total open loop gain. In some cases, such as when correcting an error signal spectrum for loop gain, the value of (1 + G) is desired. In other cases the value of G itself is desired; while this can be calculated from the above measurement, it can be directly measured by forming the ratio between the signals before and after the summing junction. For each sensed degree-of-freedom in a MIMO (multiple-input multiple-output) digital servo, we thus include a TP input with readouts before and after the summing point (typically the normal DAQ channel for that degree-of-freedom provides the readout before the summing point, and a TP output gives it after). Excitations to perform the other types of measurements listed in the Introduction can also be applied at these TP inputs. It is also useful to be able to excite degrees-of-freedom after the servo functions are applied, and TP inputs are supplied here in both the sensing and the individual mirror bases. Note that because the sensing basis is different from the mirror basis for each of the subsystems, there is generally no single test input that allows excitation of a single mirror within the servo band. However by applying an excitation simultaneously to several test inputs in the proper ratio, a given single optic can be stimulated.

For the two digital subsystems, the individual raw sensor signals are available as test points; these are the outputs from each photodetector channel, demodulated in two, (nearly)-orthogonal phases. Each signal corresponding to a given degree-of-freedom is provided to the DAQS for writing to frames. In between the signal types may be software for summing and/or mixing the two phases of the individual raw sensor signals; this is indicated by the box labeled Σ - ϕ in Figures 2–4.

2.2.1 LSC TPs

A block diagram of the digital portion of the LSC servo is shown in Figure 1. It shows the test points as well as the normal sensor and control outputs that the DAQS always stores to disk. In the LSC there are some instances of more than one control path for a given degree-of-freedom (in addition to the straightforward sensor-to-mirror basis rotation performed on all channels). Where there is a split in the control path, test inputs are inserted in each path at the split, and a test output is included just before the split. These allow for convenient measurement of the (open) loop gain of the individual paths (in combination with the total closed loop gain measurement).

2.2.2 ASC Test Points

A block diagram of the digital portion of the ASC servo is shown in Figure 2. The block diagram shows the current conception of how the wavefront sensor signals will be processed, and the test points have been chosen in this context. If some of the servo filters and rotation matrices are done differently, the test points may change.

Figure 1: Digital portion of LSC servo, showing ID#s for test points.

Note: all TPs are pairs (for pitch & yaw), unless otherwise noted.

Figure 2: Digital portion of ASC servo, showing ID#s for test points (except for the raw sensor signals, only the even TP IDs, corresponding to the yaw signals, are shown).

APPENDIX A TEST POINT LIST

Test points which are currently supported are shown in bold.

Sys.	Sub.	ID #	TPName	buffer	Description
		0			invalid
H1	LSC	1	GW_EXC	16k	Test In, GW (L-) error signal
H1	LSC	2	REF_I_EXC	16k	Test In, Common arm (L+) error signal
H1	LSC	3	POX_Q_EXC	16k	Test In, Michelson (I-) error signal
H1	LSC	4	POX_I_EXC	16k	Test In, Recycling cav (I+) error signal
H1	LSC	5	DARM_EXC	16k	Test In, GW (L-) control signal
H1	LSC	6	CARM_EXC	16k	Test In, Comm arm (TM damping) control signal
H1	LSC	7	MICH3_EXC	16k	Test In, Michelson correction control signal
H1	LSC	8	MICH1_EXC	16k	Test In, Michelson beamsplitter control signal
H1	LSC	9	MICH2_EXC	16k	Test In, Mich. TM damping control signal
H1	LSC	10	REC1_EXC	16k	Test In, Rec cav, rec mirror control signal
H1	LSC	11	REC2_EXC	16k	Test In, Rec cav, TM damping control signal
H1	LSC	12	ETMX_EXC	16k	Test In, End Test Mass, X arm
H1	LSC	13	ETMY_EXC	16k	Test In, End Test Mass, Y arm
H1	LSC	14	ITMX_EXC	16k	Test In, Input Test Mass, X arm
H1	LSC	15	ITMY_EXC	16k	Test In, Input Test Mass, Y arm
H1	LSC	16	BS_EXC	16k	Test In, Beamsplitter
H1	LSC	17	RM_EXC	16k	Test In, Recycling mirror
H1	LSC	100	AS1_I	16k	anti-symmetric port, diode 1, I-phase
H1	LSC	101	AS1_Q	16k	anti-symmetric port, diode 1, Q-phase
H1	LSC	102	AS2_I	16k	anti-symmetric port, diode 2, I-phase
H1	LSC	103	AS2_Q	16k	anti-symmetric port, diode 2, Q-phase
H1	LSC	104	AS3_I	16k	anti-symmetric port, diode 3, I-phase
H1	LSC	105	AS3_Q	16k	anti-symmetric port, diode 3, Q-phase
H1	LSC	106	AS4_I	16k	anti-symmetric port, diode 4, I-phase
H1	LSC	107	AS4_Q	16k	anti-symmetric port, diode 4, Q-phase
H1	LSC	108	AS5_I	16k	anti-symmetric port, diode 5, I-phase
H1	LSC	109	AS5_Q	16k	anti-symmetric port, diode 5, Q-phase
H1	LSC	110	AS6_I	16k	anti-symmetric port, diode 6, I-phase
H1	LSC	111	AS6_Q	16k	anti-symmetric port, diode 6, Q-phase
H1	LSC	112	RFL1_I	16k	reflection port, diode 1, I-phase
H1	LSC	113	REF1_Q	16k	reflection port, diode 1, Q-phase
H1	LSC	114	REF2_I	16k	reflection port, diode 2, I-phase
H1	LSC	115	REF2_Q	16k	reflection port, diode 2, Q-phase

