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1 Potential energy of the elastic line

The motion equation of the elastic line y(z) in tension T is

EIy0000 � Ty00 = 0 (1)

where E is the Young modulus and I the inertia of the beam1.

The coordinate system for the motion in the plane y; z is displayed in Fig. 1. With the

choice of z oriented upward, the x axis exits from the plane.

y

z

1

0

Figure 1: The chosen coordinate system

This equation can be easily derived [1] by a variational principle, introducing the potential

energy

U =
1

2

Z L

0

h
EI

�
y00
�2
+ Ty02

i
dz (2)

It is convenient to rede�ne the unit length introducing

z = �L (3)

which gives

U =
EI

2L3

Z 1

0

h
y002 + k2y02

i

=
TL

2

1

k2L2

Z 1

0

h
y002 + k2y02

i
(4)

where

k2 � TL2

EI
: (5)

1For a cilyndrical beam of radius r it is I = (�r4)=4
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1.1 Clamped boundary conditions

The most general solution for the elastic line equation,

y0000 � k2y00 = 0 (6)

satisfying the boundary conditions of clamps with a certain position and orientation

yT =
�
y(0); y0(0); y(1); y0(1)

�
(7)

is

y(�) = cT �

0
BBB@

sinhk�

cosh k�

k�

1

1
CCCA (8)

where cT = (c1; c2; c3; c4) is a vector of coe�cients.

The potential energy can be evaluated as a function of c in matrix form, by noting that

y00(�)2 = k4cT �

2
6664
0
BBB@

sinhk�

cosh k�

0

0

1
CCCA
 (sinhk�; cosh k�; 0; 0)

3
7775 � c

= k4cT �Y2 (�) � c (9)

where the non zero entries of the matrix Y2 are

Y2[1 : 2; 1 : 2] �
"

sinh(k�)2 sinhk� cosh k�

sinhk� cosh k� cosh(k�)2

#
: (10)

Analogously one �nds

k2
�
y0
�2

= k4cT �Y1 � c (11)

where

Y1[1 : 3; 1 : 3] =

2
64 cosh(k z)2 cosh(k z) sinh(k z) cosh(k z)

cosh(k z) sinh(k z) sinh(k z)2 sinh(k z)

cosh(k z) sinh(k z) 1

3
75 (12)

Integrating in � one easily �nds

U =
TL

2

k2

L2
c �A � c (13)

where

A[1 : 3; 1 : 3] =

2
6664

sinh(2 k)
2 k

sinh(k)2

k
sinh(k)

k

sinh(k)2

k
sinh(2 k)

2 k

2 sinh( k
2
)
2

k

sinh(k)
k

2 sinh( k
2
)
2

k
1

3
7775 : (14)
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To obtain the potential energy as a function of the boundary conditions x, we impose the

boundary relations

B � c = x (15)

where the matrix B is

B =

2
6664

0 1 0 1

k 0 k 0

sinh(k) cosh(k) k 1

k cosh(k) k sinh(k) k 0

3
7775 : (16)

It follows that

U =
TL

2

k2

L2
xT �

��
B�1

�T
�A �B�1

�
� x

� TL

2
xT �W � x (17)

where the matrix W is given by

W =
1

L2 [k cosh(k=2) � 2 sinh(k=2)]
�

2
6666664

k cosh(k
2
) sinh(k

2
) �

�
k cosh(k

2
)
�

sinh(k
2
)

sinh(k
2
)

(k cosh(k)�sinh(k))
2 k sinh( k

2
)

� sinh(k
2
)

(�k+sinh(k))

2 k sinh( k
2
)

�
�
k cosh(k

2
)
�

� sinh(k
2
) k cosh(k

2
) � sinh(k

2
)

sinh(k
2
)

(�k+sinh(k))

2 k sinh( k
2
)

� sinh(k
2
)

(k cosh(k)�sinh(k))
2 k sinh( k

2
)

3
7777775
: (18)

An alternate form, useful for asymptotic expansions, is

W =
k

L2
h
k � 2 tanh(k

2
)
i �

2
666664

1
tanh(k=2)

k �1 tanh(k=2)
k

tanh(k=2)
k

1
k

�
1

tanh(k)
� 1

k

�
� tanh(k=2)

k
1
k

�
tanh(k)

k � 1
cosh(k)

�
�1 � tanh(k=2)

k
1 � tanh(k=2)

k
tanh(k=2)

k
1
k

�
tanh(k=2)

k � 1
cosh k

�
� tanh(k=2)

k
1
k

�
1

tanh k � 1
k

�

3
777775 (19)

A similar formula hold for the x coordinate: taking into account that the variable z had

been rescaled to z = L�, and referring to Fig. 1, the correspondence between derivative x0; y0

and rotation angles around axes y;x are

x0(0; 1) = +L�y(0; 1)

y0(0; 1) = �L�x(0; 1) (20)
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Hence the total potential energy of the elastic line is given by

U =
TL

2

h
yT �W � y + xT �W � x

i
x = (x(0); L�y(0); x(1); L�y(1))

y = (y(0); �L�x(0); y(1);�L�x(1)) (21)

1.1.1 Approximations of W

The parameter k is in general rather large. Let us �rst consider the lowest �lter, and assume

a steel with approximately E = 2� 1011;GPa; we consider for VIRGO a beam with

L = :66m; r = 0:855 � 10�3 (22)

and a suspended mass of about 300 Kg.

I =
�r4

4
' 4:2� 10�13m4; T ' 3� 103N (23)

and

k2 � TL2

EI
' 1:6 � 104 : (24)

Considering instead the upper �lter, we have

I ' 7:4 � 10�12; T =' 104N; L = 1m (25)

and we get

k2 ' 6:7 � 103 : (26)

In general therefore k � 80, and this allows to expand the hyperbolic functions. We can

set tanh(k=2) ' 1 and cosh(k) ' 1, obtaining with very good approximation

W =
k

L2 (k � 2)

2
6664

1 1
k �1 1

k
1
k

k�1
k2

� 1
k

1
k2

�1 � 1
k

1 � 1
k

1
k

1
k2

� 1
k

k�1
k2

3
7775 ; (27)

this expression can be further expanded in 1=k.

