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Characterization of the temporal filtering of an
empty BSC of magnetic fields

S. Lefranc

Abstract

At the present time, the LIGO gravitational wave detector is in a final phase of construc-
tion. After explaining what is a gravitational wave and theirs possible sources, I will
present the LIGO detector and its limitation. Many noise source have been identified,
and, due to the choice of  permanent magnets to control test mass motion with sufficient
bandwidth and strenght, it appears that the magnetic field fluctuations due to  internal
(electronic systems) and external (thunderstroms) origin could be a possible source of
noise, and so, generate pertubations. In order to verify this, I have made measurements
inside the BSC of a time varying magnetic field, generated outside, in order to find the
time-domain filtering of the BSC and to evaluate the field gradient due to the BSC.

Keywords: LIGO interferometric detector, magnetic noise.
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1.   Introduction

Maybe in a near future some humans will visit other stars, and why not other, gal-
axies using today Science-Fiction technologies. But meanwhile the day a such travel will
be possible, we must comtemplate the stars from very far away and search by any ways
to pick-up the signal they send. The elderly had theirs eyes to observe and made very
slow conceptual or technical progress (with respect to the progress made in the 20th cen-
tury). Theirs theory tried to explain what they saw. Now there is a lot of theory and the
search of a signal as little as it can be, confirm, modify or force them to disappear.

The theory of General Relativity is widely celebrated and often verified with suc-
cess. The main idea of Einstein was to show that the laws of Physics were the same
everywhere. The gravitational wave idea come from this new conception of the Law of
Nature. At the present time the only messenger of the information of the universe is the
photons, particles associated with the electromagnetic wave. Another particle could be a
good messenger, the graviton, associated with the gravitational wave. It is the purpose of
LIGO to detect, not the gravitons, but the effect of the gravitational waves on free masses

The Laser Interferometer Gravitational wave Observatory (LIGO) will be operat-
ing soon. Due to the tiny variation of distance it must detect, this detector is sensitive to a
lot of “noise”. To control the displacement of test masses an electromagnet actuator was
choosen which consists of permanent magnets attached to the test mass interacted with
fixed coils which carry control current. This choice could lead us to a new kind of
“noise”, the one due to the magnetic field caused by an external origin (thunderstrom for
exemple). So my task here was to characterize the response of the BSC (Basic Symmet-
ric Chamber) to a time varying field generated outside and determine the magnetic field
gradient due to the BSC. It is interesting to present some theory about gravitational
waves and theirs sources, as well as LIGO detectors and its noise limitation.

 Before begining the measurements, some preparation had to be completed. First
I  made a magnetic map of the DC field around the BSC. There have been done some
modifications in the building to allow the construction of this intereferometer, and there
was a high magnetic area before, so the floor was magnetized. After having a better idea
of the repartition of the magnetic field around the BSC, I had learned how use a Dynamic
Signal Analyzer and  established an experimental protocol in order to figure out the best
way to generate a field outside the tank that will be strong enough to be measured inside.
Some experiments were made in order to have a good idea of what was measured, and it
lead me to some modifications in my initial protocol. After modifying my devices to
allow them to work in a class room of class 100, I have made the measurements. At last I
interpret them in order to find the magnetic field gradient due to the BSC.



2.   Theoretical aspect of Gravitational Waves

2.1   Introduction

As the same way as Special Relativity asked for a formulation of the Laws of
Nature independent of the Galileo frame and a constant speed-light, the General Relativ-
ity is based on two principles: the independance of the Laws of Nature with respect to
any frames, and the equivalence between inertial and gravitational masses.

Just as Special Relativity liberated from the notion of ether, General Relativity lib-
erates from the gravitational force, stating the equivalence between inertial and gravita-
tional masses. And the easiest way to consider this equivalence is to assume that the
gravitational field curves space. Thus a test mass submissive to it is a mass in free fall
along a geodesic of the curve space. Introducing this new notion, Einstein introduced at
the same time the notion of gravitational wave, because, as each mass distorting space, if
this mass is accelerated, it will creates ripples which propagate.

Then, as any mass curves space-time, we can assume that if this mass oscillates,
for example at the end of a spring, it will distort space-time periodically, and this defor-
mations will propagate as a wave on a string. These ripples will be attenuating during
theirs displacement like ripples on a lake.

2.2   Gravitational Waves

2.2.1   Weak field approximation

One of the main problem about gravitational waves in particular, and the General
Relativity in general is the nonlinearity of Einstein’s equations, e.g. the impossibility to
exactly solve them in almost every case. As each parts of the universe possess a non-null
energy density, it will create a gravitational field, which modify, so a curvature of space-
time. But this field contains energy that is also a source of gravity. Likewise the gravita-
tional waves carry energy and then creates itself a gravitational field, which modify the
gravitational wave. There is self-interaction and the phenomenon is nonlinear.

