Thermal noise from optical coatings

Syracuse University Experimental Relativity Group LSC Meeting, Livingston Louisiana

March 2000

Experimental Results on Loss from Coatings

The effects of optical coatings on thermal noise have been examined with a resonant Q experiment using fused silica slides.

Slide 4 in X 1 in X 0.1 in No flatness specification 80-50 polish

Coated with Ta₂O₅/SiO₂ in LIGO run at REO on both sides

Results from slide experiment

- Best $Q_{uncoated} = 4.9 \times 10^6$
- Best $Q_{coated} = 1.6 \times 10^5$
- Corresponds to a 3.2 cm dissipation depth, of comparable size to mirror thickness
- Similar results coming from Glasgow (see G. Cagnoli's talk at Aspen 2000)

Larger sample coating experiment

- Fused silica disk
- Diameter 16.5 cm, thickness 1.9 cm
- Flatness $\lambda/12$ and $\lambda/40$
- Roughness <4 Å (rms)
- Scratch/Dig 60/40
- Silicate bonded to suspension

Large sample coating experiment

Results from disk and plans

- Found several modes, excited 1st drum head mode at 3591 Hz
- $Q = 1.25 \times 10^6$, uncoated, for first mode
- Low Q and sensitivity to external excitation suggest failure of double bob suspension
- Remake suspension with larger bob and thinner support fibers
- Ordered thinner disks (3 in φ X 0.1 thick),
 not flat but superpolished

LIGO II sensitivity with coated fused silica mirrors

- Slide results imply increase in internal mode thermal noise for fused silica by roughly √2
- If similar coating dissipation holds in superpolished samples, will noticeably effect LIGO II sensitivity
- Sensitivity with coated sapphire mirrors is unknown, but if loss is solely due to coating it could limit sapphire thermal noise to near fused silica levels

Difficulties in applying resonant Q data to LIGO II thermal noise

- Sources of loss near/in reflecting surface are emphasized
 - Y. Levin calculation
- Quantifying the effect of surface loss is geometry dependant
 - A. Gretarsson and G. Harry
- Possible frequency dependence of φ
 - ? (maybe use anelastic aftereffect and ellipsometry)

Calculations of thermal noise in LIGO II masses

- Laser most sensitive to thermal noise in a non-modal deformation
- Can be calculated directly from definition of thermal noise (FDT, statistics, etc.)
- Some subtleties require further thought
- Work at Caltech, Stanford, Orsay, Syracuse, etc. (see Levin, Bondu, Gustafson publications)

Ellipsometry and anelasticity with P. Willems and E. Gustafson

- Modify existing apparatus for reflection
- Squeeze coating by pushing normal to face
- Will mounting of sample be crucial?
- Can coating be stressed without substrate?
- Will stressing damage coating?
- Start research on damage to coatings from squeeze using slides

Page 1

Note 1, Linda Turner, 05/09/00 01:35:11 PM LIGO-G000070-00-D Gregg Harry