Sys.	Sub.	ID #	TPName	buffer	Description
H1	LSC	116	POX1_I	16k	RC pick-off from ITM X, I-phase
H1	LSC	117	POX1_Q	16k	RC pick-off from ITM X, Q-phase
H1	LSC	118	POY1_I	16k	RC pick-off from ITM Y, I-phase
H1	LSC	119	POY1_Q	16k	RC pick-off from ITM Y, Q-phase
H1	LSC	120	GW_TO	16k	Test Out, GW (L-) error signal (after sum junction)
H1	LSC	121	REF_TO	16k	Test Out, Com arm (L+) error sig (after sum junc.)
H1	LSC	122	POX_Q_TO	16k	Test Out, Mich (I-) error signal (after sum junction)
H1	LSC	123	POX_I_TO	16k	Test Out, Rec cav (I+) error sig (after sum junc.)
H1	LSC	124	MICH3_TO	16k	Test Out, Michelson correction control signal
H1	LSC	125	MICH2_TO	16k	Test Out, Mich. TM damping control signal
H1	LSC	126	REF2_TO	16k	Test Out, Rec cav TM damping control signal
H1	LSC	127	ETMX_TO	16k	Test Out, End Test Mass, X arm (after sum junc.)
H1	LSC	128	ETMY_TO	16k	Test Out, End Test Mass, Y arm (after sum junc.)
H1	LSC	129	ITMX_TO	16k	Test Out, Input Test Mass, X arm (after sum junc.)
H1	LSC	130	ITMY_TO	16k	Test Out, Input Test Mass, Y arm (after sum junc.)
H1	LSC	131	BS_TO	16k	Test Out, Beamsplitter (after sum junc.)
H1	LSC	132	RM_TO	16k	Test Out, Recycling mirror (after sum junc.)
H1	ASC	500	WFS1_QY1_EXC	2k	Test In, wavefront sensor 1 yaw error signal
H1	ASC	501	WFS1_QP1_EXC	2k	Test In, wavefront sensor 1 pitch error signal
H1	ASC	502	WFS2_IY1_EXC	2k	Test In, wavefront sensor 2a yaw error signal
H1	ASC	503	WFS2_IP1_EXC	2k	Test In, wavefront sensor 2a pitch error signal
H1	ASC	504	WFS2_QY1_EXC	2k	Test In, wavefront sensor 2a yaw error signal
H1	ASC	505	WFS2_QP1_EXC	2k	Test In, wavefront sensor 2b pitch error signal
H1	ASC	506	WFS3_IY1_EXC	2k	Test In, wavefront sensor 3 yaw error signal
H1	ASC	507	WFS3_IP1_EXC	2k	Test In, wavefront sensor 3 pitch error signal
H1	ASC	508	WFS4_IY1_EXC	2k	Test In, wavefront sensor 4 yaw error signal
H1	ASC	509	WFS4_IP1_EXC	2k	Test In, wavefront sensor 4 pitch error signal
H1	ASC	510	QPDX_Y1_EXC	2k	Test In, X-arm quad. pos. sensor yaw error signal
H1	ASC	511	QPDX_P1_EXC	2k	Test In,X-arm quad. pos. sensor pitch error signal
H1	ASC	512	QPDY_Y1_EXC	2k	Test In, Y-arm quad. pos. sensor yaw error signal
H1	ASC	513	QPDY_P1_EXC	2k	Test In,Y-arm quad. pos. sensor pitch error signal
H1	ASC	514	WFS1_QY2_EXC	2k	Test In, wavefront sensor 1 yaw control signal
H1	ASC	515	WFS1_QP2_EXC	2k	Test In, wavefront sensor 1 pitch controlr signal
H1	ASC	516	WFS2_IY2_EXC	2k	Test In, wavefront sensor 2a yaw control signal
H1	ASC	517	WFS2_IP2_EXC	2k	Iest In, wavefront sensor 2a pitch control signal
H1	ASC	518	WFS2_QY2_EXC	2k	lest In, wavefront sensor 2a yaw control signal
H1	ASC	519	WFS2_QP2_EXC	2k	Iest In, wavefront sensor 2b pitch control signal
H1	ASC	520	WES3_IY2_EXC	2k	lest In, wavefront sensor 3 yaw control signal
H1	ASC	521	WFS3_IP2_EXC	2k	lest In, wavefront sensor 3 pitch control signal
H1	ASC	522	WFS4_IY2_EXC	2k	Test In, wavefront sensor 4 yaw control signal