One way to solve this problem is to be very far away from the source and consider
that the pertubation of the metric due to the gravitational wave is enough small that the
problem could be linearised. In this weak field limit, the metric could be approximated as

,                                       (eq. 1)

where  is the Minkowski metric. The weak-field Einstein equations in vaccum then
take the form (with a suitable choice of gauge)

gµν ηµν hµν+≈ hµν 1«

ηµν



                                          (eq. 2)

This is clearly a wave equation and the solution can be written in terms of a traveling
plane wave:

                                            (eq. 3)

provided  that satisfies . With a further choice of gauge known as the trans-
verse-traceless gauge, the compoments of the (polarization) tensor are much constrained.
For a frame in which the wave is traveling in thez direction, the origin of the adjectives
“transverse-traceless” becomes clear, as the tensor takes the form:

                                               (eq. 4)

The above solution describes a quadrupole wave and has a particular simple physical
interpretation (see fig. 1): Let’s assume two free masses are placed at position  and
(y=0) and a gravitational wave with + polarization is propagating along thez-axis, then
the free masses will stay fixed at their coordinate positions, but the space in between, and
therefore the distance between  and , will expand and shrink at the frequency of the
gravitational wave. Similarly, long they-axis the separation of two points will decrease
and increase with opposite sign. The strenght of a gravitational wave is then best
expressed as a dimension-less quantity, the strainh which measure the relative lenght
change .

Figure 1: Direction of  space deformation for a gravitational wave propagating along thez-axis, + polariza-
tion (a) andX polarization (b).
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Electro-magnetic waves which rea visible to an observer on Earth are usually pro-
duced in the outer layers of an astrophysical object, whereas gravitational waves carry
information about the inside behaviour and the mass distribution of an object. Arguably,
the information obtained by the two will be quite different, and it is difficult to predict
gravitational sources from electro-magnetic observations.

2.2.2   Gravitational wave amplitudes

Before looking at possible detection techniques we roughly estimate how large
the observed effect of a gravitational wave from an astrophysical source could be. If we
denote the quadrupole of the mass distribution of a source byQ, a dimensional argument,
together with the assumption that gravitational radiation couples to the quadrupole
moment only, yields:

                                  (eq. 5)

with G the gravitational constant and  the non-symmetric part of the kinetic
energy. If ones sets the non-symmetric kinetic energy equal to one solar mass,

                                         (eq. 6)

and if one assumes the source is located at inter-galactic or cosmological distance,
respectively, one obtains a strain estimate of order:

    Virgo cluster                                     (eq. 7)

    Hubble distance                                (eq. 8)

By using a detector with a baseline of  m the relative lenght changes become of
order:

m to m                                (eq, 9)

this a rather optimistic estimate. Most source will radiate significantly less energy in
gravitational waves. We add that the observable effect is not small because the radiated
energy is small, in contrary it is huge, but rather becausespace-time is a stiff medium.
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2.2.3   Gravitational wave frequencies

Similarly one can estimate the upper bound for the frequencies of gravitational
waves. A gravitational wave source can not be much smaller than its Schwarzwild radius

 and can not emit strongly at periods shorter than the light travel time
 around its circumference. This yields a maximum frequency of

Hz                                    (eq. 10)

From the above equation one can see that the expected frequencies of emitted gravita-
tional waves is the highest for massive compact objects, such as neutron stars or solar
mass black holes.

2.2.4    Experimental evidence for gravitational waves

The only experimental evidence for gravitational waves comes from the timing of
binary pulsars systems. these systems consists of two neutron stars orbiting each other.
To be observable one of them must be active and emit radiowaves. Since pulsars emit
radiowaves mainly along their magnetic axis and since their rotating axis does not have
to be aligned with the magnetic axis, Earth-based radio antennae can observe a periodic
radio signal if the system is aligned so that the radio beacon passes ove the Earth. the fre-
quency of this signal is determined by the rotation period of the pulsar and is typically of
vey high precision.

In a double neutron star system this periodic signal is modulated by the orbital
frequency of the two neutron stars and can therefore be used to precisely deterine the
orbital period and phase. The first double pulsar system, PSR B1913+16, was discovered
by Hulse and Taylor in 1974. Its orbital period is 8 hours. The emission of gravitational
waves brings the two neutrons stars closer together, and thus increase the orbital fre-
quency. The loss of potential energy in this system is in agreement with the emission of
gravitational waves predicted by General Relativity. As a consequence, the two neutron
stars will merge in about 300 million years.

2.3   Astrophysical sources

2.3.1   Coalescing compact binaries

Compact binaries are among the best candidates to be the first seen by an Earth-
based gravitational-wave antennae. compact binaries can consist of either two neutron
stars, two black holes, or one of each. Due to their small size, they can orbit each other at
close range and a high orbital frequency. Being very close and rotating fast means that
the second time derivative of the mass quadrupole moment is large and, hence, gravita-
tional waves are emitted with a high efficiency. Indeed, the radiated energy is so large,
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that a double neutron star system which is 500 km appart will loose all its potential
energy within a couple of minutes.

The waveform is a chirp signal (see fig. 2): increasing both in amplitude and fre-
quency with time, until the two objects are close enough to merge.

figure 2: Chirp waveform from an inspiral event of a compact binary sytem. On the right hand side the
dependency of the waveform on the orbital eccentricitye and the orbital inclinaison i is demonstrated.

2.3.2   Binary stars

Ordinary binary stars are one of the most reliably understood sources for periodic
gravitational waves. Binary stars typically have orbital periods larger than an hour and,
correspondingly, gravitational waves frequencies Hz. This means that only
space-based detectors will be able to detect them by integrating over long time periods.

2.3.3   Rotating neutron stars

A rotating neutron star will emit gravitational waves if its mass distribution is non
axis-symmetric along the rotation axis. A non axis-symmetric mass distribution could be
due to extremely strong magnetic field which deform the star, due to its past history
which created the star in a deformed state, or due to accretion of matter from a compan-
ion star.