1.1.2 Large tension limit

In this case we let k !1, obtaining

W0 =
1

L2

2
6664

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

3
7775 (28)

that is the potential energy is simply
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U ' U0 �
TL

2

(�
y(0)� y(1)

L

�2
+

�
x(0)� x(1)

L

�2)
(29)

which is the same formula that would result by considering the elastic line as a rigid con-

straint of length L. This term corresponds to the gravitational contribution to the horizontal

recalling force introduced by Del Fabbro in [2].

The �rst correction to this formula comes by retaining in the formula 27 the 1=k term.

We get

W 'W0 +W1 +O(1=k2) (30)

where

W1 =
1

k L2

2
6664

2 1 �2 1

1 1 �1 0

�2 �1 2 �1
1 0 �1 1

3
7775 : (31)

Hence the potential is given by

U ' U0 + U1 (32)

where

U1 =
TL

2

1

k

(�
x(0)� x(1)

L
+ �y(0)

�2
+

�
x(0)� x(1)

L
+ �y(1)

�2

+

�
y(0)� y(1)

L
� �x(0)

�2
+

�
y(0)� y(1)

L
� �x(1)

�2)
: (33)

This term corresponds to the one in Eq. 9 of the Del Fabbro work [3], apart a correction

in the overall factor: indeed the correct 
exural constant H is given by

H =
TL

k
=
p
TEI (34)

while in [3] it is smaller by a factor 1=2. This error can be traced back to the work by

Saulson. Also the signs of the angles di�er from [3]; this may be due to a di�erent convention

in the orientation of the z axis.

For completeness we report the second correction in 1=k to the matrix W,

W2 =
1

k2L2

2
6664

4 2 �4 2

2 1 �2 1

�4 �2 4 �2
2 1 �2 1

3
7775 ; (35)

we obtain for the potential energy

U ' U0 + U1 + U2 (36)
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where

U2 =
TL

2

4

k2

(�
x(0)� x(1)

L
+
�y(0) + �y(1)

2

�2
+

�
y(0)� y(1)

L
� �x(0) + �x(1)

2

�2)
: (37)

Higher order terms go to zero as the tension T increases and will be neglected.

1.2 Mixed boundary: hinged-clamped

A di�erent boundary condition results by having the upper end of the beam hinged, that is

freely swinging. It corresponds to the boundary conditions

yT =
�
y(0); y0(0); y(1)

�
(38)

supplemented by the null momentum condition in the upper suspension, y00(1) = 0.

The most general solution for this equation is

y(�) = cT �

0
B@ sinh(k�)� tanh(k) cos(k�)

k�

1

1
CA (39)

As before, the potential energy is written in terms of the vector c as

U =
TL

2

k2

L2
cT �A � c (40)

where

A[1 : 2; 1 : 2] �
"

tanh(k)
k

tanh(k)
k

tanh(k)
k

1

#
: (41)

In terms of the vector y, with the usual transformations, we get

U =
TL

2
yT �W � y (42)

where

W =
1

L2 [1� tanh(k)=k]

2
64

1
tanh(k)

k �1
tanh(k)

k
tanh(k)

k � tanh(k)
k

�1 � tanh(k)
k 1

3
75 (43)

2 Violin modes: both ends clamped

According to the Landau textbook, we can write the motion equation of the thin wire as

�A
@2 y(z; t)

@ t2
= �EI @

4y(z; t)

@z4
+ T

@2y(z; t)

@z2
(44)

where A is the wire section, hence �A is the linear mass density. This equation can be

derived from the lagrangian
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L =
1

2

Z L

0
�A

�
@y(z; t)

@t

�2

dz � 1

2

Z L

0

2
4EI

 
@2y(z; t)

@z2

!2

+ T

�
@y(z; t)

@z

�2
3
5 dz : (45)

We look for an oscillating solution at frequency !, that is

EIy0000 � Ty00 = !2�Ay (46)

is the equation to be solved, with the prescribed boundary conditions.

2.1 Analytic solution

We make the common ansatz for the solution

y(z) =
4X
i=1

cie
�iz (47)

which gives the algebraic equation, for each root

EI�4i � T�2i � !2�A = 0 (48)

whose general solution is

�1;2 = �
s

T

2EI

vuut
1 +

s
1 +

4!2�AEI

T 2

i�3;4 = �i
s

T

2EI

vuuts
1 +

4!2�AEI

T 2
� 1 ; (49)

the solution is therefore of the form

y(z) = A cos �3z +B sin�3z + C cosh�1z +D sinh�1z ; (50)

they are also useful the identities

T

EI
= �21 � �23

!2 �A

EI
= �21�

2
3 : (51)

One has to further impose the boundary conditions: on the 0 site one sets

y(0) = y0(0) (52)

which means that

y(z) = a [cos�3z � cosh �1z] + b [�1 sin�3z � �3 sinh�1z] : (53)

We further impose y(L) = 0, obtaining
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y(z) = a f[�1 sin�3L� �3 sinh�1L] [cos �3z � cosh�1z]

� [cos �3L� cosh�1L] [�1 sin�3z � �3 sinh�1z]g (54)

and we �nally obtain the eigenvalue equation by setting y0(L) = 0, which gives the eigen-

value equation

[�3 sin�3L+ �1 sinh�1L] [�3 sinh�1L� �1 sin�3L] = �1�3 [cos �3L� cosh�1L]
2 : (55)

This equation depends on ! through �1; 3 and its solutions give the eigenfrequencies of

the system.

2.2 Lattice solution

We can introduce a lattice for discretizing the left-hand side over the z = [0; L] interval and

reduce the problem to a standard eigenvalue problem. We write

y00 =
1

a2
[y(i+ a)� 2y(i) + y(i� a)] ;

y0000 =
1

a4
[y(i+ 2a)� 4y(i+ a) + 6y(i)� 4y(i� a) + y(i� 2a)] (56)

and we further impose null clamped boundary conditions, for simplicity with zero deviation

and angle.

We show in Fig. 2 an example of calculation of the lowest 4 violin frequencies, for a wire

with the following characteristics:

T = 104N

r = 3:5� 10�3m

E = 2:0� 1011Pascal

� = 7:0� 103Kg=m3

L = 1m (57)

using lattices of di�erent sizes: the full lines are derived from the numerical solution of

the eigenvalue equation, while the dotted lines come from the lattice simulation. The lattice

solution has been used as a starting point for �nding the root in the eigenvalue equation, this

is why the two curves follow each other: the meaning is that the accuracy of 1:0e � 12 used

in �nding the roots is not enough, from a certain lattice on, to distinguish the two solutions.

