

LIGO-I Detector

Dennis Coyne & David Shoemaker LIGO Lab February 14, 2000

LIGO-G000004-00-D

LIGO-I Installation & Commissioning

1

Detector

- Installation
- Commissioning
- Schedule Status

Hanford Observatory Installation Status Overview

• Washington 2 km Interferometer

- » Laser installed; frequency and intensity stabilization operational
- » Seismic Isolation installation essentially complete (tidal motion compensation system electronics pending)
- » All suspended optics (input & core) installed and aligned; suspension electronics are functioning, but need tuning
- » ~Half of the output optics & sensors are installed
- » Laser locked to Modecleaner & performance testing in progress
- » Both 2 km arm cavities have been locked; characterization to be complete 4/00
- » Data Acquisition & an initial Global Diagnostics System installed

Washington 4 km Interferometer

А SHT 3

- » Seismic isolation installation ~75% complete
- **Packs**, trays, feedthroughs, viewports & PSL enclosure in place

Livingston Observatory Installation Status Overview

• Louisiana 4 km Interferometer

- » Laser installed on optical table; frequency and intensity stabilization loops being tested and debugged
- » Seismic isolation installation complete
- » Input Optics installation is ~ 90% complete
- » All core optics have been suspended; two are installed
- » Mode Cleaner locking to start next week

LIGO-G000004-00-D

Seismic Isolation Systems

- Outstanding progress:
 - » production and delivery of components meeting or exceeding installation schedule needs (and almost entirely complete)
 - » Early quality problems have mostly disappeared; There have been a few problems with the quality of metal seal knife edges but we have been able to perform the required rework
 - The coarse actuation system for the BSC seismic isolation systems has been installed and tested successfully in the LVEA at both Observatories
 - » BSC seismic systems at Livingston went as quickly as any installation at Hanford indicating that the transfer of experience was successful.
- Hanford 2km & Livingston seismic isolation system installation has been completed, with the exception of the tidal compensation (fine actuation) system
- Hanford 4km seismic isolation installation is ~75% complete

HAM Door Removal (Hanford 4km)

Seismic Isolation Systems

Support Tube Installation (Hanford WBSC7)

Stack Installation (Hanford X-Mid)

Coarse Actuation LIGO-I Installation & Commission

LIGO-G000004-00-D

Input Optics (IO)

- The 2km Input Optics (IO) subsystem installation has been completed
 - » The Mode Cleaner routinely holds length servo-control lock for days
 - » Mode cleaner parameters are close to design specs, including the length, cavity linewidth and visibility
 - » Further characterization is underway (optics suspension diagonalization & PSL freq. noise measurement)

• Livingston IO subsystem:

- » Alignment will be completed this week (with the exception of a Faraday isolator assembly)
- » Final installation and first lock is scheduled for next week

LIGO-G000004-00-D

Input Optics (IO)

Control System Racks (2km Interferometer)

LIGO-G000004-00-D

LIGO-I Installation & Commission And Interferometer) 9

PSL Electronics Racks

Input Optics (IO) Layout

LIGO-G000004-00-D

Recycling Cavity Alignment

Projected reticule pattern & PSL beam on target in front of MMT2

Absolute positioning & alignment reference from laser autocollimator coboresighted to a theodolite

co-alignment of the recycling cavity optics accomplished with an alignment telescope used alternately as an autocollimator & projector (940nm)

 alignment of the mode match telescope to the recycling cavity was accomplished by aligning the PSL beam to the projected reticule pattern & then by retroreflection from the RM

LIGO-G000004-00-D

Recycling Cavity Alignment

Adjusting the Fold Mirror (FMx) Alignment

LIGO-G000004-00-D

Initial Alignment System: Optical Levers

• Optical levers have been installed, aligned & are operational for all core optics in the 2km interferometer

Input Test Mass (ITMx) Optical Lever

Transmit & Receive modules visible with spool piece removed for ITMx alignment

LIGO-G000004-00-D

Core Optics Support

- Fabrication has bee completed
- Installed for the 2km:
 - » Beam Dumps (most)
 - » Recycling cavity baffles, IO baffle & cryopump baffle
 - » Pick-Off Mirrors
 - » Antisymmetric Port Pick-Off Telescope
 - » Both End Test Mass Transmission Telescopes
- Pending installation for the 2km:
 - » arm cavity baffles
 - » 3 pick-off telescopes
 - » high wavefront quality viewports

LIGO-G000004-00-D

LIGO-I Installation & Commissioning

14

Core Optics Support: End Test Mass Transmission Telescope

LIGO-G000004-00-D

Commissioning Configurations

- Mode cleaner and Pre-Stabilized Laser
- Michelson interferometer
- 2km one-arm cavity
- At present, activity focussed on Hanford Observatory
- Mode cleaner locking imminent at Livingston

Schematic of system

LIGO-G000004-00-D

Pre-Stabilized Laser-Mode Cleaner

suspension characterization

- » actuation/diagonalization
- » sensitivity of local controls to stray Nd:YAG light
- » Qs of elements measured, 3e5-1e6
- Laser Mode Cleaner control system shakedown
- laser frequency noise measurement

Wavefront sensing on Mode Cleaner cavity

• Alignment system function verified

Michelson Interferometer

LIGO-G000004-00-D

2km Fabry-Perot cavity

• Includes all interferometer subsystems

» many in definitive form; analog servo on cavity length for test configuration

confirmation of initial alignment

- » ~100 microrad errors; beams easily found in both arms
- ability to lock cavity improves with understanding 0 sec 12/1 flashes of light
 - » 0.2 sec 12/9
 - » 2 mins 1/14
 - » 60 sec 1/19
 - » 5 mins 1/21 (and on a different arm)
 - » 18 mins 2/12