2.3.4  Supernovae

Supernovae have all the attributes associated with a good gravitational wave
source: they weigh several masses, they are compact and they experience large accelera-
tions. However gravitational radiation only couples to a changing quadrupole moment
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and, hence, if a supernovae collapse and the subsequent explosion have an axial symme-
try, no gravitational waves are emitted. They are several possible mechanisms which
could overcome this deficit:

•    Initial density and temperature fluctuations may trigger the collapse unevenly.
•    High rotation speeds can lead to a bar instability.
•   Hydrodynamic instabilities could introduce large convection streams which may

effect the initial implosion.
•    A reminiscent neutron star may experiencea strong boiling shortly after its formu-

lation.

It is unlikely that each and every supernovae event will be exactly axis symmetric, but
how large the asymmetric are and how often these asymmetries lead to detectable gravi-
tational waves is very much uncertain at this time.

2.3.5   Supermassive black holes

An other good sources of gravitational waves are supermassive black holes
 eating surrounding objects. However, due to their size, the frequency

band of interest is lower than the one for the above sources. Typical frequencies are in
the mHz regime and will not be accessible by Earth-based observations due to limita-
tions posed by seismic activities and gravity gradient noise (see next chapter). Neverthe-
less, these sources are prime candidates for space-based antennae.

3.   Laser interferometers

The idea of detecting gravitational waves using a Michelson interferometer was
discoverd by several group independantly, and lead to the first prototype of an interfero-
metric detector. The idea took a significant step forward when Rainer Weiss performed a
study which identified all the important noise sources which limit the instrumental sensi-
tivity (see next section).

There is two complementary approaches to detect gravitational waves with laser
interfrometer: space-based and Earth-based. A space-based antennae is free from seismic
excitations and can utilize long arm lenghts of order m. It is best suited to detect
gravitational waves in a frequency band between Hz and Hz. An Earth-based
antennae is limited by gravity gradient noise below a couple of Hz. In reality, seismic
noise probably sets this limit even higher. Earth-based detectors have their best sensitiv-
ity in a frequency band between Hz and Hz.
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3.1   LIGO detectors

The LIGO project is a collaboration between MIT and Caltech. It is composed of
two widely separated interferometer to allow coincidence measurements. The arms of
the interferometers are long of 4 km. All Earth-based interferometric gravitational wave
detector share a similar design philosophy. The design of these detectors is driven by the
goal to minimize the effects of noise on the instrumental sensitivity. All designs use in-
vaccum suspended optics builds on top of a seismic isolation system for their main inter-
ferometer mirrors. Similarly, all designs use a highly stabilized laser source in conjonc-
tion with a mode cleaner to deliver a high quality laser beam to interferometer. They all
incorporate an optical configuaration which recquires an active control system for micro-
scopically adjusting cavity and Michelson lengths, in order to counteract drifts and fluc-
tuations introduced by seismic activities.

Figure 3: LIGO interferometer at Hanford site



3.2   Noise sources

Measuring length deviations smaller than the proton radius puts high recquire-
ments on the technology used to build these instruments. It also recquires a good under-
standing of technical and physical noise sources which possibly limit the gravitaional
wave sensitivity. The design sensitivity of the LIGO project is shown in fig. 4. It shows
that the sensitivity at low frequency, Hz, is due to seismic noise, at intermediate
frequencies, Hz, due to thermal noise and at high requencies ,f >150 Hz,
due to laser shot noise. Only noise sources for initial Earth-based interferometer will be
explained.

Figure 4: Design sensitivity for LIGO. The plot shows that the initial strain sensitivity is limited by seis-
mic, thermal and shot noise. These are technical noise sources which can be improved on in future designs.
The plot shows the gravity gradient, the scattered light and the residual gas noise which ultimately will
limit the sensitivity of Earth-based detectors.
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3.2.1   Photons shot noise

The fluctuations of the number of photons in the input beam causes fluctuations of
the signal at the anti-symmetric port. For a power-recycled Michelson inteferometer with
Fabry Perot arm cavities one obtains an equivalent shot noise limited strain sensitivity of:

                    (eq. 11)

with  the cavity pole,  the average number of effectives bounces in the arms,
 and  the laser wavelength and frequency, respectively,L the arm length, the power

recycling gain and  the input laser. Fig. 5 shows the sensitivity spectrum of the phase
noise interferometer at MIT, demonstrating that it is technically possible to achieve shot
noise limited sensitivity above a couple of 100 Hz.

Figure 5: Spectral sensitivity of the MIT phase noise interferometer. Above 500 Hz the spectrum is shot
noise limited at the level close to the one needed for initial Earth-based detectors. The additional features
seen in the spectrum are due to 60 Hz powerline harmonics, wire resonance (500 Hz-600 Hz), optical
mount resonances (700 Hz-800 Hz), calibration line (2 kHz) and resonance of the magnets (4 kHz).
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3.2.2   Seismic noise

The Earth surface is in constant motion because of seismic and volcanic activities,
because of ocean waves “hammering” on the shores, because of wind and because of the
tidal force of the moon. Seismic noise is most pronounced at low frequencies (0.1 Hz to
10 Hz) and falls off quickly at higher frequencies. Typical seismic noise levels are:

m/        for   1 Hz <f <10 Hz                        (eq. 12)

m/        for  f >10 Hz                                   (eq. 13)

For initial Earth-based interferometers roughly an attenuation of 9 orders of magnitude is
recquired at frequencies around 100 Hz.