We see that lowest frequencies stabilise faster.

2.3 Violin modes: �nite element approach

In order to evaluate violin mode frequencies, we may attempt a description in terms of �nite

elements.
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504.0
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Figure 2: An example calculation of violin frequencies

The idea is to discretize the problem introducing a �nite element of length �L, and at-

tempting for each �nite element a solution in the form

(58)

we can attempt a variable separation, writing the motion in terms of the general solution

of the static problem, with time-dependent coe�cients.

3 Violins and pendola

We are �rst interested in the motion equation for a simple pendulum made of a beam with a

mass M suspended at the end.

3.1 Lagrangian derivation

Let us write down the Lagrangian for the trasversal motion of a pair of masses connected by

a beam under tension: we have
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L =
1

2
M1 [ _y(0)]

2 +
1

2
M2 [ _y(L)]

2 +
1

2
J1
�
_y0(0)

�2
+

1

2
J2
�
_y0(L)

�2
+
1

2

Z L

0
�A [ _y(z)]2 dz � 1

2

Z L

0
EI

�
y00(z)

�2
+ T

�
y0(z)

�2
dz ; (59)

the motion equations are obtained by varying y(z) and considering the variations �y; �y0

as independent.

We obtain, apart total derivatives with respect to the time,

�L =
�
�M1�y(0)�EIy000(0) + Ty0(0)

�
�y(0) +

�
�M2�y(L) +EIy000(L)� Ty0(L)

�
�y(L)

+
�
�J1�y0(0) +EIy00(0)

�
�y0(0) +

�
�J2�y0(L)�EIy00(L)

�
�y0(L)

�
Z L

0

�
�A�y(z) +EIy0000(z)� Ty00(z)

�
�y(z)dz : (60)

Let us start limiting to an in�nite mass and inertia at the suspension point, that is a

clamped wire: the motion equation along the beam is as before

EIy0000 � Ty00 = ��A�y (61)

with the boundary conditions

y(0) = y0(0) = 0 clamped upper end

y00(L) = 0 no momentum in the lower end

EI y000(L)� Ty0(L) = M �y(L) suspended mass inertia ; (62)

it is assumed that the tension is T =M g, that is it is given by the weight of the mass.

3.2 Analytical solution

We have already found the general solution for Eq. 61, imposing the boundary conditions in

0, that is

y(z) = a [cos�3z � cosh �1z] + b [�1 sin�3z � �3 sinh�1z] ; (63)

with �1; �3 given in Eq. 49. The conditions y00(L) = 0 gives

y(z) = �1�3 [�3 sin�3L+ �1 sinh�1L] [cos �3z � cosh �1z]

�
h
�23 cos �3L+ �21 cosh�1L

i
[�1 sin�3z � �3 sinh�1z] : (64)

We �nally impose the condition coming from the inertia of the suspended mass, that is

EIy000(L)� Ty0(L) + !2My(L) = 0 (65)

which needs to be solved numerically to �nd the eigenfrequencies.
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3.3 Lattice approach

As before we may attempt also a lattice formulation: we assume that the lattice contains N

sites, numbered y(�1); y(0); y(1); :::y(N); y(N + 1); the simulation lattice goes from y(1) to

y(N), and we use the extra sites to impose the boundary conditions

y(�1) = y(0) = 0

y(N + 1)� 2y(N) + y(N � 1) = 0 (66)

EI

a3
[y(N + 1)� 3y(N) + 3y(N � 1)� y(N � 2)]� T

a
[y(N)� y(N � 1)] = �!2My(N);

we can therefore eliminate y(N + 1) in the third equation, obtaining

EI

a4
[y(N � 2)� 2y(N � 1) + y(N)] +

T

a2
[y(N)� y(N � 1)] = !2M

a
y(N) ; (67)

while in the bulk we have the equation

EI

a4
[y(i� 2)� 4y(i� 1) + 6y(i)� 4y(i + 1) + y(i+ 2)]

� T

a2
[y(i� 1)� 2y(i) + y(i+ 1)] = !2�Ay(i) (68)

for i 2 [1; N � 2], and for i = N � 1

EI

a4
[y(N � 3)� 4y(N � 2) + 5y(N � 1)� 2y(N)]

� T

a2
[y(N � 2)� 2y(N � 1) + y(N)] = !2�Ay(N � 1) (69)

We have to �nd the eigenvalues of a problem in the form

A � y = !2B � y (70)

where the indices of the matrices range in [1 : N; 1 : N ]; explicitly

B =

2
66666664

1 0 � � � 0

0 1 0 � � � 0
... 0

. . . 0 � � �
... 1 0

0 0 M
a�A

3
77777775
;

A =

2
666666664

6�1 + 2�2 �4�1 � �2 �1 0 � � �
�4�1 � �2 6�1 + 2�2 �4�1 � �2 �1 0 � � �

�1 �4�1 � �2 6�1 + 2�2 �4�1 � �2 �1 0 � � �
0

. . .
. . .

. . .
. . .

. . .
. . .

0 � � � 0 �1 �4�1 � �2 5�1 + 2�2 �2�1 � �2
0 � � � 0 �1 �2�1 � �2 �1 + �2

3
777777775
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where

�1 =
EI

a4�A
; �2 =

T

a2�A
; (71)

note that A is symmetric, B is symmetric and positive de�nite. Then in general the

problem has only real eigenvalues, as it should be.

In the lattice approach it is easy to account for a tension varying along the beam by e�ect

of the mass of the beam itself. In the matrix A one inserts a �2 depending on the site i. It is

necessary to ensure that the matrix remains symmetric! A simple way is to take the average

of the two secondary diagonals.

In Fig. 3 we show the �rst three lowest resonances for the wire suspending the seventh

�lter in the VIRGO Super Attenuator: the simulation is performed taking into account the

weight of the beam, and the diagrams show the convergence of the method varying the lattice

size.