Sys.	Sub.	ID #	TPName	buffer	Description
H1	ASC	523	WFS4_IP2_EXC	2k	Test In, wavefront sensor 4 pitch control signal
H1	ASC	524	QPDX_Y2_EXC	2k	Test In, X-arm quad. pos. sensor yaw control sig.
H1	ASC	525	QPDX_P2_EXC	2k	Test In,X-arm quad. pos. sensor pitch control sig.
H1	ASC	526	QPDY_Y2_EXC	2k	Test In, Y-arm quad. pos. sensor yaw control sig.
H1	ASC	527	QPDY_P2_EXC	2k	Test In, Y-arm quad. pos. sensor pitch control sig.
H1	ASC	528	ETMX_Y_EXC	2k	Test In, End test mass, X arm, yaw angle
H1	ASC	529	ETMX_P_EXC	2k	Test In, End test mass, X arm, pitch angle
H1	ASC	530	ETMY_Y_EXC	2k	Test In, End test mass, Y arm, yaw angle
H1	ASC	531	ETMY_P_EXC	2k	Test In, End test mass, Y arm, pitch angle
H1	ASC	532	ITMX_Y_EXC	2k	Test In, Input test mass, X arm, yaw angle
H1	ASC	533	ITMX_P_EXC	2k	Test In, Input test mass, X arm, pitch angle
H1	ASC	534	ITMY_Y_EXC	2k	Test In, Input test mass, Y arm, yaw angle
H1	ASC	535	ITMY_P_EXC	2k	Test In, Input test mass, Y arm, pitch angle
H1	ASC	536	RM_Y_EXC	2k	Test In, Recycling mirror, yaw angle
H1	ASC	537	RM_P_EXC	2k	Test In, Recycling mirror, pitch angle
H1	ASC	538	BS_Y_EXC	2k	Test In, Beamsplitter, yaw angle
H1	ASC	539	BS_P_EXC	2k	Test In, Beamsplitter, pitch angle
H1	ASC	540	IB_Y_EXC	2k	Test In, Input beam, yaw angle
H1	ASC	541	IB_P_EXC	2k	Test In, Input beam, pitch angle
H1	ASC	700	WFS1_I1	2k	wavefront sensor 1, channel 1, I-phase
H1	ASC	701	WFS1_I2	2k	wavefront sensor 1, channel 2, I-phase
H1	ASC	702	WFS1_I3	2k	wavefront sensor 1, channel 3, I-phase
H1	ASC	703	WFS1_I3	2k	wavefront sensor 1, channel 4, I-phase
H1	ASC	704	WFS1_Q1	2k	wavefront sensor 1, channel 1, Q-phase
H1	ASC	705	WFS1_Q2	2k	wavefront sensor 1, channel 2, Q-phase
H1	ASC	706	WFS1_Q3	2k	wavefront sensor 1, channel 3, QI-phase
H1	ASC	707	WFS1_Q4	2k	wavefront sensor 1, channel 4, Q-phase
H1	ASC	708	WFS2_I1	2k	wavefront sensor 2, channel 1, I-phase
H1	ASC	709	WFS2_I2	2k	wavefront sensor 2, channel 2, I-phase
H1	ASC	710	WFS2_I3	2k	wavefront sensor 2, channel 3, I-phase
H1	ASC	711	WFS2_I4	2k	wavefront sensor 2, channel 4, I-phase
H1	ASC	712	WFS2_Q1	2k	wavefront sensor 2, channel 1, Q-phase
H1	ASC	713	WFS2_Q2	2k	wavefront sensor 2, channel 2, Q-phase
H1	ASC	714	WFS2_Q3	2k	wavefront sensor 2, channel 3, Q-phase
H1	ASC	715	WFS2_Q4	2k	wavefront sensor 2, channel 4, Q-phase
H1	ASC	716	WFS3_I1	2k	wavefront sensor 3, channel 1, I-phase
H1	ASC	717	WFS3_I2	2k	wavefront sensor 3, channel 2, I-phase
H1	ASC	718	WFS3_I3	2k	wavefront sensor 3, channel 3, I-phase
H1	ASC	719	WFS3_I4	2k	wavefront sensor 3, channel 4, I-phase
H1	ASC	720	WFS3_Q1	2k	wavefront sensor 3, channel 1, Q-phase
H1	ASC	721	WFS3_Q2	2k	wavefront sensor 3, channel 2, Q-phase