3.2.3   Thermal noise in the suspension elements

Thermally driven motions of the test masses (optical components) will limit the
initial sensitivity of Earth-based detectors in the intermediate frequency range around
100 Hz. The magnitude of these motions depends on . To investigate the effect of
thermal noise one has to look as its spectral density. There is a deeper connection
between the dissipation mechanism of a system and the power spectral density of the
random displacements. Low loss systems typically have highQ resonances. Most of the
random motion is concentrated in a small bandwidth around these resonances. By
decreasing the dissipation of a system, one can incease theQ and at the same time reduce
the spectral density of the random dispalcements away from resonance.

A simple way to obtain a low loss system is to suspend the test masses in a form of a
pendulum. The restoring force of a pendulum has two components: gravity and elasticity
of the suspension wire. For all practical purposes the “gravitational spring” is lossless,
and only the elastic constant has a dissipative fraction. As long as the wire is reasonably
fine, the elastic spring constant is much smaller than the gravitational spring constant.
Typically, the pendulum frequency for a suspended test mass is around 1 Hz. Above res-
onance the spectral density falls as  (frictional damping).

The effect of the thermal noise on the strain sensitivity of an interferometer is propor-
tionnal to the average number of effective bounces of the laser beam. This is the main
reason to favor a long baseline design with a low number of bounces over a shorter
design with a higher number of bounces.

The sensitivity of the curve of the Caltech 40 m is shown in fig. 6. It clearly demonstrates
the importance of thermal noise.
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Figure 6: spectral sensitivity of the Caltech 40 m interferometer

3.2.4   Thermal noise driving mirror normal modes

The equipartition theorem states that energy eigenmode of a system is excited by
thermal noise to a mean energy . This is also true for the “drum” modes of the
test masses. Typically, the frequencies of these eigenmodes is in the kHz regime.

4.   Experiments

4.1   Devices used

To Complete the measurements I have used different devices. For reference, I
explain briefly how they work. I especially dwell  on the way chosen to generate a time
varying field.

4.1.1   Magnetometer
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It is a Bartington MAG-03MCES100, a compact triaxial flux-gate sensor which
requires a power supply of between V and V and provide three analog outputs
of V full scale, proportional to the magnetic field along each axis. For a unit with a
full scale range of the output voltage for each axis is of field in the
direction of that axis. The frequency response is maximally flat from DC to at least 1
kHz.

4.1.2   Power Supply

It is a MAG-03PSU which is specially designed for the magnetometer. The input
is connected to the magnetometer, and there is three outputs that corresponds to the x,y,z
components of the field.

4.1.3   Dynamic Signal Analyzer

The Dynamic Signal Analyser (DSA) is a very usefull and complex device which
allows transfer functions to be measured (among other things). Basically, the DSA is
composed of several input channels, and a source. We use the source to drive a device as
we use as input, and we take the response of the device as an output. We only use the
DSA with a swept sine mode: the analyser outputs a sine wave which is stepped accros
the frequency span. We can set the number of steps, or measured points, by specifying
the sweep resolution.

4.1.4   Excitation coil

As we want to know the time-domain filtering of the BSC to a field, it was neces-
sary to generate a time varying field. A magnetic field is a function of the shape of the
source which generates it (following Ampere’s law). The idea was to use a big circular
coil with a diameter of 1.5 meters, and for this kind of coil, we can easily show using the
Biot and Savart law that the field generated along its axis is:

                                           (eq. 14)

where:
 is the current that pass through the coil,
 is the radius of the coil, e.g. 1.5 meters,
 is the vertical coordinate along the axis,

N is the number of turn in the coil, e.g. 216 turns.

Then, for a fixed vertical coordinate, the only way to make a time-dependant field is to
change the value of the current. But we are only able to modify the voltage that we send
into the coil. Fortunately, we can model the coil by a RL circuits. In this case, the current
can be written as:

                                              (eq. 15)
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where:
 is the voltage in the coil,

 is the inductance of the coil, e.g. ,
 is the resistance of the coil, e.g. .

So, if we want to change the current in the coil, as the resistance and the inductance are
constant, we just have to change the voltage that we send in this coil. The B-field gener-
ated by the coil is function of the frequency, we can rewritte (eq. 14) as:

We are going to use the swept mode of the Signal Analyzer to generate this voltage in the
coil.

4.2   Map of the DC field around the BSC

4.2.1   Measurements

The mapping of the DC field was quite important because of the experimental
protocol I have designed. As the coil that generates the field was on the floor, it was
important that the magnetometer we used as a reference was not saturated by a parasitic
field and enable us to do correct measurements.

As we are only interested in the DC components of the field (this is the same as measur-
ing the Earth magnetic field, if there is no “magnetic pollution”) we directly connect the
output of the magnetometer to a voltmeter. With the specifications provided in part 4.1
we see that when we measure something in Volt in the voltmeter, we have to multiply it
by  to have a field in Tesla.

After made the measurements, I have used the software MATLAB in order to have a plot
of the intensity of the magnetic field. The program is available in the appendix (7.1).

4.2.2   Results

Using the program and the data I acquired, we are able to plot the magnitude of
the B-field with respect to the position on the grid. The color is used to express the inten-
sity of the field. Blue is for the lower intensity and red is for the higher ones. The three
different axis are labelled with SI units. the points represent the place where the mea-
surements were done.
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Figure 7: Contour of the intensity of the B-field around the BSC.
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Figure 8: 3D representation of the variation of the B-field around the BSC.

From these two plots we can see an area of low magnetic field intensity centered around
the location of the BSC and two areas of high magnetic field intensity which are on both
side of the area of low field intensity.