0 2000 4000 6000 8000
0.500

0.501

0.502

0.503

0.504

0.505

0.506

148

149

150

151

152

0 2000 4000 6000 8000
296

297

298

299

300

301

302

303

304

446

448

450

452

454

456

Figure 3: Convergence of eigenfrequencies: �lter 7

The parameters chosen are

M = 223Kg

r = 2:0 � 10�3m

E = 2:0 � 1011Pascal
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� = 8:0 � 103Kg=m3

L = 1m : (72)

In Fig. 4 we show the spectrum of the lowest resonances in dependence on the �lter index;

indices 1� 7 refer to �lters 1� 7, index 8 to the marionetta

0 1 2 3 4 5 6 7 8
Filter

0.499

0.500

0.501

0.502

H
z

0

500

1000

1500

H
z

Figure 4: Spectrum in dependence of the �lter

We note that going to lower �lters the tension lowers and correspondingly the eigenfre-

quencies.

3.4 Transfer function

The computation of the eigenfrequencies allows to obtain the transfer function of the system,

according to the discussion in App. A.

The analytical approach is simple: we go back to the resolution of the system and we

impose a sinusoidal motion

y(0; t) = sin!t; y0(0) = 0 : (73)

a solution satisfying the motion equation in the bulk and the boundary condition given

above is

y(z; t) = sin!t f[a cos �3z + (1� a) cosh�1z] + b [�1 sin�3z � �3 sinh�1z]g (74)
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to set the variables a; b we impose the boundary conditions on the motion of the suspended

mass:

y00(L; t) = 0 (75)

and, using the identities in Eq. 51

y000(L; t)�
�
�21 � �23

�
y0(L; t) +

M

�A
�21�

2
3y(L; t) = 0 : (76)

We obtain

y(L) = �
�
�21 + �23

� �
�23 cos(�3L) + �21 cosh(�1L)

�8><
>:

2�21�
2
3 +

�
�41 + �43

�
cos(�3L) cosh(�1L) + �1�3

�
�21 � �23

�
sin(�3L) sinh(�1L)+

+M
�A�1�3

�
�21 + �23

�
[�3 cos(�3L) sinh(�1L)� 1 sin(�3L) cosh(�1L)]

9>=
>;
:

(77)

This result should be compared with the transfer function for a pendulum made of a wire

with E = 0:

y(L) =
1

cos �L� M!p
�AT

sin�L
(78)

where � = !
q

�A
T ; we show in Fig. 5 an example of computation of the violin modes for

the beam holding the �rst �lter in the Pisa Super Attenuator: the relevant parameters are

L = 1 m, M = 1040 Kg and r = 1:75 mm;

we see that the e�ect of the 
exural term in the motion equation for the beam is very

mild: the tension dominates and at least for the frequency range interesting in VIRGO the

transfer function is well approximated by Eq. 78.

We can compare this result with the marionetta stage, having the following characteristics:

L = 1 m, M = 60 Kg, r = 0:5 mm: we see in Fig 6 that also in this case the e�ect of the


exural term is almost irrelevant.

3.4.1 Inclusion of rocking modes

A non zero momentum of inertia J for the suspended mass changes the boundary condition

at the suspended mass: in the frequency domain

EIy00(L) = !2Jy0(L) (79)

is the equation of motion for the rotational degree of freedom.

The transfer function results

14
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Figure 5: First �lter transfer function

y(L) = �
�
�21 + �23

� h
�23 cos(�3L) + �21 cosh(�1L)� J

�A �
2
1 �

2
3 (�3 sin(�3L) + �1 sinh(�1L))

i
8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

2�21�
2
3 +

�
�41 + �43

�
cos(�3L) cosh(�1L) + �1�3

�
�21 � �23

�
sin(�3L) sinh(�1L)+

+M
�A�1�3

�
�21 + �23

�
[�3 cos(�3L) sinh(�1L)� 1 sin(�3L) cosh(�1L)] +

+ J
�A�1�3

�
�1
�
�21 cosh(�1L) sin(�3L) + �23 cosh(�1L) sin(�3L)

�
+

+�3
�
�21 sinh(�1L) cos(�3L)� �23 sinh(�1L) cos(�3L)

�
+

+M
�A

�
�31�

3
3 (cos(�3L) cosh(�1L)� 1) + �21�

2
3

�
�21 + �23

�
sin(�3L) sinh(�1L)

�o

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

:

(80)

This very complicated expression is plotted in Fig. 7, for the case of a �lter of M = 1040

Kg and a momentum of inertia of 8:63 Kg m2, and a suspending beam with r = 1:75 mm.

We show only, on a linear frequency scale, the ranges of frequencies around the principal

resonance and the �rst violin mode: note the appearance of a new resonance corresponding

to the rocking mode, as well as the shift in the position of violin modes.
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Figure 6: \Marionetta" transfer function

3.5 Double pendulum

The next exercise is to consider a double pendulum, made of a pair of subsequent pendola of

lengths L1; L2 and masses M1; M2.

Again we are interested in computing the resonances and the transfer functions. We set

for simplicity E = 0, then the equations for the �rst wire are

T1y
00
1(z; t) = �1A1�y1(z; t)

y1(0) = 0 (81)

T2y
0
2(0; t) � T1y

0
1(L1; t) = M1�y1(L1; t)

while for the second wire (we choose the origin of z at the upper end of each wire sepa-

rately)

T2y
00
2(z; t) = �2A2�y2(z; t)

y2(0; t) = y1(L1; t) (82)

T2y
0
2(L2; t) = �M2�y2(L2; t)

and
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Figure 7: First �lter transfer function, with rocking

T1 = g (M1 +M2) ; T2 = gM2 : (83)

We de�ne

�1; 2 = !

s
�1;2A1;2

T1;2
(84)

and rewrite the equations as

y001(z) = ��21y1(z)
y1(0) = 0

�y02(0) � (1 + �) y01(L1) = �!
2

g
y1(L1)

y002(z) = ��22y2(z) (85)

y2(0) = y1(L1)

y02(L2) =
!2

g
y2(L2) ;

where � = M2=M1; note that there is no reason to assume that the line formed by the

two wires is di�erentiable in M1.

17



The general solution is, apart an overall factor

y1(z) = � sin�1z

y2(z) = y1(L1) cos �2z + � sin�2z : (86)

with

� = �2 cos(�2L2)�
!2

g
sin(�2L2)

� =
!2

g
cos(�2L2) sin(�1L1) + �2 sin(�1L1) sin(�2L2) (87)

as imposed by the motion equation for the mass 2.