Sys.	Sub.	ID #	TPName	buffer	Description
H1	ASC	722	WFS3_Q3	2k	wavefront sensor 3, channel 3, Q-phase
H1	ASC	723	WFS3_Q4	2k	wavefront sensor 3, channel 4, Q-phase
H1	ASC	724	WFS4_I1	2k	wavefront sensor 4, channel 1, I-phase
H1	ASC	725	WFS4_I2	2k	wavefront sensor 4, channel 2, I-phase
H1	ASC	726	WFS4_I3	2k	wavefront sensor 4, channel 3, I-phase
H1	ASC	727	WFS4_I4	2k	wavefront sensor 4, channel 4, I-phase
H1	ASC	728	WFS4_Q1	2k	wavefront sensor 4, channel 1, Q-phase
H1	ASC	729	WFS4_Q2	2k	wavefront sensor 4, channel 2, Q-phase
H1	ASC	730	WFS4_Q3	2k	wavefront sensor 4, channel 3, Q-phase
H1	ASC	731	WFS4_Q4	2k	wavefront sensor 4, channel 4, Q-phase
H1	ASC	732	WFS5_I1	2k	wavefront sensor 5, channel 1, I-phase
H1	ASC	733	WFS5_I2	2k	wavefront sensor 5, channel 2, I-phase
H1	ASC	734	WFS5_I3	2k	wavefront sensor 5, channel 3, I-phase
H1	ASC	735	WFS5_I4	2k	wavefront sensor 5, channel 4, I-phase
H1	ASC	736	WFS5_Q1	2k	wavefront sensor 5, channel 1, Q-phase
H1	ASC	737	WFS5_Q2	2k	wavefront sensor 5, channel 2, Q-phase
H1	ASC	738	WFS5_Q3	2k	wavefront sensor 5, channel 3, Q-phase
H1	ASC	739	WFS5_Q4	2k	wavefront sensor 5, channel 4, Q-phase
H1	ASC	740	WFS1_IY	2k	wavefront sensor 1, yaw signal, I-phase
H1	ASC	741	WFS1_IP	2k	wavefront sensor 1, pitch signal, I-phase
H1	ASC	742	WFS3_QY	2k	wavefront sensor 3, yaw signal, Q-phase
H1	ASC	743	WFS3_QP	2k	wavefront sensor 3, pitch signal, Q-phase
H1	ASC	744	WFS4_QY	2k	wavefront sensor 4, yaw signal, Q-phase
H1	ASC	745	WFS4_QP	2k	wavefront sensor 4, pitch signal, Q-phase
H1	ASC	746	WFS5_IY	2k	wavefront sensor 5, yaw signal, I-phase
H1	ASC	747	WFS5_IP	2k	wavefront sensor 5, pitch signal, I-phase
H1	ASC	748	WFS5_QY	2k	wavefront sensor 5, yaw signal, Q-phase
H1	ASC	749	WFS5_QP	2k	wavefront sensor 5, pitch signal, Q-phase
H1	ASC	750	WFS1_QY1_TO	2k	Test Out, wavefront sensor 1 yaw error signal
H1	ASC	751	WFS1_QP1_TO	2k	Test Out, wavefront sensor 1 pitch error signal
H1	ASC	752	WFS2_IY1_TO	2k	Test Out, wavefront sensor 2a yaw error signal
H1	ASC	753	WFS2_IP1_TO	2k	Test Out, wavefront sensor 2a pitch error signal
H1	ASC	754	WFS2_QY1_TO	2k	Test Out, wavefront sensor 2a yaw error signal
H1	ASC	755	WFS2_QP1_TO	2k	Test Out, wavefront sensor 2b pitch error signal
H1	ASC	756	WFS3_IY1_TO	2k	Test Out, wavefront sensor 3 yaw error signal
H1	ASC	757	WFS3_IP1_TO	2k	Test Out, wavefront sensor 3 pitch error signal
H1	ASC	758	WFS4_IY1_TO	2k	Test Out, wavefront sensor 4 yaw error signal
H1	ASC	759	WFS4_IP1_TO	2k	Test Out, wavefront sensor 4 pitch error signal
H1	ASC	760	WFS1_QY2_TO	2k	Test Out, wavefront sensor 1 yaw control signal
H1	ASC	761	WFS1_QP2_TO	2k	Test Out, wavefront sensor 1 pitch control signal
H1	ASC	762	WFS2_IY2_TO	2k	lest Out, wavefront sensor 2a yaw control signal
H1	ASC	763	WFS2_IP2_TO	2k	lest Out, wavefront sensor 2a pitch control signal
H1	ASC	764	WFS2_QY2_TO	2k	Test Out, wavefront sensor 2a yaw control signal