2km Fabry-Perot cavity

models of environment

- » temperature changes on laser frequency
- » tidal forces changing baselines
- » seismometer/tilt correlations with microseismic peak
- mirror characterization
 - » losses: ~6% dip, excess probably due to poor centering
 - » scatter: appears to be better than requirements
 - » figure 12/03 beam profile

2km Fabry-Perot cavity: 15 minute locked stretch

LIGO-G000004-00-D

Software tools for Diagnostics

Data acquisition system

- » site-wide, synchronized, flexible
- » reduced data sets for later study
- time series viewing tools
 - » multiple time series, trends
- diagnostic analysis tools
 - » fourier transforms, coherence, etc.
- Change of paradigm: research performed in the control room

Commissioning

- Relatively 'young' undertaking
 - » unlike (much better than) previous prototype environments
- tools, researchers quickly maturing
- learning rules for structuring the work
 - » temporary hardware setups
 - » useful software tools
 - » coordination with installation
 - » multiple shifts
- second derivative is non-zero and positive

Progress Against Schedule?

- Installation and commissioning of the interferometers have been progressing and preliminary results are encouraging
- However there have been delays and problems:
 - » production start problems in seismic isolation and a slow early production pace
 - » process control problems for the magnet/standoff assembly adhesion to the optics
 - » handling and fixture problems associated with the transport and alignment of completed suspension assemblies
 - » re-manufacture of much of our flourel component stock as a result of losses from a tornado which destroyed the manufacturing facility
 - » re-baking of the flourel spring seats (and associated seismic stack rebuild) to mitigate water load on the vacuum system
 - » There have also been a number of secondary delays (not pushing the critical path, but "just in time") indicating that the project has been stressed to meet the demanding installation schedule

Reformulated Installation and Commissioning Plan

- The original installation and commissioning plan suffers from two main weaknesses and one unnecessary constraint:
 - » The first weakness is that by installing all three interferometers before beginning commissioning, any design deficiencies are replicated three times
 - » The second weakness is that having a period of installation followed by a period of commissioning does not use the range of skills of the LIGO staff as effectively as possible
 - » The constraint that coincidence testing begin only after all three interferometers are operational, unduly drives the installation of the third interferometer

Reformulated Installation and Commissioning Plan (continued)

- Delay completion of the third interferometer (the Hanford 4km interferometer) :
 - » Enable lessons learned from the first two interferometers to be realized in redesign before installation (minimizes re-work/re-installation)
 - » Reduce simultaneous installation and commissioning workload on the LIGO lab staff
- Use the Hanford 2 km interferometer as a "pathfinder" to identify problems early
- Use the Livingston 4 km interferometer for problem resolution & detailed characterization
- Initiate Coincidence testing when the first two interferometers are at an operational strain sensitivity

Reformulated Installation and Commissioning Plan (continued)

- Define clear decision points in the schedule for the third interferometer installation elements:
 - » Perform all in-vacuum work and infrastructure as early as possible
 - » Delay installation of the servo-control electronics until we've gained enough experience to incorporate anticipated re-design.

• LIGO I Science Run

- » Begins with reliable and calibrated coincidence data on three interferometers and stable configuration
- » Improvements to reach final design goals in sensitivity and reliability will be alternated with data running
- » Goal is to obtain at least one year of integrated sensitivity at $h \sim 10^{-21}$ before initiating LIGO II

Top Level Schedule

		1998			1999				2000			2001			2002			
ID	Task Name	Q2	Q3	Q4	Q1	Q2	Q3 Q4	4 Q1	Q2	Q3 Q	4 Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	LHO 2km IFO									$\overline{}$								
14	LLO 4km IFO																	
30	LHO 4km IFO									-7								
44	Coincidence Engineering Run starts										🔷 1	2/22	7ך⊛	/18				
45	Observatory Operations & improvements																	
46	Science Run starts													\langle	> 12	2/ 20 (7 💽	/17

Projected Significant Events

DRAFT

Hanford	Single arm test complete	6/00		
		0/00		
2km	installation complete	8/00		
interferometer	interferometer locked	12/00		
Livingston	Input Optics completed	7/00		
4km	interferometer installed	10/00		
interferometer	interferometer locked	2/01		
Coincidence Engineering Run	Initiate	7/01		
(Hanford 2km & Livingston 4km)	Complete	7/02		
Hanford	All in-vacuum components installed	10/00		
4km	interferometer installed	6/01		
interferometer	interferometer locked	8/01		
		0/01		
LIGO I Science Run	Initiate	7/02		
	$C = 1 + (1 + 1 + 1 + 0 + 10^{-21})$	1/02		
(3 interferometers)	Complete (obtain 1 yr @ $h \sim 10^{-1}$)	1/05		

DRAFT

LIGO-G000004-00-D

Schedule

LIGO-G000004-00-D

Installation & Commissioning Summary

- Installation & Commissioning successes!
 - » The 2 km interferometer Mode Cleaner (MC) is aligned and locked
 - » The 2 km Interferometer recycling cavity and both arms are aligned
 - » The 2km long arm cavity test started Nov and will complete in Mar (Lock durations of ~20 minutes!)
 - » The Livingston 4km interferometer Mode Cleaner (MC) is aligned; final installation and first lock will be next week
- Delays have caused us to re-evaluate our Installation & Commissioning plan & schedule :
 - » Delays due principally to installation problems on the critical path
 - » Anticipated problems/delays in the servo-control electronics
 - » We project a 7 month slip in the start of coincidence testing, redefined as a single interferometer at each site operating reliably and at a low strain sensitivity