

LIGO II

Gary Sanders Caltech Aspen Gravitational Wave Advanced Detector Workshop February 22, 2000

LIGO-G000007-A-M

LIGO II

LIGO II Reach

LIGO-G000007-A-M

LIGO II

LIGO II Reference Design Parameters / LIGO I Comparison

Subsystem and Parameters	LIGO II Reference Design	LIGO I Implementation
Comparison With LIGO I Top Level Parameters		
Strain Sensitivity [rms, 100 Hz band]	2 x 10 ⁻²³	10 ⁻²¹
Displacement Sensitivity [rms, 100 Hz band]	8 x 10 ⁻²⁰ m	4 x 10 ⁻¹⁸ m
Fabry-Perot Arm Length	4000 m	4000 m
Vacuum Level in Beam Tube, (Vacuum Chambers)	< 10 ⁻⁶ , (< 10 ⁻⁷) torr	< 10 ⁻⁶ torr
Laser Wavelength	1064 nm	1064 nm
Optical Power at Laser Output	180 W	10 W
Optical Power at Interferometer Input	125 W	5 W
Power Recycling Factor	80 x	30 x
Input Mirror Transmission	3%	3%
End Mirror Transmission	15 ppm	15 ppm
Arm Cavity Power Loss on Reflection	1%	3 %
Light Storage Time in Arms	0.84 ms	0.84 ms
Test Masses	Sapphire, 30 kg	Fused Silica, 11 kg
Mirror Diameter	28 cm	25 cm
Test Mass Pendulum Period	1 sec	1 sec
Seismic Isolation System	Active/Passive, 6 stage	Passive, 4 stage
Seismic Isolation System Horizontal Attenuation	10 ⁻⁸ (10 Hz)	≥ 10 ⁻⁵ (100 Hz)
Maximum Background Pulse Rate	1 per 10 years, triple interferometer coincidence	1 per 10 years, triple interferometer coincidence

LIGO II and LIGO I Sensitivity

4

Noise Anatomy of LIGO II

LIGO-G000007-A-M

LIGO II

The Scenario

YEAR	LIGO I	LIGO II
2000	Installation and commissioning	R&D
2001	Installation and commissioning	R&D
2002	Science run starts	MRE/R&D funds start, R&D, design, long lead items
2003	Science run	R&D, design, fabrication
2004	Science run	Fabrication, on-site assembly
2005	LIGO I interferometers removed	Fabrication, on-site assembly, installation into vacuum system
2006		Installation and commissioning

Major Project Options

- How many interferometers to upgrade?
 - » Assume all 3 interferometers upgraded
- Convert the Hanford 2 kilometer to a 4 kilometer?
 - » Assume length is increased
- Upgrade done in one phase?
 - » Assume all 3 interferometers upgraded in one parallel installation
 - » Decision on this may interact with other gravitational wave detectors to insure that observational coverage is considered

LIGO Laboratory and LSC Role

- LIGO Laboratory will organize and manage the LIGO II project
- LSC participation in the construction of LIGO II will be governed by Memoranda of Understanding (MOU) and specific, periodic Attachments describing tasks, funding, milestones and personnel, with subcontracts

» this model used successfully with Univ. of Florida during LIGO I

- » this model used with LSC for R&D activities, without subcontracts
- LSC is driving the LIGO II scientific goal and concept
- GEO is proposing a collaborating role and a capital contribution role

NSF Review

• LSC White Paper and Lab Project Book submitted

• Recommendations

- » LIGO Lab should proceed with full construction proposal for LIGO II to be submitted late in 2000
- » Proposal should identify Preconstruction R&D to begin in 2002
- » LIGO Lab should submit an integrated R&D plan for Lab and LSC research in 2000 and 2001
- » NSF should establish a framework for evaluating R&D proposals related to LIGO II in order to assure coordination and monitoring
- » Meaningful LIGO I data analysis results should be in hand prior to turning LIGO I off

LIGO Lab's Plan

- Integrated R&D Plan for 2000 and 2001 to be submitted in March
- Full LIGO II Proposal to be submitted near end of 2000, with LSC and GEO participating
- Request R&D \$ increment for 2002
- Request construction \$ for 2003
- Plan first installation in vacuum system in 2005

Management of the R&D

- LIGO Lab is working with LSC Working Group Chairs to define R&D program
- Fully integrated schedule of Lab and LSC activities is in preparation
- MOU's/Attachments B,C, D updated to agree with this plan
- LSC will host monthly progress telecons with LIGO Lab participating to assess progress and to identify issues

Since September, 1999 White Paper

- Braginsky et al and Thorne et al papers on thermoelastic damping change sapphire perspective
 - » goal is to work this result into R&D and into LIGO II design choices
 - » increased emphasis on measuring thermal noise limits with suspended sapphire optics
- Some R&D is being curtailed or accelerated to focus on the LIGO II goals
- R&D program is undergoing greater discussion and coordination