Sys.	Sub.	ID #	TPName	buffer	Description
H1	ASC	765	WFS2_QP2_TO	2k	Test Out, wavefront sensor 2b pitch control signal
H1	ASC	766	WFS3_IY2_TO	2k	Test Out, wavefront sensor 3 yaw control signal
H1	ASC	767	WFS3_IP2_TO	2k	Test Out, wavefront sensor 3 pitch control signal
H1	ASC	768	WFS4_IY2_TO	2k	Test Out, wavefront sensor 4 yaw control signal
H1	ASC	769	WFS4_IP2_TO	2k	Test Out, wavefront sensor 4 pitch control signal
H1	ASC	770	QPDX_1	2k	quadrant position sensor, channel 1, X arm
H1	ASC	771	QPDX_2	2k	quadrant position sensor, channel 2, X arm
H1	ASC	772	QPDX_3	2k	quadrant position sensor, channel 3, X arm
H1	ASC	773	QPDX_4	2k	quadrant position sensor, channel 4, X arm
H1	ASC	774	QPDY_1	2k	quadrant position sensor, channel 1, Y arm
H1	ASC	775	QPDY_2	2k	quadrant position sensor, channel 2, Y arm
H1	ASC	776	QPDY_3	2k	quadrant position sensor, channel 3, Y arm
H1	ASC	777	QPDY_4	2k	quadrant position sensor, channel 4, Y arm
H1	ASC	778	QPDX_Y1_TO	2k	Test Out, X-arm QPD yaw error signal
H1	ASC	779	QPDX_P1_TO	2k	Test Out, X-arm QPD pitch error signal
H1	ASC	780	QPDY_Y1_TO	2k	Test Out, Y-arm QPD yaw error signal
H1	ASC	781	QPDY_P1_TO	2k	Test Out, Y-arm QPD pitch error signal
H1	ASC	782	QPDX_Y2_TO	2k	Test Out, X-arm QPD yaw control signal
H1	ASC	783	QPDX_P2_TO	2k	Test Out, X-arm QPD pitch control signal
H1	ASC	784	QPDY_Y2_TO	2k	Test Out, Y-arm QPD yaw control signal
H1	ASC	785	QPDY_P2_TO	2k	Test Out, Y-arm QPD pitch control signal
H1	LSC	2000	MOD_1_EXC	16k	modulation input of rf generator, sidebands
H1	LSC	2001	MOD_2_EXC	16k	modulation input of rf generator, non-res. SBs
H1	LSC	2002	MOD_3_EXC	16k	modulation input of rf generator, MC sidebands
H1	100	2003	MC_I_EXC	16k	modecleaner error signal offset
H1	100	2004	MC_L_EXC	16k	modecleaner length offset
H1	100	2005	MC_1_EXC	16k	after servo split, MC path
H1	100	2006	MC_2_EXC	16k	after servo split, laser path
H1	100	2007	WFS1_Y_EXC	16k	MC WFS 1, yaw offset
H1	100	2008	WFS1_P_EXC	16k	MC WFS 1, pitch offset
H1	100	2009	WFS2_Y_EXC	16k	MC WFS 2, yaw offset
H1	100	2010	WFS2_P_EXC	16k	MC WFS 2, pitch offset
H1	100	2011	IB1_Y_EXC	16k	input beam PZT 1, yaw offset
H1	100	2012	IB1_P_EXC	16k	input beam PZT 1, pitch offset
H1	100	2013	IB2_Y_EXC	16k	input beam PZT 2, yaw offset
H1	100	2014	IB2_P_EXC	16k	input beam PZT 2, pitch offset
H1	100	2015	MMT1_EXC	16k	mode matching mirror 1 offset
H1	100	2016	MMT2_EXC	16k	mode matching mirror 2 offset
H1	100	2017	MMT3_EXC	16k	mode matching mirror 3 offset
H1	PSL	2018	AOM_F_EXC	16k	laser frequency offset, AOM

