LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO -CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T990110-00 - D 9/9/99

Calculating the Trend Data

David Barker, Rolf Bork, Christine Patton, Alex Ivanov and Daniel Sigg

Distribution of this draft:

all

This is an internal working note of the LIGO Project.

LIGO Hanford Observatory P.O. Box 1970 S9-02 Richland, WA 99352 Phone (509) 372-8106 FAX (509) 372-8137 E-mail: info@ligo.caltech.edu

California Institute of Technology LIGO Project - MS 51-33 Pasadena CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu LIGO Livingston Observatory 19100 LIGO Lane Livingston, LA 70754 Phone (504) 686-3100 FAX (504) 686-7189 E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology LIGO Project - MS NW17-161 Cambridge, MA 01239 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

www: http://www.ligo.caltech.edu/

1 SUMMARY

LIGO trend frames are calculated at one-second and one-minute intervals. The one-second trend is stored in one minute long frame files, whereas the one-minute trend is stored in one hour long frame files. Trend channels are denoted by their corresponding channel name extended by a suffix describing the statistical quantity they represent. For each recorded channel the trend data consists of the number of points (".n"), the mean value (".mean"), the root-mean-square value (".rms"), the minimum value (".min") and the maximum value (".max"). Additionally, the standard deviation (".stddev") can be calculated from the above values as needed.

2 ONE-SECOND TREND

Only valid data points are included into calculating the one-second trend. If no valid data points exist within the one second boundary, the one-second trend is invalid for this interval.

2.1 CONVENTIONS

The following conventions were chosen (quantities marked by an 'x' are stored in the frame file, quantities marked by '+' are calculated on-the-fly):

Number of points	N_s	х
Data index	$i = 1, 2, 3, \dots N_s$	
Data points	x _i	
Mean	$\overline{x_s}$	x
Maximum	x_s^{\max}	x
Minimum	x_s^{\min}	x
RMS	$x_s^{\rm rms}$	x
Standard deviation	σ_s	+

The number of data points within one second interval is equal to the sample rate of the corresponding channel.

2.2 FORMULAE

The one-minute trend is calculated as follows:

$$\overline{x_s} = \frac{1}{N_s} \sum_{i=1}^{N_s} x_i$$

$$x_s^{\max} = \max_i \{x_i\}$$

$$x_s^{\min} = \min_i \{x_i\}$$

$$x_s^{\min} = \sqrt{\frac{1}{N_s} \sum_{i=1}^{N_s} x_i^2}$$

$$\sigma_s = \sqrt{\frac{N_s}{N_s - 1} \left\{ (x_s^{\max})^2 - (\overline{x_s})^2 \right\}}$$

3 ONE-MINUTE TREND

Only valid one-second trend points are included into calculating the one-minute trend. If no valid one-second trend points exist within the one minute boundary, the one-minute trend is invalid for this interval.

3.1 CONVENTIONS

The following conventions were chosen (quantities marked by an 'X' are stored in the frame file, quantities marked by '+' are calculated on-the-fly):

Number of points	N_m	х
Number of one-second points	n _m	
Data index	$i = 1, 2, 3, \dots n_m$	
One-second data points	$(x_s)_i$	
Mean	$\overline{x_m}$	x
Maximum	x_m^{\max}	х

Minimum	x_m^{\min}	х
RMS	x_m^{rms}	х
Standard deviation	σ_m	+

3.2 FORMULAE

The one-minute trend is calculated as follows:

$$N_{m} = \sum_{i=1}^{n_{m}} (N_{s})_{i}$$

$$\overline{x_{m}} = \frac{1}{N_{m}} \sum_{i=1}^{n_{m}} (N_{s})_{i} (\overline{x_{s}})_{i}$$

$$x_{m}^{\max} = \max_{i} \{(x_{s})_{i}\}$$

$$x_{m}^{\min} = \min_{i} \{(x_{s})_{i}\}$$

$$x_{m}^{\max} = \sqrt{\frac{1}{N_{m}} \sum_{i=1}^{n_{m}} (N_{s})_{i} (x_{s}^{\max})_{i}^{2}}$$

$$\sigma_{m} = \sqrt{\frac{N_{m}}{N_{m}-1} \left\{ (x_{m}^{\max})^{2} - (\overline{x_{m}})^{2} \right\}}$$

Since the minute trend is calculated from the one-second trend, it avoids floating point round-off errors when adding a large number of terms.

4 TREND OVER OTHER INTERVALS

A trend which averages over multiple one-second or one-minute points can be calculated 'ondemand' using the one-second or the one-minute trend, respectively. For example, a ten-minute trend would average over 10 one-minute trend data points.

4.1 CONVENTIONS

The following conventions were chosen (quantities marked by an 'x' are stored in the frame file, quantities marked by '+' are calculated on-the-fly):

index denoting new binning	h	
Number of points	N_h	+
Number of one-minute points/ Number of one-second points	n_h	
Data index	$i = 1, 2, 3, \dots n_h$	
One-minute data points	$(x_h)_i$	
Mean	$\overline{x_h}$	+
Maximum	x_h^{\max}	+
Minimum	x_h^{\min}	+
RMS	$x_h^{\rm rms}$	+
Standard deviation	σ_h	+

4.2 FORMULAE

The arbitrary binned trend is calculated as follows:

$$N_{h} = \sum_{i=1}^{n_{h}} (N_{m})_{i}$$
$$\overline{x_{h}} = \frac{1}{N_{h}} \sum_{i=1}^{n_{h}} (N_{m})_{i} (\overline{x_{m}})_{i}$$
$$x_{h}^{\max} = \max_{i} \{(x_{m})_{i}\}$$
$$x_{h}^{\min} = \min_{i} \{(x_{m})_{i}\}$$

$$x_{h}^{\text{rms}} = \sqrt{\frac{1}{N_{h}} \sum_{i=1}^{n_{h}} (N_{m})_{i} (x_{m}^{\text{rms}})_{i}^{2}}$$
$$\sigma_{h} = \sqrt{\frac{N_{h}}{N_{h} - 1} \left\{ (x_{h}^{\text{rms}})^{2} - (\overline{x_{h}})^{2} \right\}}$$