Imposing further the equation of motion for the mass 1 we obtain the eigenvalue equation

n
g2
h
�22 �� �1 �2 (1 + �)

i
� !4

o
cos(�1 L1 � �2 L2) +

�
n
g2
h
�22 �+ �1 �2 (1 + �)

i
� !4

o
cos(�1 L1 + �2 L2) + (88)

�g (1 + �) !2 [(�1 � �2) sin(�1 L1 � �2 L2)� (�1 + �2) sin(�1 L1 + �2 L2)] = 0

for instance, considering the values

valid for the two upper �lters, M1 =

142; M2 = 898 Kg, L1; 2 = 1 m,

r1; 2 = 1:75 mm, one obtains, up to 1

kHz, the resonances listed in the ta-

ble.

Res. # � (Hz) Res. # � (Hz)

0 0.35882 7 546.023

1 1.87314 8 676.503

2 169.136 9 728.028

3 182.016 10 910.034

4 338.256 11 1014.75

5 364.018 12 1183.88

6 507.379 13 1274.05

3.6 Double pendulum TF

In order to compute the transfer function we simply set y1(0) = 1, omitting the sinuisoidal

time dependence.

The general solution in the bulk is

y1(z) = cos(�1z) + �1 sin(�1z)

y2(z) = [cos(�1L1) + �1 sin(�1L1)] cos(�2z) + �2 sin(�2z) ; (89)

the equations to impose are

y02(L2) =
!2

g
y2(L2)

�y02(0) � (1 + �) y01(L1) = �!
2

g
y1(L1) (90)
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which can be solved for �1; 2 and substituted to obtain

y2(L2) =
2 g2 �1 �2 (1 + �)8><

>:
�
g2 �1 �2 (1 + �)� g2 �22 �+ !4

�
cos(�1 L1 � �2 L2)+

+
�
g2 �1 �2 (1 + �) + g2 �22 �� !4

�
cos(�1 L1 + �2 L2)+

+g!2 (1 + �) [(�1 � �2) sin(�1 L1 � �2 L2)� (�1 + �2) sin(�1 L1 + �2 L2)]

9>=
>;
(91)

We show in Fig. 3.6 the transfer function from the suspension to the mass 1 for the pair of

�lters 1 and 2 in the VIRGO SuperAttenuator (same parameters as in the previous section);

we also show the transfer function from the suspension to the �rst mass, and to the middle

point of the second wire.
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Figure 8: Transfer functions for a double pendulum

A few comments:

� The motion of the middle point of the second wire is of the same order as the motion

of the �rst �lter, which is the source of violin excitation.

� Some of the violin resonances do not contribute to the motion of the middle point of

the second wire, because it is with a good approximation a nodal point for some of the

eigenmodes.

� The motion of second �lter is attenuated as expected by a factorisation of the transfer

functions due to pendola resonances at low frequencies.
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3.7 Multiple pendola: the 7 VIRGO �lters

In order to solve the same problem for n �lters in the VIRGO Super Attenuator, we equip

ourselves with a bit of mathematics.

Each wire suspending a �lter has the general solution

yi(z) = �i sin(�iz) + �i cos(�1z) (92)

with the boundary conditions

y1(0) = 1

yi(Li) = yi+1(0); i 2 [1; n� 1]

�iy
0
i+1(0)� (1 + �i) y

0
i(Li) = �!

2

g
yi(Li); i 2 [1; n� 1]

y0n(Ln) =
!2

g
yn(Ln) ; (93)

where

�i =
Ti+1

Mig
=

1

Mi

nX
j=i+1

Mj : (94)

These system of 2n equations in 2n unknowns, can be solved for �i; �i to get the solution.

We show in Fig. 3.7 the

resulting transfer function

for a 7 stage VIRGO Super-

Attenuator, without mar-

ionetta and mirror: the

parameters used are taken

from [4].

stage # M (Kg) L (m) d = 2r (mm)

1 142 1 3.5

2 164 1 3.5

3 135 1 3

4 132 1 3

5 128 1 3

6 116 1 2

7 163 1 2

8 30 1 1

9 30 .7 .2

The �rst violin resonance appears at about XX Hz, however in the �gure the Q value is

set to zero and therefore the height of the peak is incorrect.

4 Matrix method for transfer functions

It is possible to greatly simplify the computation of transfer functions by exploiting in the

frequency domain the MDLE approach.

To be de�nite, let us consider a chain of pendola connected by concentrated masses, and

assume for simplicity a second order system: de�ne for each wire i the state vector

 i(z) =

 
yi(z)

y0i(z)

!
(95)

and note that the motion equation
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Figure 9: Transfer functions for a 7 stages pendulum

Ty00(z) = �!2�Ay(z) (96)

can be rewritten in �rst order form as

d

d z
 i(z) = H �  i(z) (97)

where

H =

"
0 1

�!2�A
T

0

#
: (98)

This �rst order equation can be easily integrated giving

 i(Li) = Ui(Li) �  i(0) (99)

where

Ui(Li) = eHLi =

"
cos�iLi

1
�i
sin�Li

�� sin�iLi cos �iLi

#
(100)

and as before �i = !
p
�iAi=Ti.

The boundary condition introduced by each �lter
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yi+1(0) = yi(Li)

Ti+1y
0
i+1(0) � Tiy

0
i(Li) = �!2Miyi(Li) (101)

can be in turn written in matrix form as

 i+1(0) = Zi �  i(Li)

Zi =

"
1 0

�!2 Mi

Ti+1

Ti
Ti+1

#
: (102)

These equations are closed by the motion equation for the last mass,

Tny
0
n(Ln) = !2Mnyn(Ln) (103)

that is  
yn(Ln)

0

!
= Zn ��n; 1 �

 
 1(0)

 01(0)

!
(104)

where

�n;1 = Un(Ln) � Zn�1 � � �U1(L1)

Zn =

"
1 0

�!2

g
1

#
(105)

leading to

yn(Ln) =
det�n; 1

(Zn ��n; 1)2;2
: (106)

Now

det�n;1 =
nY
i=2

detUi(Ln) detZi i�1 detU1(L1) (107)

and the U matrices are by construction with unit determinant, hence

det�n; 1 =
nY
i=2

detZi�1 =
T1

Tn
: (108)

Hence �nally

yn(Ln) =
T1

Tn

1

(Zn ��n; 1)2;2
(109)

which is numerically stable.