We see on the figure 8 that the amplitude of the field around the BSC varies between 0.08
and 0.16 mT; if we consider that the average intensity of the Earth magnetic field is 0.05
mT that leads us to the conclusion that the floor of highbay is slightly magnetized, but
probably not enough to modify the measurements. Nevertheless, we must be very careful
with this conclusion:

• First, the magnetometer was not put at the level of the ground, but at approximately
90 centimeters, so if there is an important magnetic field on the floor, it is possible to
not have measured it.

• Second, our measurements are, at maximum, three times higher that the Earth mag-
netic field. It is not a big difference, and it could be due to some variation of this
field, which is not constant on Earth.

−2
0

2
4

6
8

−1

0

1

2

3

4

5
0.8

1

1.2

1.4

1.6

x 10
−4

X [meters]

magnetic field magnitude

Y [meters]

m
ag

ne
tic

 fi
el

d 
m

ag
ni

tu
de

 [t
es

la
]



Unfortunately it seems that the floor was, at some point, magnetized because some other
measurements made when we were using the coil show us that the magnetometer was
saturated. I also realized that some of the measurements I made saturated the magnetom-
eter. As its ouput range is 10 Volts, a DC field of  Tesla suffices to saturate it. We see
on the figure 8 that we are at the limit of saturation. We have to conclude that the floor of
the highbay is magnetized, and a further analyze of it with more sensitive magnetometer
should be do.

In order to avoid pertubation of the DC field during my measurements, at the place
where the coil was put, I made measurements of the DC field and they were similar to the
Earth magnetic field. We were lucky because, as we are going to see in the next section,
the protocol established needs a magnetometer in the center of the coil to be used as a
reference, and it will be very tedious to not measure exactly the field generated by the
coil.

4.3   Measurements inside the BSC

4.3.1   Experimental protocol

The idea to make measurements inside the BSC was simple: Generate a time-
varying field outside the tank and measure it inside. But we preferred not to open the
BSC. Thus, first we must open one of the several ports of the tank, and second we must
work in a clean room area.

In the picture of the BSC with the clean room (see appendix, 7.4) one sees several ports
at different heights. There were two reasons that lead me to the choice I made for the
ports I opened: First, I am interested to know the magnetic field around the position of
the test mass and second, a quick calculation show me that if I open the big port (which
is a very heavy operation, it weights half a ton), it will significantely modify the mag-
netic field inside the tank. These two reasons lead me to the conclusion that it is enough
to open a little port which is at apporximately the same level as the test mass is.

Fortunately, the clean room that already exists was high enough to access these ports. I
made an extension on this clean room to allow it to access on a side of the BSC. To verify
the cleanliness of the clean room, I used a counter of dust particles. My goal was to work
under a clean room of class 100 (it signifies that the counter of particles counts 10 parti-
cles during 1 minute). When I made the measurements I checked often with the counter,
and all of them were made between class 60 and 100. The class was slighty higher in the
table on which I worked, but near the ports it was always around 60-80. I consider that
the measurements were made under a good clean room protocol.

4.3.2   Measurements

During the experiments, the problem was to be sure to exactly measure what we
wanted. In order to verify this, I made the following experiments:
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• The signal analyzer sends a voltage into the coil. We use the signal of a magnetome-
ter in the center of the coil as output, and the input is the source voltage send by the
DSA. We can model this by:

The result of this experience is predictable: In theory, the quantity measured by the mag-
netometer should be the same as the one send into it, so if we make a transfer function
plot of the Ouput/Input it should be a line. It was made and the result was not a as
desired.

We can explain this by the effect of the inductance in the coil. When the frequency incre-
sases, the effect of the inductance increases too, it is very evident on (eq.15). To avoid
this, it was decided to put a second magnetometer in the center of the coil as input. We
can model this by:

If we do a transfer function measurement of this new configuaration with  the 2 magne-
tometers in the center of the coil, as they exactly measure the same thing, we obtain a
line.

• Another problem was to be sure that the magnetometer inside the tank will receive a
signal, e.g., that the B-field generated by the coil was enough intense. There is no very
good way to assure this. One could be the generation of a very strong B-field, but it was
not possible with the devices I used, so I decided to do the following experiment:
I put the magnetometer inside a metal box and acquired a set of data. They show that the
B-field was enough important to be detected by the magnetometer. And even if the shield
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effect is not so important as the one produce by the tank, I consider that is an enough
good result to hope detect a signal inside the BSC.

• The last problem, but not the least was to find a system to handle the magnetometer
and allow us to measure in many dimensions. I have made a kind of boom with which we
can measure in two dimensions:

Figure 9: Description of the methods used to acquire data inside the BSC.

With this system it was possible to make measurements at three differents heights: 177.5
cm, 179.5 cm and 181.5 cm. I was not limited on the X axis, and I decided to make a set
of measurements at 30 cm, 60 cm, 80 cm and 100 cm from the edge of the BSC. The
center of the BSC is at 130 cm away from the edge of the tank, but I was not able to do
measurements at this location, due to the limitations of my devices. I estimate the impre-
cisions of the boom at 5 cm.

• To satisfy the clean room conditions, the boom was made of plasitc without magnetic
properties, and everything was packed with Ameristat (a very clean plastic). To avoid
that a big open surface is let in contact with the ambient air, I made a sort of tube with
Ameristat, that linked the port of the BSC to the probe of the boom. It is represented in
red on the previous picture. With this protection the inside of the tank was not in contact
with the ambient air during a very short time.

