LIGO ADVANCED SYSTEM TEST INTERFEROMETER

Description & Status Report
LIGO Science Collaboration Meeting
16 March, 2000

M. E. Zucker, D. Shoemaker

G000027-00-R

Mission

- Test LIGO components, systems at full mechanical scale
- Practice installation & commissioning
- Minimize delays & downtime for LIGO site upgrades LIGO II specialization:
- Test LIGO II seismic isolation & suspension system and associated controls at full scale
- Develop detailed SEI/SUS installation & commissioning handbook
- Look for unforeseen interactions & excess displacement noise
- Goal: complementarity to 40m, other performance demonstrations

Plan

- Set up and test the infrastructure: vacuum system, optical sensing system, and data handling
- test seismic isolation systems 'stand-alone' using seismometers
- to measure relative displacement between the two seismic systems using interferometry
- to test the suspensions as stand-alone elements
- to assemble a Mode Cleaner suspension cavity between the two seismic isolation systems, perform tests of relative motion
- to form a short Test-Mass suspension cavity on the BSC isolation system, illuminated with mode-cleaned light, perform tests of relative motion
- Suspension tests to be done first for 'controls prototypes' of the suspensions; and then for final 'noise performance prototypes' of the suspensions.

Measurement goals and challenges

- Complete LIGO II controls test of mechanical actuators
 - length actuation and Suspension/Isolation hierarchy
 - angular controls, fine and coarse test mass positioning
- Ideally, would measure at LIGO II displacement and frequency
 - some clear difficulties, and a point of diminishing returns (TBD)
- Shot noise: looks feasible with LIGO I 10W laser, ~4 W incident on cavity
- Frequency noise: require ~10⁻⁶ at 10 Hz, 10x better at 100 Hz
 - like LIGO II noise requirement;
 requires LIGO II Mode Cleaner suspensions, MC 'test masses'
- Intensity noise: challenge for frequency noise requirement
 - technical flucuations pushing mirrors around
 - again, LIGO II-like performance should suffice
- Beam jitter (have LIGO II Mode Cleaner, but short cavity sensitivity TBD)

Measurement goals and challenges

- Thermal noise: thermoelastic to dominate (sapphire masses)
- Beam spots smaller than LIGO
 - sqrt(cavity length) if similar 'g' factor;
 - would give thermal noise 1700x greater than LIGO
 - can make larger beam, possibly 1/10 LIGO (7km ROC)
 - leads to thermoelastic noise ~30x that of LIGO II
 - may consider fused silica masses for low-frequency tests
- Technical challenges high-finesse and well-aligned nearly unstable cavity

Measurement goals and challenges

- Seismic noise at MIT Campus site greater
 - similar RMS (dynamic ranges ok, performance test realistic)
 - larger at e.g., 10 Hz by 10x to 100x
 - makes only small change in test start frequency

Vacuum envelope, left (S) arm

General vacuum equipment arrangement plan

Turbo/roughing pump arrangement & control diagram

Initial pumpdown curve (fresh data; annuli @ atm)

Test target

Proposed optical configuration

Proposed controls implementation (mostly 'generic LIGO II')

Schedule

- Dates as per White Paper; needs review/revision for near-term
- 4Qq99: LASTI envelope commissioned DONE
 - —The vacuum envelope is installed and aligned; the vacuum pumping system is commissioned, and the system is pumped down for the first time.
- 1Q00: LASTI external structures installed
 - The seismic piers are erected around the HAMs and BSC. We wish to delay this milestone until a firmer baseline for the seismic isolation is established to avoid any backtracking.
- 2Q00: LASTI infrastructure design review
 - covers noise sources; models for the performance of the system; complete costing and manpower estimates for the optical sensing system, control and data, mechanical interfaces to LASTI; and the experimental program.

- 3Q01: LASTI infrastructure complete
 - —sensing system, control and data, and a trial cavity test of the complete system function
- 1Q02: LASTI prototype installation complete
 - —high-quality prototypes of the HAM and BSC isolation systems, and 'controls prototypes' of the suspensions, installed and ready for tests
- 3Q02: LASTI locked
 - —The optical sensing system for the Mode Cleaner and the Test Mass Suspensions functioning and the cavities locked. No performance requirement.
- 1Q03: LASTI controls test review
 - An understanding of the controls performance of the seismic isolation systems and of the suspensions
- 2Q03: LASTI noise prototype installed
 - —The 'controls prototypes' for suspensions changed out and fused silica fiber, sapphire test mass Test Mass suspensions installed.

- 1Q04: LASTI final test review
 - —This milestone should indicate the status of tests to meet the noise performance verification.
 - is only 6 months after start of noise testing phase...
- 1Q04: LASTI first article installation starts
 - using the planned installation jigs and procedures, for seismic isolation and suspensions.
- 3Q04: LASTI first article tests complete
 - —may or may not include performance testing.

Personpower

- The success of this endeavor will require significant contributions from LSC members in and out of the Lab for success.
- presently a technician and bits and pieces of Zucker and Shoemaker working on the vacuum system and experimental design.
- will ramp up this year to perform the design, procure and install the infrastructure; principally in-Lab personnel (at both MIT and Caltech, the latter for fabrication of PSL and CDS components).
- roughly 5-6 FTEs in the MIT Lab for the latter stages: 1 technician, 1 net FTE engineer, 2 students, 1-2 postdocs/scientists.
- need roughly again as many LSC Folk in moderate-term visits to MIT or thinking hard about the data and making frequent visits
- These manpower guesses do not include the staff associated with specific subsystems; there will clearly be constructive overlap in manpower.

The Last Slide

- some important design decisions and trades remain
 - optical layout, Test Mass cavity beam parameters
 - target position sensitivity
- clear that a significant test of the LIGO mechanical system can be performed
 - controls
 - performance
- schedule aggressive; 'reasonable' up to noise testing
- personpower requires strong collaborative effort, as for all of LIGO II