Having a stable expression for yn(Ln), we can immediately solve also for an intermediate

element m, by writing

22



 
yn(Ln)

0

!
= Zn ��n;m �

 
 m(0)

 0m(0)

!
where

�n;m = Un(Ln) � Zn�1 � � �Um(Lm) (110)

and solving for  m(0)

 m(0) =
(Zn ��n;m)2; 2

det�n;m
yn(Ln)

=
T1

Tm

(Zn ��n;m)2; 2

(Zn ��n;1)2; 2
(111)

These algorithm is very fast and allows to compute at once the transfer functions to all

the stages.
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Figure 10: Transfer functions for 7 �lters

As an example we show in Fig. ?? the 7 transfer functions between the horizontal motion

of the suspension and the 7 �lters.

4.1 Higher order linear equations

The generalization to higher order linear equations is straightforward: for simplicity we deal

directly with the inclusion of the 
exural momentum contribution.
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The equation of motion is

EIy0000(z)� Ty00(z) = �A!2y(z) (112)

which is of fourth order: we introduce

 (z) =

0
BBB@

y(z)

y0(z)
y00(z)
y000(z)

1
CCCA (113)

and rewrite the equation as

d

d z
 (z) = H �  (z) where

H =

2
6664

0 1 0 0

0 0 1 0

0 0 0 1

�21�
2
3 0 �21 � �23 0

3
7775 ; (114)

where �1; 3 have been de�ned in Eq. 49.

As before we de�ne

U(L) = exp (HL) ; (115)

we can write the H matrix in form

H = V �Hd �V�1 (116)

where

V =

2
6664
���31 ��31

�i
�3
3

i
�3
3

��21 ��21 ���23 ���23

� 1
�1

1
�1

i
�3

�i
�3

1 1 1 1

3
7775 (117)

Hd =

2
6664
��1 0 0 0

0 �1 0 0

0 0 �i�3 0

0 0 0 i�3

3
7775 ; (118)

and we obtain the exponential

2
66666664

�2
1
cos(�3L)+�

2
3
cosh(�1L)

�2
1
+�2

3

�3
1
sin(�3L)+�

3
3
sinh(�1L)

�1 �3 (�21+�
2
3)

cosh(�1L)�cos(�3L)
�2
1
+�2

3

�3 sinh(�1L)��1 sin(�3L)

�1 �3 (�21+�
2
3)

�1 �3 (��1 sin(�3L)+�3 sinh(�1L))

�2
1
+�2

3

�2
1
cos(�3L)+�

2
3
cosh(�1L)

�2
1
+�2

3

�3 sin(�3L)+�1 sinh(�1L)

�2
1
+�2

3

cosh(�1L)�cos(�3L)
�2
1
+�2

3

�2
1
�2
3
(cosh(�1L)�cos(�3L))

�2
1
+�2

3

�1 �3 (�3 sinh(�1L)��1 sin(�3L))

�2
1
+�2

3

�2
3
cos(�3L)+�

2
1
cosh(�1L)

�2
1
+�2

3

�3 sin(�3L)+�1 sinh(�1L)

�2
1
+�2

3

�2
1
�2
3
(�3 sin(�3L)+�1 sinh(�1L))

�2
1
+�2

3

�2
1
�2
3
(cosh(�1L)�cos(�3L))

�2
1
+�2

3

�3
1
sinh(�1L)��33 sin(�3L)

�2
1
+�2

3

�2
3
cos(�3L)+�

2
1
cosh(�1L)

�2
1
+�2

3

3
77777775

(119)

which gives the \evolution" matrix between start and end of each wire.
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4.1.1 Approximate lagrangian: clamping in the CM

In order to de�ne the multiple pendulum problem, we need to connect the wires with �lters.

As a �rst approximation, let us assume that both the wires are clamped in the CM. In this

approximation, the boundary conditions are given by

yi+1(0) = yi(Li); i 2 [1; n� 1]

y0i+1(0) = y0i(Li); i 2 [1; n� 1] (120)

while the motion equations of the �lters are, according to Eq. 60

�
EIiy

000
i (Li)� Tiy

0
i(Li)

�
�
�
EIi+1y

000
i+1(0) � Ti+1y

0
i+1(0)

�
=Mi�yi(Li)

EIi+1y
00
i+1(0)�EIiy

00
i (Li) = Ji�y

0
i(Li) : (121)

These equations de�ne the impedance matrix for i 2 [1; n� 1], as

Zi =

2
66664

1 0 0 0

0 1 0 0

0 �!2 Ji
EIi+1

Ii
Ii+1

0

!2 Mi

EIi+1

Ti+1�Ti
EIi+1

0 Ii
Ii+1

3
77775 (122)

(recall that in  the variables y00; y000 have been rescaled by EI=T ). In terms of matrices

Zi and Ui the last �lter state vector is given by

 n(L) = Un(Ln) � Zn�1 � � �Z1 �U1(L1) �  1(0) � �n; 1 1(0) (123)

and the equations of motion for the last �lter

EIny
000
n (Ln)� Tny

0
n(Ln) = �!2Mnyn(Ln)

EIny
00
i (Ln) = !2Jny

0
n(Ln) (124)

allow to eliminate y00n(Ln); y
000
n (Ln) and de�ne a matrix Zn

Zn =

2
6664

1 0 0 0

0 1 0 0

0 �!2 Jn
EIn

1 0

!2 Mn

EIn
� Tn

EIn
0 1

3
7775 (125)

such that

0
BBB@
yn(Ln)

y0n(Ln)
0

0

1
CCCA = Zn � �n;1 �  1(0) : (126)
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4.2 \Real" lagrangian: clamping not in the CM

We must take care of the fact that the wires are not clamped in the CM of each �lter: we

have relations of the form

yCMi = yi(Li) + (di � ai)y
0
i(Li)

yCMi = yi+1(0)� (di + ai)y
0
i+1(Li) (127)