• The bandwidth of the swept sine is from 1 Hz to at most 1.2 kHz because the magne-
tometer is not enough sensitive for higher frequencies. The voltage received by the coil is
5 Volts.
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4.3.3   Results

I have made ten measurements inside the clean room (X represents the dis-
tance in centimeters from the edge of the BSC, and Y is the high on centimeters from the
floor).

We obtain the following plots (some of them are not represented because the informa-
tions they provide are not significant, due to the fact that the different heights are very
close: 0.02 meters). I keep the class of plot at Y=177.5 cm because it is very close to the
height of the test mass.
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All these plots have the same shape, the one of a low pass filter with a cut-off frequency
at 9 Hz (measured with the signal analyzer). The only difference is on the amplitude of
the plot. It decreases when we are closer from the edge of the BSC. It is due to the fact
that the generated magnetic field is more intense along the axis of the coil, and when we
move the magnetometer from this axis, it detects a lower magnetic field. Another reason
is the presence of a field gradient that is created by the BSC. This second reasons will be
discussed in part 5.2.

A good explanation of the physical meaning of this cut-off frequency was found
in [1]. The purpose of this calculation is to show that with very rough approximation
about the BSC (cylinder of uniform thickness and conductivity), we can find a cut fre-
quency at the same order as the one we measured, and explain that this frequency is due
to a shield effect produce by the BSC.
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The current density  is a divergence free. If we picture the current density flowing in a
planes perpendicular to the z axis, and as essentially uniform over the thickness  of the
cylinder, then the surface current density must be independant of the azimuthal position
in the cylinder.

Ampere’s continuity condition, requires that the adjacent axial fields be related to this
surface current density by:

                                           (eq. 16)

In general,  is not known. To relate it to the axial field, we must introduce the law of
Ohm and Faraday. As  is uniform, it is possible to exploit the integral form of the latter
law, applied to a contour  that circulates through the cylinder.

                                    (eq. 17)

To replace  in this expression, we multiply  by the thickness  to relate the
surface current density to , the magnitude ofE inside the cylinder.

                                     (eq. 18)

H(out)H(in)
    z

I

I : surface current density

H(out): magnetic field outside

            the cylinder
H(in): magnetic field inside

             the cylinder

J
δ

I I t( )=

J Hout– Hin+=

J
J

C

E ds⋅( )
C
∫°– td

d
B da⋅( )

S
∫=

E J σE= δ
E

I δJ δσE E⇒=≡ I
δσ
------=



If  and  are uniform, thenE (like I) is the same everywhere along the cylinder. How-
ever, either the thickness or the conductivity could be functions of azimuthal position. If

 and  are given, the integral on the left in (eq. 17) can be taken, sinceI is constant.
With s denoting the distance along the contourC (eq. 17) and (eq. 18) become:

                                     (eq. 19)

We consider that for the BSC the thickness and conductivity are uniform, so (eq. 19)
becomes:

                                            (eq. 20)

with L denoting the peripheral lenght of the cylinder. Representing Ohm’s law and Fara-
day’s law of induction, (eq. 20) becomes:

With (eq. 16) that represents Ampere’s law,  is a given driving field, so they can be
combined into a single differential equation for either J or , Choosing the latter, we
obtain:

where

is called themagnetic diffusion time. With the dimensions of the BSC, we obtain a theo-
retical magnetic diffusion time of 1/3 s. If we convert that into a frequency, we obtain the
cut frequency of the response of the BSC to a magnetic field of 3 Hz, which is the same
order as the value measured inside the BSC (9Hz).

A perfect conductor would shield out the magnetic field forever. A physical conductor
shield it out for times . It signifies that after a time  the BSC does not shield out
an exterior magnetic field. We can represent what happened with a drawing (the red lines
represeth the magnetic field):
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Figure 10: Evolution of the lines of magnetic field with respect to the time

But, if the shape of the plot was only due to this cut frequency, when we superpose them,
they should de identique. Or in reality there is a slighty difference between them which is
due to the magnetic gradient induces by the BSC. This very important for LIGO and we
will see why in the next parts.

5.   Implications for LIGO

5.1   Magnetic actuators design

In order to control test mass motion with sufficient bandwidth and strength,  a sys-
tem of an electromagnetic actuator was chosen. It consists of permagnents magnets
attached to the test mass interacted with fixed coils which carry control current. You can
have a good idea of this on the following picture (fig. 11).

Six magnet assemblies are attached to the optical compoment: four on the front surface-
and two on the side surface of the optical compoment. The magnets are placed so that
polarities of the magnets alternate, this is to reduce the interaction with external mag-
netic fields.

With this configuaration, the dipole moment vanishes, leaving aquadrupole moment. In
order to know if a magnetic field could have an effect on the optics, it is important to
know:

  BSC     BSC

 Coil                                                                    Coil

t 0= t τm»



• The magnetic gradient, only due to the tank, around the position of the optics.

• What kind of gradient could pertubates the quadrupole moment and cause significant
modifications in the position of the miror that the servo-contro system could not cor-
rect.

Figure 11: Design of the test mass’s support system and actuators

5.2   Evaluation of the field gradient

With the measurements done inside the BSC, it is possible to determine the gradi-
ent of a B-field applied outside, or, at least, to have an evaluation of it. In order to do this
task, there is some steps to do before. First, we must calculate the field produced by the
coil without the presence of the magnetometer. After, we must isolate the gradient due to
the BSC; this signifies that we must remove the part of the gradient due to the coil we
just calculated. At last, we compare the different plots obtained previously in order to
determine/evaluate the field gradient.