Sys.	Sub.	ID #	TPName	buffer	Description
H1	PSL	2019	PWR_1_EXC	16k	laser power modulation
H1	PSL	2020	PMC_I_EXC	16k	pre-mode cleaner offset
H0	GDS	2021	LVEA1_TI1_EXC	16k	temporary test input, LVEA 4K
H0	GDS	2022	LVEA1_TI2_EXC	16k	temporary test input, LVEA 4K
H0	GDS	2023	LVEA1_TI3_EXC	16k	temporary test input, LVEA 4K
H0	GDS	2024	LVEA1_TI4_EXC	16k	temporary test input, LVEA 4K
H1	LSC	2100	ETMX_CAL_EXC	16k	calibration signal ETMX
H0	GDS	2101	EX_TI1_EXC	16k	temporary test input, X end station
H0	GDS	2102	EX_TI2_EXC	16k	temporary test input, X end station
H0	GDS	2103	EX_TI3_EXC	16k	temporary test input, X end station
H1	LSC	2200	ETMY_CAL_EXC	16k	calibration signal ETMY
H0	GDS	2101	EY_TI1_EXC	16k	temporary test input, Y end station
H0	GDS	2102	EY_TI2_EXC	16k	temporary test input, Y end station
H0	GDS	2103	EY_TI3_EXC	16k	temporary test input, Y end station

APPENDIX B TEST POINT MANAGER

B.1 CONSTANTS

Useful constants and macros for dealing with the reflective memory layout of test point DDCUs are defined in 'rmorg.h'. More detailed information can be found in the corresponding web page.

B.2 API

The test point API is defined in the 'testpoint.h' header file. This API provides functions to reserve and activate test points, functions to remove test points, and functions to query the configuration of the test point manager. On a CPU which has direct access to reflective memory the test point information of active test points is read in directly, on all other machines the information is obtained from the test point manager through remote procedure calls. Requesting and removing test points is always done through the test point manager. More detailed information can be found in the corresponding web page.