�CMxi = �y0i(Li) ;

therefore the boundary conditions are

yi+1(0) = yi(Li) + 2diy
0
i(L); i 2 [1; n� 1]

y0i+1(0) = y0i(Li); i 2 [1; n� 1] (128)

while the motion equations need to be written in terms of the coordinates of the CM, for

i 2 [1; n� 1]

�
Ti+1y

0
i+1(0)�EIi+1y

000
i+1(0)

�
�
�
Tiy
0
i(Li)�EIiy

000
i (Li)

�
= �!2Mi

�
yi(Li) + (di � ai)y

0
i(Li)

�
;�

Ti+1y
0
i+1(0)�EIi+1y

000
i+1(0)

�
(di + ai) +

�
Tiy
0
i(Li)�EIiy

000
i (Li)

�
(di � ai) + (129)

+EIi+1y
00
i+1(0) �EIiy00i (Li) = +Ji�y

0
i(Li) = �!2Jiy

0
i(Li) ;

Recheck all the signs!

in the last equations we have included the concentrated momentum applied by the wires

and the momentum of the trasversal forces. The symbols Ji stand for inertia momentum of

the �lter i around axis x, because the symbol Ii is already in use for the inertia momentum

of the wire.

The motion equations and the boundary conditions can be collected in the \impedance"

matrix

Zi =

2
666664

1 2di 0 0

0 1 0 0

!2Mi(di+ai)
EIi+1

!2[(d2i�a2i )Mi�Ji]�2diTi
EIi+1

Ii
Ii+1

2di
Ii
Ii+1

!2 Mi

EIi+1

Ti+1�Ti+!2Mi(di�ai)
EIi+1

0 Ii
Ii+1

3
777775 (130)

which gives the \state vector" of the lower clamp in terms of the one of the upper: it can

be used as before for all the �lters except the last one. The last �lter upper clamp obeys the

equations

�
Tiy
0
i(Li)�EIiy000i (Li)

�
= +!2Mi

�
yi(Li) + (di � ai)y

0
i(Li)

�
;�

Tiy
0
i(Li)�EIiy000i (Li)

�
(di � ai)�EIiy

00
i (Li) = �!2Jiy

0
i(Li) ;

(131)

which allows to eliminate y00i (Li) and y
000
i (Li) de�ning a Zn matrix 2

2Note that Zn can be put in triangular form simply interchanging y00 and y000 in the state vectors, and

detZn = 1
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Zn =

2
66664

1 0 0 0

0 1 0 0

0 �Ti(di�ai)+!2Ji
EIi

1 (di � ai)

!2 Mi

EIi

!2Mi(di�ai)�Ti
EIi

0 1

3
77775 (132)

such that

0
BBB@
yn(Ln)

y0n(Ln)
0

0

1
CCCA = Zn � �n;1 �  1(0) (133)

where �n; 1 is de�ned as in Eq. 108.

The equation 133 de�nes a system of 4 equations in 4 unknowns: yn(Ln); y
0
n(Ln); y

00
1 (0); y

000
1 (0)

which can be solved as before in terms of y1(0); y
0
1(0), the coordinate and \angle" of the sus-

pension point.

5 Transfer functions for real pendola

In this section we show simply the transfer functions obtained, for a 9 stages VIRGO pendulum
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Figure 11: Y transfer function
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Figure 12: �x transfer function

6 Compressed beam

The mathematical treatment for the compressed beam is completely analogous to the one for

the beam under tension.

We have again a potential energy of the form (note the change in sign of the tension,

which is now a compression)

U =
1

2

Z l

0

h�
EIy00

�2 � T
�
y0
�2i

dz ; (134)

again in adimensional units

U =
T l

2

1

k2l2

Z 1

0

h�
y00
�2 � k2

�
y0
�2i

dz ; (135)

where

k2 � T l2

EI
(136)

The motion equation is

y0000 + k2y00 = 0 (137)

which admits for k 6= 0 the general solution (� = z=l)
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y (�) = cT �

0
BBB@

sink�

cos k�

k�

1

1
CCCA : (138)

Proceeding as before and de�ning the boundary condition vector

xT =
�
y(0); y0(0); y(1); y0(1)

�
: (139)

we obtain the potential energy

U =
E I

2 l
xT �W � x (140)

where

W =
k2

l2 [k cos k=2� 2 sink=2]
�

2
6666664
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: (141)

An alternate form is

W =
k3

l2 [k � 2 tan k=2]
�2

6666664
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(142)

6.1 Simpli�ed model: free end

Before considering the realistic setup rigid beam, let us go back to the single 
exural joint and

assume that its upper end is free, that is, the upper end is subject to forces but not couples.

This corresponds to the boundary condition y00(1) = 0, that is : : :

6.2 Inverted pendulum values

In the inverted pendulum setup projected for the Pisa SuperAttenuator the 
exible joint at

the base of each of the three supporting columns will have the following characteristics
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d = 2r = 27� 10�3m ) E I ' 5200N m2

l = 8d = 0:216m

T ' 650 � 9:81 ' 6400N : (143)

In consequence of these values, one has

k2 =
T l2

EI
' 0:057 k ' 0:24 : (144)

We are in a regime opposite to the one considered for the beams: the reason is that the

inertial momemtum I is much larger thanks to a larger beam section. We can expand the

expression for W close to k = 0, obtaining

W =
2

l2

2
6664

6 3 �6 3

3 2 �3 1

�6 �3 6 �3
3 1 �3 2

3
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2
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1
6

1
2

�2
3

3
7775+O(k4) ; (145)

the k = 0 term could have been obtained also setting the pressure T = 0.

The potential energy can be written in terms of coordinates and angles as

U =
EI

2 l

h
yT �W � y+ xT �W � x

i
xT = (x(0); l�y(0); x(1); l�y(1)) (146)

yT = (y(0); �l�x(0); y(1);�l�x(1))

Dropping the k2 term, the potential energy of the elastic line can be therefore written as

U0 =
E I

2 l

�
12

l2
[y(1) � y(0)]2 +

12

l2
[x(1)� x(0)]2

+
12

l
[�x(0) + �x(1)] [y(1) � y(0)] �

12

l
[�y(0) + �y(1)] [x(1) � x(0)]

+3 [�x(0) + �x(1)]
2 + 3 [�y(0) + �y(1)]

2

+ [�x(0)� �x(1)]
2 + [�y(0)� �y(1)]

2
o
: (147)

We need to take into account that on top of the joint l it is �xed a rigid beam of length

L� l and mass m, as shown in Fig. 13. We are interested in writing the potential in terms of

the coordinates X(1); Y (1) on top of the beam.