5.2.1   Horizontal gradient

• Calculate the field produce by the coil without the presence of the tank:

To do that a program was made with MATLAB. It is the program called “loop.m”
in the appendix. It computes the cartesian compoments of magnetic field due to a current
I in a loop of a radiusa at the pointx,y,z. This program is based on the following equa-
tions that describes the magnetic induction for a circular current loop. An interested
reader could find references in [2].
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In polar coordinate, the radial compoment of the magnetic field could be written as:

WhereP represents a Legendre polynomial. The angular compoment is similarly:

The upper line hold forr<a , and the lower line for r>a (with a the radius of the coil). It
is easy to have the cartesian coordinate, we just applies the following formula:

• Field gradient due to the BSC:

After calculating this field, we print on the same plot and at the same scale all the
measurements that are on the same height, e.g. 177.5 cm. We subtract this calculated
field to the values of the plot obtained. We are allowed to do that because the field gener-
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ated by the coil without the presence of the BSC (the calculated field) is independant of
the frequency, it is only function of the position. Then we obtain the following plot:

Each plot was obtained at a certain distance from the center of the BSC. This distance is
represented on the upper right corner. 30 cm means that this plot was obtained at 30 cm
from the center of the BSC

Now, we have a plot with only the horizonthal magnetic gradient due to the effect of the
BSC. If there was no gradient caused by the tank, all the plot would be spperposed, and it
is not the case here.

• Comparaison of plots in order to determine the field gradient:

To have a numerical value of the gradient with respect to the frequency, we must
compare the previous plot. But we can not do that as we want; it is useless to compare
certains plots, because the gradient has only a sense between two consecutives points, for
a given height. So, I will calculate the gradient between the following plot: 10-11, 2-10,
3-2 and 3-11 (the last one is to have an idea of the gradient between the extremal points).
Then we obtain the following plots; a legend is on the top of each plot.
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It is not useless to give an explanation of the scale used on they axis. grad B/ signifies
that we have took an outside field of 1 Tesla ( ), and if a field with another magnitude
is applied, we just have to multiply the value on they axis by the value of this field.

As we have seen, the sensitivity of LIGO is around 100 Hz, so it is at this frequency that
we are interested by the magnetic gradient. The value of the gradients at 100 Hz are:

 for plots 10-11.

 for plots 2-10.

 for plots 3-2.

 for plots 3-11.

It is exactly the kind of results we expected. If we plot the theoretical intensity of the B-
field produce by a coil with respect to the distance away from the center of the coil, at the
high z = 177.5 cm, we obtain:
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The gradient represents the derivative of this plot. So for the plot of the gradient with
respect to the distance away from the center of the tank, we expect (in an ideal case) that
the gradient will be zero at the center of the BSC, presents a maximum ont the left side
of the plot (x < 0) and a minimum on the right side (x > 0). Unfortunately I don’t have
enough points to draw something, but you see that the values of the points I have for the
gradient match the ideal case.

5.2.2   Vertical gradient

We do exactly the same operation, but we take three measurements at the samex
and with different height. We obtain the following plot, at x = 70 cm from the center.

The three plot are superposed, it signifies that there is no gradient between them. It is a
good result, but we must consider that the distance between two different high is very
close (0.02 meters), so it is normal to not find a significant variation fo the gradient.

I do not do this work for the other plot, because it will show us the same result, e.g. that
there is no significant vertical gradient with the range used.

The anomaly on the plot at 60 Hz is due to the magnetic field created by the power line.
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6.   Conclusion

The LIGO gravitational wave detector must detect variations of distance of ,
it is smaller than the radius of a proton, and it is easy to guess that there is a lot of poten-
tial source of “noise”. One of them could be the variation of magnetic field. My work
here was to characterize the magnetic field gradient induces by the tank, and determine if
it could cause a variation of position of the test mass.

After measuring the field inside the tank, I have used some programs to analyze
these data and determine the field gradient. However, the measurements that I made
could be ameliorated as follows:

• In addition to putting the coil under the BSC, it will be a good idea to put it in paral-
lel with the tank. The reasons are that the eddy current will have a more difficult
geometry to follow, so the attenuation at high frequencies will be less than the one
obtained in our case. The Earth magnetic field is directed, at our scale, quasi parallel
to the Earth’s surface. And the last one is the more evident, there is no kind of mag-
netic field pertubations that will come from under the tank.

• The number of measurements I have took was not enough. We need more measure-
ments to correctly characterize the field gradient inside the chamber.

Fortunately my work was not useless, it gives a first approach of the kind of mag-
netic field gradient we can expect inside the chamber. When the theoretical gradient that
could pertubates the magnet will be know, it will be possible to determine if we can be
worried about the magnetic noise. A possible way to determine this gradient could be to
do measurements with a fake test mass a real magnets using a coil or something that gen-
erate a field that we could precisely know for a given position. All of this proposition
could be done in a further work.
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7.   Appendix

7.1   Program “plotmag.m”

file = ’outside.data’;                       % data file

data = load(file);                           % load data file

x = data(:,1);                               % coordinate [feet]
y = 2 * data(:,2);
z = data(:,3);

Bx = data(:,6);                              % magnetic field [gauss]
By = -data(:,4);
Bz = -data(:,5);

x = x * 12 * 2.54 / 1e2;                     % convert to meter
y = y * 12 * 2.54 / 1e2;
z = z * 12 * 2.54 / 1e2;

Bx = Bx  * 1e-5;                             % convert to tesla
By = By  * 1e-5;
Bz = Bz  * 1e-5;

B = sqrt(Bx.^2 + By.^2 + Bz.^2);             % magnitude of field

res = 0.05;                                  % interpolation
grid xi = min(x)-res : res : max(x)+res;
yi = min(y)-res : res : max(y)+res;
[XI,YI] = meshgrid(xi,yi);

BI = griddata(x,y,B,XI,YI);                  % interpolated field

% mesh(XI,YI,BI);
% plot interpolated field
% hold on
% plot original data
% plot3(x,y,B,’k*’);
% hold off;
% title(’magnetic field magnitude’);
% xlabel(’X [meters]’);
% ylabel(’Y [meters]’);



% zlabel(’magnetic field magnitude [tesla]’);

contour(XI,YI,BI,30);
hold on;
plot(x,y,’k.’);
xlabel(’X [meters]’);
ylabel(’Y [meters]’);
title(’magnetic field magnitude’) ;

The inputs of this program are the file called “outside.data”, which contains six columns.
Three of these columns contain the components of the B-field, and the other three ones
contain the coordinates of the points where the B-field was taken. One of the coordinate
is constant because the measurements were done in only two dimensions, but the func-
tion used in MATLAB need to have six matrix elements. As we want to have a map in
three dimensions, and as there is a couple of points which are missing (it was not possi-
ble to acquire data where is the BSC), a program that interpolates this points was made
using a function of MATLAB.

7.2   Program “loop.m”

function [Bx, By, Bz] = loop(x, y, z, a, i)
% [Bx, By, Bz] = loop(x, y, z, a, i)
%
% compute cartesian components of magnetic field due to
% a current i flowing in a loop of radius a at the point
% x, y, z.
%

N = 10;

mu = 4 * pi * 1e-7;

r = sqrt(x.^2 + y.^2 + z.^2);
theta = atan2(sqrt(x.^2 + y.^2), z);
phi = atan2(y, x);

Br = 0;
Btheta = 0;

for n = 0 : N,
   P = legendre(2*n+1,cos(theta));
   tmp(r<a) = (-1)^n * prod(2*n+1:-2:1) * r(r<a).^(2*n) / (2^n *
                                                             a^(2*n+1));
   tmp(r>a) = (-1)^n * prod(2*n+1:-2:1) * a^(2*n+2) ./ (2^n *
                                                       r(r>a).^(2*n+3));
   tmp(r==a) = (-1)^n * prod(2*n+1:-2:1) ./ (2^n * a);
   Br = Br + tmp .* P(1,:) / prod(1:n);



   dBtheta = tmp .* P(2,:) / prod(1:n+1);
   dBtheta(r<a) = dBtheta(r<a) * (2*n+2) / (2*n+1);
   Btheta = Btheta + dBtheta;
   end

Br = Br * mu * i / 2;
Btheta = Btheta * mu * i / 4;

Bx = Br .* sin(theta) .* cos(phi) + Btheta .* cos(theta) .* cos(phi);
By = Br .* sin(theta) .* sin(phi) + Btheta .* cos(theta) .* sin(phi);
Bz = Br .* cos(theta) - Btheta .* sin(theta);

This program allow us to calculate a B-field generated by a coil of radius a. The number
of iteration is 10, because after the value does not differ significantely. The formula from
[2] uses polar coordinate and we have measurements in cartesian coordinate, so we make
the conversion between them. We use an iterative loop to calculate the value of the field,
and then we convert the polar value of the B-field into cartesian value.

7.3   Program “compare_adj.m”

load MEAS11.MAT
H11 = o2i1(o2i1x<=1e3);
f11 = o2i1x(o2i1x<=1e3);
dB11 = 20 * log10(abs(H11));
dB11 = dB11 + 28.32;
B11 = 10.^(dB11/20);

load MEAS10.MAT
H10 = o2i1(o2i1x<=1e3);
f10 = o2i1x(o2i1x<=1e3);
dB10 = 20 * log10(abs(H10));
dB10 = dB10 + 26.52;
B10 = 10.^(dB10/20);

load MEAS2.MAT
H2 = o2i1(o2i1x<=1e3);
f2 = o2i1x(o2i1x<=1e3);
dB2 = 20 * log10(abs(H2));
dB2 = dB2 + 25.60;
B2 = 10.^(dB2/20);

load MEAS3.MAT
H3 = o2i1(o2i1x<=1e3);
f3 = o2i1x(o2i1x<=1e3);
dB3 = 20 * log10(abs(H3));



dB3 = dB3 + 24.96;
B3 = 10.^(dB3/20);

B3 = interp1q(f3, B3, f11);
gradB = (B3-B11)/0.7;

clf;
semilogx(f11, gradB);
grid;
xlabel(’frequency [Hz]’);
ylabel(’grad B/Bo [1/Meter]’);
title(’Horizonthal magnetic field gradient between plots 3 and 11’);

This program load all the measurements that are at the high of 177.5 cm. It soustracts the
value of the theoretical field found with the program “loop.m”.

During the acquisition, I change the range of frequencies, so the interval of measure-
ments was not the same. In order to compare things that coresponds to a given frequency,
this program makes an interpolationof the plot to have a field value at all frequencies. At
last, to find the gradient, the program soustract the value of two plots and divided this
value by the distance between the points where these plots were made, and that for all
frequencies.
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