To this end we note that forces are applied on top of the rigid beam (and in the CM of

the beam itself), but not couples.

It is easy to convince oneself that the coordinates of the top of the 
exural joint are given

by

x(1) = X(1) � (L� l)�y(1)
y(1) = Y (1) + (L� l)�x(1) : (148)
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Figure 13: Inverted pendulum cantilever

7 Experimental setup for rocking modes

In this section we consider a simpli�ed lagrangian, to account for the study of the rocking

modes of a single �lter. The experimental setup is shown in Fig. 14

the �lter (of mass m) is suspended to a beam of length L1 and radius r1, and it is loaded

with a mass M , suspended to a second beam of length and radius L2; r2.

The suspension points do not coincide with the �lter's center of mass, but they are sepa-

rated by a distance 2 d, and it is assumed that the CM is at a distance a from the midpoint

between the suspension points, as in Fig. 15

after linearization, the coordinates x1;2 of the suspension points are, in terms of the

coordinates x of the CM and the rocking angles of the �lter

x1 = x+ (d� a)�y x2 = x� (d+ a)�y

y1 = y � (d� a)�x y2 = y + (d+ a)�y ; (149)

the signs of angles are positive when the rotation around the corresponding axis is positive

according to the right-hand rule.

We further assume that the suspension point of the �rst beam, x0, is clamped, and initially

we neglect the horizontal and rocking motions of the loading mass M .

The horizontal and rotation lagrangian for the �lter in this simpli�ed model, up to terms

O(T )1=2 in the expansion in powers of the tension, is given by

L =
m

2

�
_x2 + _y2

�
+
Jx

2
_�2x +

Jy

2
_�2y

�(m+M) g

2L1

h
(x1 � x0)

2 + (y1 � y0)
2
i

�M g

2L2

h
(x2 � xM )2 + (y2 � yM )2

i

�H1

2

(�
x1 � x0
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�2
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�
x1 � x0

L1

�2
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(150)

where the coordinates x1; 2; y1; 2 should be expressed in terms of the coordinates x; y of

the �lter CM and the angles �x; y. We have left expressed the coordinates of the suspension

point and of the clamping point on the mass M .

The 
exural sti�nesses of the two wires are

H1 =
q
(M +m)gEI1 H2 =

p
MgEI2 (151)

where

I1; 2 =
�r41; 2

4
(152)

are the inertia momenta of the wires.

We assume for the beam parameters the values

L1; 2 = 0:66m
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Figure 15: CM position relative to suspension points

2r1; 2 = 3:5mm

E = 2� 1011Pascal (153)

We inserting numerical values taken from the note [4], namely

m = 142Kg

Jx = 8:63Kgm2

Jy = 8:42Kgm2

2d = 0:01m ; (154)

the momenta of inertia correspond to the �lter loaded with the magnetic antispring box,

which was e�ectively present in the experimental setup. We further set the loading mass to

M = 650Kg : (155)

To compute the eigenfrequencies of the (weakly) coupled x; �y motion, we �rst write the

equations of motion, in the frequency domain, as a linear system

A
�
!2
�
�
 

x

�y

!
= 0 : (156)

The equation

detA
�
!2
�
= 0 (157)

allows to determine the two frequencies. The eigenvectors are then obtained by solving

the degenerate linear system in correspondence of each eigenfrequency.
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Figure 16: Eigenfrequencies of the translational and rocking motions

We plot in Fig. 16 the two eigenfrequencies � = !
2�

in dependence of the position of the

CM, parameterized by a: we call the two frequencies \translational" and \rocking" because

they are respectively dominated by an x or �y motion.

The eigenfrequencies depend very little on the CM position a.

A Small oscillations

Given a quadratic lagrangian

L =
1

2
_x �T � _x� 1

2
x �V � x (158)

we have the motion equations

T � �x+V � x = 0 ; (159)

in Fourier transform we look for eigenvectors xk wuch that

�!2
iT � xk +V � x = 0 : (160)

We have therefore to �nd eigenvalues and eigenvectors for the problem

T�1 �V � xk = !2
i x

k ; (161)
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assuming the problem solved, we look next for the solution of the forced problem

T � �x+V � x = f (162)

where f is a vector of external forces. The solution is assumed as a superposition of normal

modes

x =
X
k

ckx
k (163)

and gives rise to the equation, in Fourier transform

X
k

ck

h
�!2T+V

i
� xk = f (164)

that is

X
k

ck

h
�!2 + !2

k

i
T � xk = f : (165)

The orthogonality of the eigenvectors with respect to the dot product de�ned by the tensor

T allows to invert the relation

ck =
1

!2
k � !2

�
xk � f

�
(xk �T � xk) : (166)

We assume from now on that the eigenvectors have been normalized in such a way to have

�
xk �T � xl

�
= �k l : (167)

we obtain the solution

x =
X
k

xk

�
xk � f

�
!2
k � !2

(168)

The transfer function matrix between di�erent points of the system is de�ned therefore

as

Hi; j(!) =
X
k

xki x
k
j

!2
k � !2

1

(xk �T � xk) (169)

and its symmetry is a consequence of linearity and it is similar to the Onsager relations

in thermodynamics.

B Damped oscillator

The equation for a damped oscillator is

m�x+ 
 _x+ kx = 0 ; (170)

the general solution is in terms of damped oscillations, in the form
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x(t) = exp (�t=�) exp (i!0t) ; (171)

where

!0 =

s
k

m
� 
2

4m2
; � =

2m



: (172)

In terms of the quality factor Q, de�ned as

Q � �!0 (173)

one has

!2
0 =

k

m

1

1 + 1
Q2

' k

m

�
1� 1

Q2

�
: (174)

The transfer function of the damped oscillator is obtained considering the forced arrange-

ment, in Fourier space

�!2m~x (!) + i!
~x (!) + k~x (!) = k ~x0 (!) ; (175)

hence one has

~x (!)

~x0 (!)
=

1

�m!2 + i!
 + k

(176)

[TUTTO DA RIVEDERE!!!]
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